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Lee-Pomeransky Representation, a Brief Review



In this section we give a brief review of Lee-Pomeransky
representation of Master integrals in different sector. We denote

I(d ; ν1, · · · , νn) =

∫ L∏
i=1

dd li
iπd/2

1∏n
i=1 D

νi
i

(1)

where Di are linear functions of Lorentz invariant scalar product.
We can introduce the Schwinger trick

1

Di
=

∫ ∞
0

dαie
−αiDi (2)

to obtain the α representation:

I(d ; ν1, · · · , νn) =

∫ N∏
i=1

ανi−1
i dαi

Γ(νi )

1

Ud/2
exp

(
−F

U

)
(3)

where F and U are symanzik polynomials with
deg(F )− deg(U) = 1.
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I(d ; ν1, · · · , νn) =

∫
Γ(|ν| − dL

2
)

N∏
i=1

xνi−1
i dxi
Γ(νi )

δ(
N∑
i=1

xi − 1)
F dL/2−|ν|

Ud(L+1)/2−|ν|

(4)

where |ν| =
∑N

i=1 νi , and now the integrand are evaluated at the

affine variety
∑N

i=1 xi = 1.
Then we use the definition of Beta function, to derive that

F dL/2−|ν|

Ud(L+1)/2−|ν| =

∫ ∞
0

s |ν|−dL/2−1ds

(F + sU)d/2

1

B(|ν| − dL
2 ,

d(L+1)
2 − |ν|)

(5)

Then we find

I(d ; ν1, · · · , νn) =

∫
Γ(|ν| − dL

2 )

B(|ν| − dL/2, d(L+1)
2 − |ν|)

N∏
i=1

xνi−1
i dxi
Γ(νi )

δ(
N∑
i=1

xi − 1)

∫ ∞
0

s |ν|−dL/2−1ds

(F + sU)d/2

=
Γ(d2 )

Γ(d(L+1)
2 − |ν|)

∫ ∞
0

N∏
i=1

xνi−1
i dxi
Γ(νi )

1

(F + U)d/2
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where in the last step, we redefined xi → xi/s, and integrate the
delta function with s, and find the final answer. The result ten is
called Lee-Pomeransky representation of the master integral, where
the dependdence of the topology of the diagram is now
characterized by G := F + U.



Remark

In Lee-Pomeransky representation, the dimensional regularization
scheme of the divergence in Feynman integral turns out to be
analytic continuation in d and ν = (ν1, · · · , νN). It is then
necessary to study the property of I in terms of those variables.
Notice in general there will be a small iε term which specifies the
pole distribution in the Feynman integral, and it is vital that one
keeps those ε terms in G. Here we have neglected it since in this
note we are maily focusing on the algebraic structure of I.



Definition (Twisted Mellin Transformation)

Let f : RN
+ → C, the following function on CN is called the twisted

Mellin transformation of f :

M(f )(ν1, · · · , νN) := (
N∏
i=1

∫ ∞
0

xνi−1
i dxi
Γ(νi )

)f (x1, · · · , xN) (6)

whenever such integral exists.

It is obvious that the Feynman integral can be expressed in terms
of :

I(d , ν) =
Γ(d/2)

Γ(d/2− ω)
M(G−d/2)(ν1, · · · , νN) (7)

where ω = dL/2−
∑N

i=1 νi .
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Lemma

Let α, β ∈ C, ν ∈ CN , 1 ≤ i ≤ N, and f , g : RN
+ → C. Writing ei

for i − th unit vector in CN . The twisted Mellin transfomation has
the following property:

Linearity : M(αf + βg)(ν) = αM{f }(ν) + βM{g}(ν).

Multiplication: M{xi f }(ν) =M(f )(ν + 1)

Differentiation: M{∂i f }(ν) = −M{f }(ν − ei )

These properties are the building blocks to the application of
D-module theory later.

As a remainder, we note that M is actually inversible in the space
of functions in RN

+:
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Theorem (Inverse Mellin Transformation)

Suppose the Mellin transformation f ∗(ν) :=M(f )(ν) converges in
the domain of the form ai ≤ Re(νi ) ≤ bi , for 1 ≤ i ≤ N, where
a, b ∈ RN . Then its inverse is given by:

f (x) =M−1(f ∗)(x) := (
N∏
i=1

∫
σi+iR

dνi
Γ(νi )

xνi 2πi
)f ∗(ν),where x ∈ RN

+

(8)
This multiple integral along lines parallel to the imaginary axis
converges for ai ≤ σi ≤ bi , which does not depend on the choice
of σi .



Proof.

We only consider one variable case by direct computation:∫
σ+iR

dν
Γ(ν1)

xν12πi
f ∗(ν) =

∫
σ+iR

dν
Γ(ν)

xν2πi

∫
dyyν−1

Γ(ν)
f (y)

=

∫
R
dy

∫
σ+iR

dν

2πi

yν−1

xν
f (y)

=

∫
R
dy

∫
σ+iR

dν

2πi

1

x
e(ν−1)t f (y)

=

∫
R
dy

∫
R

du

2π

1

x
e(σ−1)t+iut f (y)

=

∫
R
dy

1

x
δ(log(y/x))f (y)

=

∫ ∞
0

dtδ(t)et f (xet)

= f (x)



Remark

This means we can formulate the theory of Feynmna integrals in
the Mellin transformed space. Now let’s formulate the IBP relation
in this space.



Definition

The momentum space IBP relations of Feynman integral
I(d ; ν1, · · · , νN) are those relations between scalar Feynman
integrals that are obtained from Stokes’ theorem:

(

∫ L∏
n=1

dd ln)o ij f = 0 (9)

where

o ij :=
∂

∂qµi
qµj ,∀i ∈ {1, · · · , L}, j ∈ {1, · · · ,M} (10)

We then search for the representation of o ij in the Mellin
transformation space:
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Given a set of N = |Θ| denominators D such that the matrix A
deifned by Da =

∑
{i ,j}∈ΘA

{i ,j}
a s{i ,j} + λa, where

Θ = {{i , j}|1 ≤ i ≤ L, 1 ≤ j ≤ L + E}, |Θ| = L(L+1)
2 + LE , is

invertible. Then every momentum-space IBP can be written
explicitly as

Oi
jI(ν) = 0 (11)

where for 1 ≤ i ≤ L, 1 ≤ j ≤ L + E , it can be expressed as:

Oi
j =

{
dδij −

∑N
a,b=1 C

bi
aj a

+(b− − λb) j ≤ L

−
∑N

a,b=1 C
bi
aj a

+(b− − λb)−
∑N

a=1

∑L+E
m=L+1 A

{i ,m}
a qjqma

+ j > L

(12)
where the coefficient matrix Cbi

aj is defined as:

Cbi
aj :=

{∑L+E
m=1A

{i ,m}
a Ab

{m,j}(1 + δmi ) j ≤ L∑L
m=1A

{i ,m}
a Ab

{m,j}(1 + δmi ) j > L
(13)
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Proof:
The action of o ij on the integrad is:

o ij f = dδij f + f
N∑

a=1

−νa
Da

qj
∂Da

∂qi
(14)

By definition, we know

qj
∂Da

∂qi
= qj

∂

∂qi

∑
{k,m}∈Θ

A{k,m}a qkqm

=
L+E∑
m=1

A{i ,m}a qjqm(1 + δim)

Then we express the scarlar products qjqm in terms of
denominators using:

qiqj =
N∑

a=1

Aa
{i ,j}(Da − λa) (15)
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Then we find

o ij f = dδij f − f
N∑

a,b=1

Cbi
aj

νa
Da

(Db − λb) for 1 ≤ j ≤ L and

o ij f = −f
N∑

a,b=1

Cbi
aj

νa
Da

(Db − λb)− f
N∑

a=1

L+E∑
m=L+1

A{i ,m}a qjqm
νa
Da

Then by noticing that multiplying f with νa/Da is equivalent to
the action of a+, and 1

Db
is equivalent to b−, we are able to

conclude the proposition.
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To go head and formulate the problem, we introduce the concept
of D-module in this section. Let’s start with the integral

F (t) =
1

2π

∫
D(t)

exp

(
−1

2
(x2 + y2)

)
dxdy , D(t) = {(x , y) ∈ R2|xy ≤ t}

(16)

The non-triviality of the integral lies in the integration region. To
go ahead, we introduce the Heaviside function

θ(t) =

{
1 t > 0

0 t ≤ 0
(17)

Then

F (t) =
1

2π

∫
R2

exp

(
−1

2
(x2 + y2)

)
θ(t − xy)dxdy (18)

Differentiation with the integral sign yields

v(t) = F ′(t) =
1

2π

∫
R2

exp

(
−1

2
(x2 + y2)

)
δ(t − xy)dxdy (19)
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v(t) = F ′(t) =
1

2π

∫
R2

exp

(
−1

2
(x2 + y2)

)
δ(t − xy)dxdy (19)



The integrand u(x , y , t) = exp
(
−1

2 (x2 + y2)
)
δ(t − xy) then

satisfies a holonomic system:

(∂y + x∂t + y)u = (∂x + y∂t + x)u = (t − xy)u = 0 (20)

We have an equality that:

y∂t(∂y + x∂t + y)− y(∂x + y∂t + x) + (∂2
t − 1)(t − xy)

= −∂xy + ∂yy∂t + t∂2
t + ∂t − t

Notice in the right hand side, the first two terms are total
derivatives in x or y , therefore we gain

(t∂2
t + ∂t − t)v(t) = 0 (21)
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by setting t = −iz , u(z) = v(−iz), it is easy to verify that

(z2 d

dz2
+ z

d

dz
+ z2)u = 0 (22)

u satisfies the bessel equation.
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dz
+ z2)u = 0 (23)

u satisfies the bessel equation.

In the above example, we find that the analytic structure of the
integral on t can be obtained from the integrand, with
combinatorics of differential operators acting on it. To study such
combinatorics, we should consider the space of all such operators,
which forms a ring structure, together with the representation
space of such a ring, which is a module over it. We introduce the
following concepts.



Remark

by setting t = −iz , u(z) = v(−iz), it is easy to verify that

(z2 d

dz2
+ z

d

dz
+ z2)u = 0 (23)

u satisfies the bessel equation.
In the above example, we find that the analytic structure of the
integral on t can be obtained from the integrand, with
combinatorics of differential operators acting on it. To study such
combinatorics, we should consider the space of all such operators,
which forms a ring structure, together with the representation
space of such a ring, which is a module over it. We introduce the
following concepts.



Definition

A Weyl algebra AN in N variables x1, · · · , xN is the
non-commutative algebra of polynomial differential operators:

AN := C[x1, · · · , xN , ∂1, · · · , ∂N ]/ ∼ (24)

where ∼ denotes the ideal 〈∂ixj − xj∂i − δij〉|i ,j∈{1,··· ,N}. Note that
with the multiple index notatoin

xα = xα1
1 · · · x

αN
N , ∂β = ∂β1

1 ∂β2
2 · · · ∂

βN
N (25)

every P ∈ AN can be written uniquely in the form

P =
∑
α,β

cαβx
α∂β (26)



Later, we shall extend the field to C(s) which can be viewed as a
localization of s in C[s]. We denote k = C(s), and AN

k = AN ⊗C k .
Now, we start to construct the space where all the annilators in ??
lives in



Definition

Given a polynomial f ∈ C[x ], the AN [s]-module C[s, x , 1
f ]f s

consists of elements of the form p/f k · f s , where
p ∈ C[s, x ], k ∈ N0, with the AN [s] action that:

q(
p

f k
f s) =

qp

f k
· f s , ∂i (

p

f k
f s) =

f ∂ip + (s − k)∂i f

f k+1
· f s (27)

We denote the submodule generated by f s under the action of
AN [s] as AN [s]f s .
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We are now prepared in formulating our proposal in the language of
D-modules. We firstly construct the space of all Feynman integrals
(in the ν space), and then assign it with a D-module structure.

Definition

Given G ∈ C[x1, · · · , xN ], the (rescaled-)Feynman integral is
defined as ĨG =M{G s}. The vector space of all Feynman
integrals associated to G is then defined as

VG :=
∑
n∈ZN

C(s, ν)·Ĩ(s, ν+n) = C(s, ν)⊗C(s) (M{AN
k }·ĨG ) (28)

where M{AN
k } is the Mellin transformation of the operators in the

Weyl algebra.
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The number of independent master integrals is the dimension of
this vector space

C(G ) = dimC(s,ν)VG (29)

Notice then M is inversible and therefore we can rephrase the
above space in terms of parametric intergands, which is:

C(G ) = dimC(s,θ)(C(s, θ)⊗C[s,θ] A
N [s] · G s) (30)

where θ = (θ1, θ2, · · · , θN), and can be understood of localization
of xi∂i in the fractional field C(s, θ). For later convenience, we
introduce k = C(s),R = C[s, θ],F = C(s, θ), and the module
M = AN [s]G s , then

C(G ) = dimF (F ⊗R M) (31)
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Crucially, AN
k · G s is a holonomic module, which is a fundamental

result due to Bernstein. In most context, the holonomic modules
behave like finite dimensional vector spaces.

For example, the sub-
and quotient of a holonomic module is again holonomic. In
addition, holonomic modules in zero variables are precisely finite
dimensional vector spaces.
In the following, we shall study the module in a slightly different
context, where we do localization of elements in AN

k in the
hypersurface xi = 0:

DN
k = AN

k [x−1] := k[x±1]⊗k A
N
k (32)
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N
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We can view this space (which is the space of derivatives with
coefficients being rational functions of xs) as the pull back
DN
k = ι∗AN

k with the open inclusion map:

ι∗GN
m,k → AN

k (33)

Then we state our main result in this section:



Theorem

Let M denote a holonomic AN
k -module, then F ⊗R M is a

finite-dimensional vector space over F . Moreover, its dimension is
given by the Euler characteristic dimF (F ⊗R M) = χ(ι∗M).

Remark

Here the Euler characteristic is assigned to the de Rham
cohomology with ι∗M as a module on R, with connection
derivative d = dx i∂i . We shall explain in detail about this
cohomology in the process of proof.
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Lemma

Let M denote a holonomic DN
k -module, then for any 1 ≤ i ≤ N,

and M(θi , · · · , θN) := k(θi , · · · , θN)⊗k[θi ,··· ,θN ] M denotes the

DN
k -module where θi = xi∂i is localized in θi = 0, and is called

algebraic Mellin transform. Then M(θi , · · · , θN) is a holomorphic
D i−1
k(θi ,··· ,θN) module.



Proof :
Since M(θi , θi+1, · · · , θN) = M(θi+1, · · · , θN)(θi ), it suffices to
show the case i = N. To declare the holonomicity of the algebraic
Mellin transformation, we formulate this module as a quotient
module. Let’s consider

M[ν] := k[ν]⊗k M (34)

This is a DN
k -module with coefficients being ν polynomial. Then

we consider the sub-module (∂N + ν/xN)M, and it’s quotient
M := M[ν]/(∂N + ν/xN)M. Since then k(ν) is flat in k[ν],
(∂N + ν/xN)M remains to be a sub-module after tensoring with
k(ν) in k[ν].
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Therefore, we conclude that

M⊗k k(ν)

(∂N + νN/xN)(M⊗k k(ν))
'M⊗k[ν] k(ν) 'M(ν) (35)

are isomorphic as DN−1
k(ν) -modules. The LHS is the quotient of

MxνN/∂NMxνN of the DN
k(ν)-module MxνN := M⊗k k(ν) defoned by

the original action of DN−1
k and x±N on M, but twisting the

connection ∂N to ∂N + ν/xN . The holonomicity of M implies that
MxνN is also holonomic, and hence its pushforward
π∗(MxνN) = MxνN/∂NMxνN 'M(θ), with respect to the projection
π : GN

m,k(ν) → GN−1
m,k(ν) which projects along the direction of the

last variable. Notice that M(ν) can be viewed as a localization of
x∂ in the field k(ν) of rational functions of ν.
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Corollary

The full Mellin transformation M(θ1, · · · , θN) is a
finite-dimensional vector space over the field k(θ1, · · · , θN).



Theorem

If M denotes the holonomic D1
k -module, then

dimk(θ1)M(θ1) = χ(M) = dimk(
M
∂1M

)− dimkker(∂1) (36)



Proof Due to holonomicity, we know that M is cyclic under the
action of D1

k . Therefore, we can pick a generator of M and extend
it as a basis of M(θ1) over the field k(θ1).

Let N ⊂M denote the
module generated by this basis over the ring k[θ]. Then of course
N (θ) = M(θ). By definition of N ,we know that M =

∑
j∈ZN x j1.

We then notice that Nj :=
∑j

i=−j Nj is a sub-module over k[θ].

Since θx jN = x j(θ + j)N ⊂ N . In particular,
N1(θ1) = N (θ1) =M(θ1) are all finitely generated, which implies
that we can always find b(θ) ∈ k[θ], such that b(θ)N1 ⊂ N . Then

b(θ ± j)Nj+1 = b(θ ± j)x∓jN1 = x∓jb(θ)N1 ⊂ x∓jN ⊂ Nj (37)
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b(θ ± j)Nj+1 = b(θ ± j)x∓jN1 = x∓jb(θ)N1 ⊂ x∓jN ⊂ Nj (38)

which shows that the polynomial bj+1(θ) = b(θ + j)b(θ− j) ∈ k[θ]
have the proeprty that bj+1(θ)Nj+1 ⊂ Nj . Let Z := b−1(0)
denotes the set of zeroes of b.
Then we find that b−1

j+1(0) ⊂ (Z + j) ∪ (Z − j). In other words, the
zeroes of bj+1 is shifted by j . Thus ∃j0 ∈ N, such that ∀j > j0, we
have bj+1(0) 6= 0. Then by Bezout theorem, ∃uj+1(θ), vj+1(θ),
such that

1 = uj+1(θ)bj+1(θ) + vj+1(θ)θ (39)
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Now suppose m ∈ Nj+1, we know

m = 1·m = bj+1(θ)uj+1(θ)m+vj+1(θ)θm ⊂ bj+1(θ)Nj+vj+1(θ)θm
(40)

Thus we know that ker(θ) ∩Nj+1 ⊂ Nj . Therefore, we find

ker(θ) ∩Nj+1 ⊂ ker(θ) ∩Nj ⊂ · · · ⊂ ker(θ) ∩Nj0 (41)

In addition, let x ∈ Nj+1, j ≥ j0, and θx ∈ Nj0 , then

x ⊂ Nj +Nj0 (42)

In consequence, we find

M
∂1(M)

' M
θ1(M)

'
Nj0

θ1(Nj0)
(43)
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which yields a quasi-isomorphism between DR(M) and DR(Nj0).
The statement of the theorem thus reduces to

dimk(θ)M(θ) = dimk(θ)(Nj0) = χ(Nj0) (44)

for j0 large enough. Now since both sides are additive under short
exact sequences, the claim reduces to the case of free rank one
k[θ]-module. Now of course

dimk(θ)k[θ] = 1

dimk(θ)
k[θ]

θk[θ]
− dimk(θ)ker(θ) = 1− 0 = 1

holds. Thus proving the theorem.
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Now we are able to prove the main theorem in this section.

Proof of the Main Theorem:
Let M denote a holomorphic DN

k -module and suppose we have
proven the theorem for variables less than N. In particular, we
make invoke the claim for DN−1

k -modules ker∂N and M/∂NM. Let
θ′ = (θ1, · · · , θN−1), and M′ := M(θ1, · · · , θN−1). From the last
theorem, we know

χ(M/∂NM) = dimk(θ′) M′/∂NM′ (45)



Now we are able to prove the main theorem in this section.
Proof of the Main Theorem:
Let M denote a holomorphic DN

k -module and suppose we have
proven the theorem for variables less than N.

In particular, we
make invoke the claim for DN−1

k -modules ker∂N and M/∂NM. Let
θ′ = (θ1, · · · , θN−1), and M′ := M(θ1, · · · , θN−1). From the last
theorem, we know

χ(M/∂NM) = dimk(θ′) M′/∂NM′ (45)



Now we are able to prove the main theorem in this section.
Proof of the Main Theorem:
Let M denote a holomorphic DN

k -module and suppose we have
proven the theorem for variables less than N. In particular, we
make invoke the claim for DN−1

k -modules ker∂N and M/∂NM. Let
θ′ = (θ1, · · · , θN−1), and M′ := M(θ1, · · · , θN−1). From the last
theorem, we know

χ(M/∂NM) = dimk(θ′) M′/∂NM′ (45)



χ(M/∂NM) = dimk(θ′) M′/∂NM′ (46)

where the LHS is the image of M/∂NM under the push forward
π : GN

m,k :→ GN−1
m,k . and

χ(ker(∂N)) = dimk(θ′) ker(∂N)(θ1 · · · , θN−1) = dimk(θ′)M′ (47)

Then we find

χ(M/∂NM)− χ(ker(∂N)) = dimk(θ′)(
M′

∂NM′
)− dimk(θ′)(ker(∂′N))

= χ(M′)
= dimk ′(θN)M′(θN)

= dimk(θ1,··· ,θN)M(θ1, · · · , θN)
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Therefore, we only need to show that the LHS is equal to χ(M).
THe identity χ(M/∂NM)− χ(ker∂N) = χ(M) follows from the
long exact sequence:

· · · → H i+1(DR(ker∂N))→ H i (DR(M))→ H i (DR(M/∂NM))→ H i+2(DR(ker(∂N)))→ · · ·
(48)

We shall give a concrete construction of this long-exact sequence
in the appendix.
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Remark

The space M(θ) can be well understood as doing localization to
xi∂i s. Notice in this case, the mutiplication of x becomes inversible
since

(1 + x∂)−1∂x = (1 + x∂)−1(1 + x∂) = 1 (49)



Remark

In the above setting, we have not taken the discrete symmetry
such as the symmetry between different propagators or
permutation of external momentums into account. Also, in actual
use, the concept of master integrals vary in different articles. Here,
we formulate the notion as the dimension of the Mellin
transformed space, which is a DN

k module and serves as a linear
space over k(θ), where θ = x∂ is localized, and take values in C.
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In actual use, we do not need to construct the cohomology and
calculate χ(M) by definition. We can transform it to a problem of
linear reduction of Symanzik polynomials. We state without proof
here the theorem which connects χ(M) with the Euler
characteristics of an affine space:

Theorem

Let G ∈ C[x1, · · · , xN ] be a polynomial and set k = C(s). Then
the Euler characteristics of the algebraic de Rham complexes of the
holonoic AN

k -module ι∗AN
k G

s and the holonomic AN
C -module

C[x±1,G−1] = O(GN
m,k\V(G )) coincide:

χ(ι∗AN
k G ) = χ(C[x±,G ]) (50)



In actual use, we do not need to construct the cohomology and
calculate χ(M) by definition. We can transform it to a problem of
linear reduction of Symanzik polynomials. We state without proof
here the theorem which connects χ(M) with the Euler
characteristics of an affine space:

Theorem

Let G ∈ C[x1, · · · , xN ] be a polynomial and set k = C(s). Then
the Euler characteristics of the algebraic de Rham complexes of the
holonoic AN

k -module ι∗AN
k G

s and the holonomic AN
C -module

C[x±1,G−1] = O(GN
m,k\V(G )) coincide:

χ(ι∗AN
k G ) = χ(C[x±,G ]) (50)



In particular, we can dispose of the parameter s completely and
compute with the algebraic de Rham complex of C[x±1,G−1],
which is the ring of regular functions of the complement of the
hypersurface V(G ) := {x : G (x) = 0}in the torus GN

m .

Combining
the theorem with the last one, we obtain the main result:

C(G ) = χ(C[x±1,G−1]) (51)

Via Grothendieck’s comparison isomorphism, this is the same as
the topological Euler characteristics, up to a sign:

C(G ) = (−1)Nχ(CN\{x1x2 · · · xNG = 0}) = (−1)Nχ(GN
m \{G = 0})

(52)
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Since now we are interested mainly in the calculation of Euler
characteristic, we can simplify calculations by abstracting from a
concrete variety V(G ) to its class [G ] in the Grothendieck ring
K0(VarC). This ring is the free Abelian group generated by
isomorphism classes [X ] of varieties over C. Where the equivalent
relation is introduced with

[X ] = [X\Z ] + [Z ] (53)

for closed subvarieties Z ⊂ X . It is a unital ring for the product

[X ] · [Y ] := [X ×k Y ] (54)
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with unit 1 = [A0] given by the class of the point. The crucial fact
of Euler characteristic χ is the factorization proerty, namely we
have

χ(X\Z ) = χ(X )− χ(Z ), χ(X × Z ) = χ(X )χ(Y ) (55)

The class L = [A1] of the affine line is called Lefschetz motive and
fullfills χ(L) = 1. For several polynomials P1, · · · ,Pn, we write
V(P1, . . . ,Pn) := {P1 · · · ,Pn = 0}. Now we are ready for the
following :
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Theorem

Let A,B ∈ C[x1, · · · , xN−1] , then

[GN
m\V(A+xNB)] = L[GN−1

m \V(A,B)]−[GN−1
m \V(A)]−[GN−1

m \V(B)]
(56)

Proof.

From definition, we know that

[GN
m\V(A+xNB)] = [Gm]([GN

m\V(A)]+[GN
m\V(B)])−L[GN−1

m \V(A·B)]
(57)

Then by [Gm] = L− 1, and V(A · B) = V(A) + V(B)− V(A,B),
we obtains the original theorem.
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A two-loop Example:

We consider the master integral of the following family:

I (ν1, · · · , ν5) =

∫
dd l1
iπd/2

∫
dd l2
iπd/2

1

(−l21 )ν1(−l22 )ν2(−(l2 − p)2)ν3(−(l1 − p)2)ν4(−(l1 − l2)2)ν5

(58)
The symanzik polynomials are:

U = (x1 + x4)(x2 + x3) + x5(x1 + x2 + x3 + x4)

F = x1x2(x3 + x4) + x3x4(x1 + x2) + x5(x1 + x2)(x3 + x4)
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where we have normalized −p2 = 1. Calculation of the
Grothendieck variety, we find

[G5
m\V(U + F)] = −L4 + 5L3 − 13L2 + 21L− 15 (59)

thus
χ[G 5

m\V(U + F)] = 3 = C(U + F) (60)
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