Bootstrapping a two-loop four-point form factor

Gang Yang

ITP, CAS

Based on the work with Yuanhong Guo (郭圆宏)、Lei Wang (王磊)

圈积分-相空间积分学习群系列报告, 2021.06.03

Generic strategy of loop computation

Expansion in a basis of integrals

Final result in functional form

Feynman diagrams, On-shell unitarity method, ...

(integrand)

Integral reductions: PV reduction, IBP reduction, ...

 $\sum c_i M_i$

Solving integrals, functional identities to simplify the result, ...

\(\) functions

Generic strategy of loop computation

Expansion in a basis of integrals

Final result in functional form

Feynman diagrams, On-shell unitarity method, ...

(integrand)

Integral reductions: PV reduction, IBP reduction, ...

 $\sum c_i M_i$

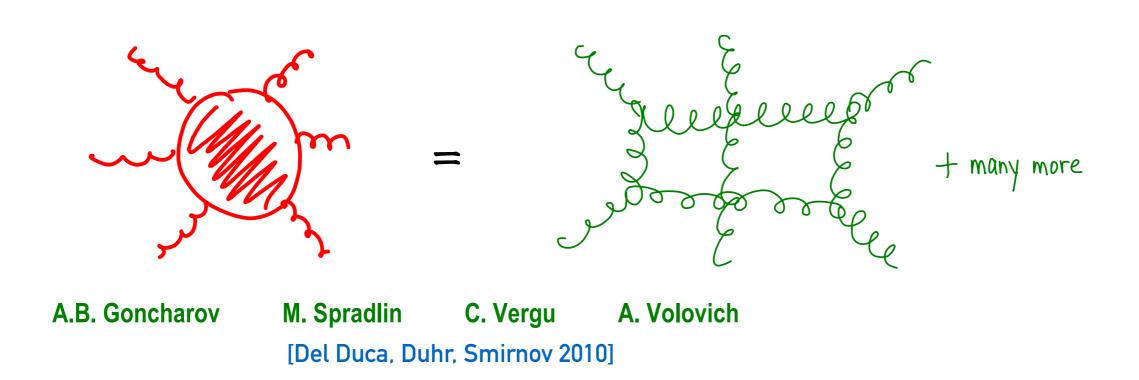
Solving integrals, functional identities to simplify the result, ...

\sum_ functions

Complicated intermediate expressions

Compact analytic form

Two-basipasipety-logarithmps litudes in N=4 for Amplitudes and Wilson Loops



17 page complicated functions

```
\begin{split} R_{0WL}^{(2)}(u_1,u_2,u_3) &= \\ \frac{1}{24}\pi^2 G \left(\frac{1}{1-u_1},\frac{u_2-1}{u_1+u_2-1};1\right) + \frac{1}{24}\pi^2 G \left(\frac{1}{u_1},\frac{1}{u_1+u_2};1\right) + \frac{1}{24}\pi^2 G \left(\frac{1}{u_1},\frac{1}{u_1+u_3};1\right) + \\ \frac{1}{24}\pi^2 G \left(\frac{1}{1-u_2},\frac{u_2-1}{u_2+u_3-1};1\right) + \frac{1}{24}\pi^2 G \left(\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) + \frac{1}{24}\pi^2 G \left(\frac{1}{u_2},\frac{1}{u_2+u_3};1\right) + \\ \frac{1}{24}\pi^2 G \left(\frac{1}{1-u_3},\frac{u_1-1}{u_1+u_3-1};1\right) + \frac{1}{24}\pi^2 G \left(\frac{1}{u_3},\frac{1}{u_1+u_3};1\right) + \frac{1}{24}\pi^2 G \left(\frac{1}{u_3},\frac{1}{u_2+u_3};1\right) + \\ \frac{3}{2}G \left(0,0,\frac{1}{u_1},\frac{1}{u_1+u_2};1\right) + \frac{3}{2}G \left(0,0,\frac{1}{u_1},\frac{1}{u_1+u_3};1\right) + \frac{3}{2}G \left(0,0,\frac{1}{u_3},\frac{1}{u_2+u_3};1\right) + \\ \frac{3}{2}G \left(0,0,\frac{1}{u_2},\frac{1}{u_2+u_3};1\right) + \frac{3}{2}G \left(0,0,\frac{1}{u_3},\frac{1}{u_1+u_3};1\right) + \frac{3}{2}G \left(0,0,\frac{1}{u_3},\frac{1}{u_2+u_3};1\right) - \\ \frac{1}{2}G \left(0,\frac{1}{u_1},0,\frac{1}{u_2};1\right) + G \left(0,\frac{1}{u_1},0,\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1},0,\frac{1}{u_2};1\right) + \\ G \left(0,\frac{1}{u_1},0,\frac{1}{u_2};1\right) + G \left(0,\frac{1}{u_1},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1},\frac{1}{u_1},\frac{1}{u_1+u_3};1\right) - \\ \frac{1}{2}G \left(0,\frac{1}{u_1},\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1},0,\frac{1}{u_1};1\right) + \\ G \left(0,\frac{1}{u_2},0,\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},0,\frac{1}{u_2};1\right) + \\ \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \\ \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_2+u_3};1\right) - \\ \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_2+u_3};1\right) - \\ \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_2+u_3};1\right) - \\ \frac{1}{2}G \left(0,\frac{1}{u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1+u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1+u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1+u_2},\frac{1}{u_1+u_2};1\right) - \frac{1}{2}G \left(0,\frac{1}{u_1+u_2},\frac{1}
```

```
\begin{split} &\frac{1}{2} \left( \left( \frac{1}{1+\alpha} \frac{m_1 m_1}{m_1 m_2} + 5 m \right) - \frac{1}{2} \left( \left( \frac{1}{1+\alpha} \frac{m_1 m_1}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_1 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_1 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac{1}{2} m \left( \frac{1}{1+\alpha} \frac{m_2 m_2}{m_2 m_2} + \frac{1}{1+\alpha} m \right) + \frac
```

```
\begin{split} &\frac{1}{2^{2}}\left(\frac{1}{n} + \frac{1}{n} \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) \\ &\frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1} + 0\right) - \frac{1}{2^{2}}\left(\frac{1}{n-1} + \frac{1}{n-1}
```

```
 \frac{1}{2^2} \left( a_{11} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) + \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11} \frac{1}{a_{11} a_{11}} + 1 \right) - \frac{1}{2^2} \left( a_{12} a_{11}
```

```
\begin{split} \frac{1}{2^n} \left(\frac{1}{1-\alpha} - \frac{n}{2^{n+1}} \frac{1}{1-\alpha}\right) + \frac{1}{2^n} \left(\frac{1}{1-\alpha} - \frac{1}{2^n} n\right) + \frac{1}{2^n} \left(\frac{1}{1-\alpha} - \frac{1}{2
```

```
 \begin{pmatrix} \frac{1}{1+\alpha_1} & \cos \frac{1}{1+\alpha_2} & \frac{1}{1+\alpha_
```

$$\begin{split} \frac{1}{2^n} \left(\frac{1}{(1 + \alpha_1)^n} \frac{1}{(1 + \alpha_1$$

[Del Duca, Duhr, Smirnov 2010]

"multiple(Goncharov)-polylogrithm function"

$$\left(\frac{1}{4}G\left(\frac{1}{1-u_1}, \frac{u_2-1}{u_1+u_2-1}, 0, \frac{1}{1-u_1}; 1\right)\right)$$

$$G(a_k, a_{k-1}, \dots, a_1; z) = \int_0^z G(a_{k-1}, \dots, a_1; t) \frac{dt}{t - a_k}, \quad G(z) = 1$$

```
 \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0, n_2) + \frac{1}{2^n} \left( \frac{1}{n_1} - \frac{1}{n_1} \cos \lambda \right) B(0
```

```
\begin{split} &\frac{1}{2^2}\left(\max_{i} + \frac{1}{n_i}\right) \beta\left(i; m_i + \frac{1}{2^2}\left(\max_{i} + \frac{1}{n_i} + 1\right) \beta\left(i; m_i + \frac{1}{2^2}\left(\min_{i} + \frac{1}{n_i} + 1\right) \beta\left(i; m_i + \frac{1}{2^2}\left(\min_{i} + \frac{1}{n_i} + 1\right) \beta\left(i; m_i + \frac{1}{n_i}
```

```
 \begin{array}{ll} \frac{1}{2^{n}}\left( \cos \frac{1}{n} \frac{1}{n} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \otimes \sin \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \otimes \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \otimes \sin \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \\ \frac{1}{2^{n}}\left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \otimes \left( \cos \frac{1}{n^{2}} \right) \otimes \sin \frac{1}{n^{2}} \otimes \sin \frac{1}{n^{
```

$$\begin{split} \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{1}, n_{1}) \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} \right) B(n_{2}) B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) \frac{1}{1 + (n_{1}, 1)} B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) B(n_{2}) + B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) B(n_{2}) + B(n_{2}) + \\ \frac{1}{2\pi} \left((n_{1}, 1) B(n_{2}) + B(n_{2}) + B(n_{2}) + \\$$

$$\begin{split} & \left[2 \cos \omega \left(R \left(\log \frac{1}{2} \log \omega \right) - 2 \log \omega \right) \sin \delta \log \delta \cos \delta \right] - 2 \log \omega \left(2 \log \delta \log \delta \right) \cos \delta \delta \cos \delta \delta$$

$$\begin{split} & P^{**}(B) \approx |B\left(\frac{1}{2}\right) - \frac{1}{2} P^{**}(B) \sin(\left(\frac{1}{2}\right) - \frac{1}{2} P^{*}(B) \sin(\left(\frac{1}{2}\right) - \frac{1}{2}) P^{*}(B) \sin(\left(\frac{1}{2}\right) - \frac{1}{2}$$

 $\frac{1}{4}H\left(0; u_{2}\right)\mathcal{H}\left(0, 1, 1; \frac{1}{v_{120}}\right) + \frac{1}{4}H\left(0; u_{3}\right)\mathcal{H}\left(0, 1, 1; \frac{1}{v_{120}}\right) + \frac{1}{4}H\left(0; u_{1}\right)\mathcal{H}\left(0, 1, 1; \frac{1}{v_{212}}\right)$ $\frac{1}{4}H(0; u_3) \mathcal{H}\left(0, 1, 1; \frac{1}{v_{213}}\right) - \frac{1}{4}H(0; u_1) \mathcal{H}\left(0, 1, 1; \frac{1}{v_{231}}\right) + \frac{1}{4}H(0; u_3) \mathcal{H}\left(0, 1, 1; \frac{1}{v_{231}}\right)$ $\frac{1}{4}H\left(0;u_{1}\right)\mathcal{H}\left(0,1,1;\frac{1}{v_{312}}\right) - \frac{1}{4}H\left(0;u_{2}\right)\mathcal{H}\left(0,1,1;\frac{1}{v_{312}}\right) - \frac{1}{4}H\left(0;u_{1}\right)\mathcal{H}\left(0,1,1;\frac{1}{v_{312}}\right) - \frac{1}{4}H\left(0;u_{1}\right)\mathcal{H}\left(0,1,1;\frac{1}$ $\frac{1}{4}H\left(0;u_{2}\right)\mathcal{H}\left(0,1,1;\frac{1}{v_{321}}\right) + \frac{1}{4}H\left(0;u_{3}\right)\mathcal{H}\left(1,0,1;\frac{1}{u_{123}}\right) + \frac{1}{4}H\left(0;u_{1}\right)\mathcal{H}\left(1,0,1;\frac{1}{u_{123}}\right) + \frac{1}{4}H\left(1,\frac{1}{u_{123}}\right) + \frac{1}{4}H\left(1,\frac{1}{$ $\frac{1}{4}H\left(0; u_{2}\right) \mathcal{H}\left(1, 0, 1; \frac{1}{u_{312}}\right) + \frac{1}{4}H\left(0; u_{2}\right) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{123}}\right) - \frac{1}{4}H\left(0; u_{3}\right) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{123}}\right) + \frac{1}{4}H\left(0; u_{3}\right) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{12$ $\frac{1}{1}H(0; u_2) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{132}}\right) + \frac{1}{4}H(0; u_3) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{122}}\right) + \frac{1}{4}H(0; u_1) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{122}}\right)$ $\frac{1}{4}H(0; u_3) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{213}}\right) - \frac{1}{4}H(0; u_1) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{221}}\right) + \frac{1}{4}H(0; u_3) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{221}}\right)$ $\frac{1}{4}H(0; u_1) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{312}}\right) - \frac{1}{4}H(0; u_2) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{312}}\right) - \frac{1}{4}H(0; u_1) \mathcal{H}\left(1, 0, 1; \frac{1}{v_{312}}\right)$ $\frac{1}{4}H\left(0;u_{2}\right)\mathcal{H}\left(1,0,1;\frac{1}{v_{321}}\right)+H\left(0;u_{2}\right)\mathcal{H}\left(1,1,1;\frac{1}{v_{123}}\right)-H\left(0;u_{3}\right)\mathcal{H}\left(1,1,1;\frac{1}{v_{123}}\right)$ $H\left(0;u_{1}\right)\mathcal{H}\left(1,1,1;\frac{1}{v_{231}}\right)+H\left(0;u_{3}\right)\mathcal{H}\left(1,1,1;\frac{1}{v_{231}}\right)+H\left(0;u_{1}\right)\mathcal{H}\left(1,1,1;\frac{1}{v_{312}}\right)$ $H\left(0;u_{2}\right)\mathcal{H}\left(1,1,1;\frac{1}{v_{312}}\right)-\frac{3}{2}\mathcal{H}\left(0,0,0,1;\frac{1}{u_{123}}\right)-\frac{3}{2}\mathcal{H}\left(0,0,0,1;\frac{1}{u_{231}}\right)$ $\begin{array}{c} \frac{3}{2}\mathcal{H}\left(0,0,0,1;\frac{1}{u_{312}}\right) - 3\mathcal{H}\left(0,0,0,1;\frac{1}{v_{132}}\right) - 3\mathcal{H}\left(0,0,0,1;\frac{1}{v_{231}}\right) - 3\mathcal{H}\left(0,0,0,1;\frac{1}{v_{231}}\right) - 3\mathcal{H}\left(0,0,0,1;\frac{1}{v_{231}}\right) - \frac{1}{2}\mathcal{H}\left(0,0,1,1;\frac{1}{u_{123}}\right) - \frac{1}{2}\mathcal{H}\left(0,0,1,1;\frac{1}{u_{231}}\right) - \frac{1}{2}\mathcal{H}\left(0,1,0,1;\frac{1}{u_{231}}\right) - \frac{1}{2}\mathcal{H}\left(0,1,0,1;\frac{1}{u_{312}}\right) + \frac{1}{2}\mathcal{H}\left(0,1,0,1;\frac{1}{u_{312}}\right) + \frac{1}{2}\mathcal{H}\left(0,1,0,1;\frac{1}{u_{323}}\right) - \frac{1}{2}\mathcal{H}\left(0,1,0,1;\frac{1}{u_{332}}\right) + \frac{1}{2}\mathcal{H}\left(0,1,0,1;\frac{1}{u_{332}}\right$ $\frac{1}{4}\mathcal{H}\left(0,1,1,1;\frac{1}{v_{123}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1,1;\frac{1}{v_{132}}\right) + \zeta_{3}H\left(0;u_{1}\right) + \zeta_{3}H\left(0;u_{2}\right) + \zeta_{3}H\left(0;u_{3}\right) + \zeta_{4}H\left(0;u_{1}\right) + \zeta_{5}H\left(0;u_{2}\right) + \zeta_{5}H\left(0;u_{1}\right) + \zeta_{5}H\left(0;u_{1}\right) + \zeta_{5}H\left(0;u_{1}\right) + \zeta_{5}H\left(0;u_{2}\right) + \zeta_{5}H\left(0;u_{1}\right) + \zeta_{5}H$ $\frac{5}{2}\zeta_{3}H\left(1;u_{1}\right)+\frac{5}{2}\zeta_{3}H\left(1;u_{2}\right)+\frac{5}{2}\zeta_{3}H\left(1;u_{3}\right)+\frac{1}{2}\zeta_{3}\mathcal{H}\left(1;\frac{1}{u_{123}}\right)+\frac{1}{2}\zeta_{3}\mathcal{H}\left(1;\frac{1}{u_{231}}\right)+\frac{1}{2}\zeta_{3}\mathcal{H}\left(1;\frac{1}{$ $\frac{1}{2} \zeta_3 \mathcal{H}\left(1; \frac{1}{u_{312}}\right) - \frac{1}{2} \mathcal{H}\left(1, 0, 0, 1; \frac{1}{u_{123}}\right) - \frac{1}{2} \mathcal{H}\left(1, 0, 0, 1; \frac{1}{u_{231}}\right) - \frac{1}{2} \mathcal{H}\left(1, 0, 0, 1; \frac{1}{u_{312}}\right)$ $\frac{2}{4}\zeta_{3}\mathcal{H}\left(1;\frac{1}{v_{123}}\right) + \frac{1}{4}\zeta_{3}\mathcal{H}\left(1;\frac{1}{v_{132}}\right) + \frac{1}{4}\zeta_{3}\mathcal{H}\left(1;\frac{1}{v_{232}}\right) + \frac{1}{4}\zeta_{3}\mathcal{H}\left(1;\frac{1}{v_{231}}\right) + \frac{1}{4}\zeta_{3}\mathcal{H}\left(1;\frac{1}{v_{23$ $\frac{1}{4}\zeta_{3}\mathcal{H}\left(1;\frac{1}{\upsilon_{321}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1,1;\frac{1}{\upsilon_{213}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1,1;\frac{1}{\upsilon_{233}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1;\frac{1}{\upsilon_{312}}\right) + \frac{1}{4}\mathcal{H}\left(0,1;\frac{1}{\upsilon_{312}}\right$ $\frac{1}{4}\mathcal{H}\left(0,1,1,1;\frac{1}{v_{321}}\right) + \frac{1}{4}\mathcal{H}\left(1,0,1,1;\frac{1}{v_{123}}\right) + \frac{1}{4}\mathcal{H}\left(1,0,1,1;\frac{1}{v_{132}}\right) + \frac{1}{4}\mathcal{H}\left(1,0,1,1;\frac{1}{v_{233}}\right) + \frac{1}{4}\mathcal{H}\left(1,0$ $\frac{1}{4}\mathcal{H}\left(1,0,1,1;\frac{1}{v_{231}}\right) + \frac{1}{4}\mathcal{H}\left(1,0,1,1;\frac{1}{v_{312}}\right) + \frac{1}{4}\mathcal{H}\left(1,0,1,1;\frac{1}{v_{321}}\right) + \frac{1}{4}\mathcal{H}\left(1,1,0,1;\frac{1}{v_{123}}\right) + \frac{1}{4}\mathcal{H}\left(1,1$

Result can be remarkably simple

17 pages =

[Goncharov, Spradlin, Vergu, Volovich 2010]

$$\sum_{i=1}^{3} \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right) - \frac{1}{8} \left(\sum_{i=1}^{3} \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72} J^4 + \frac{\pi^2}{12} J^4 + \frac{\pi^2}{12} J^4 + \frac{\pi^2}{12} J^4 + \frac{\pi^4}{12} J^4 + \frac{\pi^4}{12$$

$$L_4(x^+, x^-) = \frac{1}{8!!} \log(x^+ x^-)^4 + \sum_{m=0}^3 \frac{(-1)^m}{(2m)!!} \log(x^+ x^-)^m (\ell_{4-m}(x^+) + \ell_{4-m}(x^-)) \qquad \qquad \ell_n(x) = \frac{1}{2} \left(\operatorname{Li}_n(x) - (-1)^n \operatorname{Li}_n(1/x) \right) \qquad J = \sum_{i=1}^3 (\ell_1(x_i^+) - \ell_1(x_i^-)).$$

a line result in terms of classical polylogarithms!

Such simplicity is totally unexpected using traditional Feynman diagrams!

Mathematical tool: "symbol"

From function to "Symbol"

Recursion definition of "Symbol":

$$\mathrm{d}f_k = \sum_i f_{k-1}^i \, \mathrm{dLog}(R_i), \qquad \mathrm{Symbol}(f_k) = \sum_i \mathrm{Symbol}(f_{k-1}^i) \otimes R_i$$

Function	Differential	symbol
R	dR	0
log(R)	d log(R)	R
log(R1)log(R2)	logR1 dlogR2+logR2 dlogR1	R1⊗ R2 + R2⊗R1
Li ₂ (R)	Li ₁ (R) dlogR	-(1-R)⊗ R

Symbol

Algebraic relations:

$$R_1 \otimes \ldots \otimes (c R_i) \otimes \ldots \otimes R_n = R_1 \otimes \ldots \otimes R_i \otimes \ldots \otimes R_n$$
 c is const

$$R_1 \otimes \ldots \otimes (R_i R_j) \otimes \ldots \otimes R_n = R_1 \otimes \ldots \otimes R_i \otimes \ldots \otimes R_n + R_1 \otimes \ldots \otimes R_j \otimes \ldots \otimes R_n$$

Make it easy to prove non-trivial identities, e.g.:

$$\text{Li}_2(z) = -\text{Li}_2(1-z) - \log(1-z)\log(z) + \frac{\pi^2}{6}$$

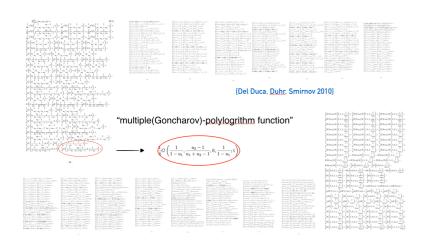
 $\text{Li}_2(z) = -\text{Li}_2(\frac{1}{z}) - \frac{1}{2}\log^2(-z) - \frac{\pi^2}{6}/; z \notin (0, 1)$

$$\operatorname{Li}_2\left(\frac{x}{1-y}\right) + \operatorname{Li}_2\left(\frac{y}{1-x}\right) - \operatorname{Li}_2(x) - \operatorname{Li}_2(y) - \operatorname{Li}_2\left(\frac{xy}{(1-x)(1-y)}\right) = \operatorname{Log}(1-x)\operatorname{Log}(1-y)$$

Applications

Complicated expression

Simple expression



$$\sum_{i=1}^{3} \left(L_4(x_i^+, x_i^-) - \frac{1}{2} \operatorname{Li}_4(1 - 1/u_i) \right) - \frac{1}{8} \left(\sum_{i=1}^{3} \operatorname{Li}_2(1 - 1/u_i) \right)^2 + \frac{1}{24} J^4 + \frac{\pi^2}{12} J^2 + \frac{\pi^4}{72} J^4 + \frac{\pi^2}{12} J^4 + \frac{\pi^2}{12$$

Applications

Complicated symbol — Simple expression

A better strategy:

Derive symbol directly without knowing function in advance.

Bootstrap strategy Dixon, Drummond, Henn 2011,

We will apply a different strategy based on master integrand expansion.

Outline

Background and Motivation

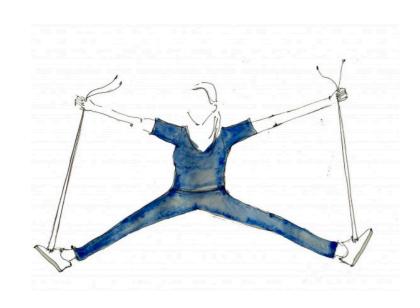
New bootstrap strategy

Two-loop four-point form factor

Summary and outlook

Bootstrap

Bootstrap



Bootstrap

S-matrix program

The Analytic S-Matrix

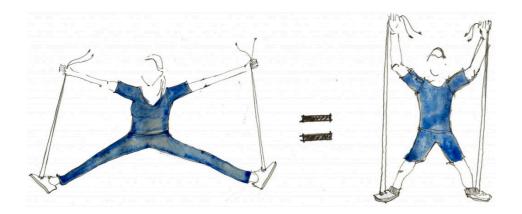
R.J.EDEN
P.V.LANDSHOFF
D.I.OLIVE
J.C.POLKINGHORNE

Cambridge University Pres

"One should try to calculate S-matrix elements directly, without the use of field quantities, by requiring them to have some general properties that ought to be valid,"

Eden et.al, "The Analytic S-matrix", 1966

Conformal bootstrap



Compute anomalous dimensions and correlation functions

Alexander M. Polyakov

Vyacheslav S. Rychkov

2-dim — D-dim

Bootstrap of amplitudes

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

Ansatz in symbols

Physical constraints

→

Solution

$$S_{\text{ansatz}}(R) = \sum_{i} c_{i} \left[\bigotimes_{a} W_{i,a} \right]$$

$$S(R) = \sum_{i} c_{i} (\otimes_{a} W_{i,a})$$

Bootstrap of amplitudes

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

Ansatz in symbols

Physical constraints

Solution

$$S_{\text{ansatz}}(R) = \sum_{i} c_{i} \left[\bigotimes_{a} W_{i,a} \right]$$

$$S(R) = \sum_{i} c_{i} (\otimes_{a} W_{i,a})$$

The new strategy we will use

Ansatz in master integrals

Physical constraints

Solution of coefficients

$$\mathcal{F}^{(l),\text{ansatz}} = \sum_{i} C_i I_i^{(l)}$$

$$\mathscr{F}^{(l)} = \sum_{i} C_{i} I_{i}^{(l)}$$

"master bootstrap"

Ansatz in master integral expansion

Physical constraints

Solution of coefficients

$$\mathcal{F}^{(l),\text{ansatz}} = \sum_{i} C_i I_i^{(l)}$$

Symmetry property

$$\mathcal{F}^{(l),\text{ansatz}} = \sum_{i} C_{i} I_{i}^{(l)}$$

IR divergences

Collinear factorization

Unitarity cut

"master bootstrap"

Ansatz in master integral expansion

Physical constraints

Solution of coefficients

$$\mathcal{F}^{(l),\text{ansatz}} = \sum_{i} C_i I_i^{(l)}$$

Symmetry property

$$\mathcal{F}^{(l),\text{ansatz}} = \sum_{i} C_{i} I_{i}^{(l)}$$

IR divergences

Collinear factorization

Unitarity cut

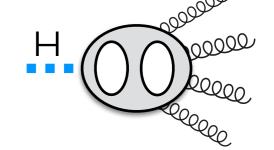
Application: two-loop four-point form factor

Form factors

We consider two-loop four-point form factor in N=4 SYM:

$$\mathcal{F}_{\mathcal{O},4} = \int d^4x \, e^{-iq\cdot x} \langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^+ | \operatorname{tr}(\phi^3)(x) | 0 \rangle$$

It is a N=4 version of Higgs+4-parton amplitudes in QCD:



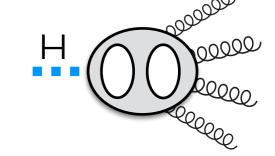
$$\mathcal{L}_{\text{eff}} = \hat{C}_0 H \text{tr}(F^2) + \mathcal{O}\left(\frac{1}{m_{\text{t}}^2}\right)$$

Form factors

We consider two-loop four-point form factor in N=4 SYM:

$$\mathcal{F}_{\mathcal{O},4} = \int d^4x \, e^{-iq\cdot x} \langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^+ | \operatorname{tr}(\phi^3)(x) | 0 \rangle$$

It is a N=4 version of Higgs+4-parton amplitudes in QCD:



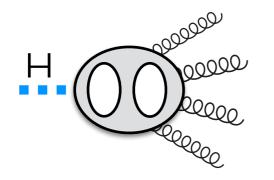
Five-point two-loop amplitudes are at frontier and under intense study:

There have been many massless five-point two-loop amplitudes obtained in analytic form. See e.g. Abreu, Dormans, Cordero, Ita, Page 2019 and many others....

For five-point two-loop amplitudes with one massive leg, so far only one result is available: $u\bar{d}\to W^+b\bar{b} \quad \text{Badger, Hartanto, Zoia 2021}$

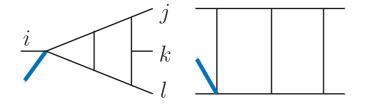
Form factors

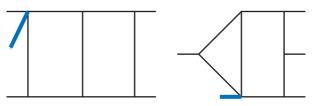
Our result provides a first two-loop five-point example with a color-singlet off-shell leg.

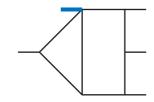


$$\mathcal{F}_{\mathcal{O},4} = \int d^4x \, e^{-iq\cdot x} \langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^+ | \operatorname{tr}(\phi^3)(x) | 0 \rangle$$

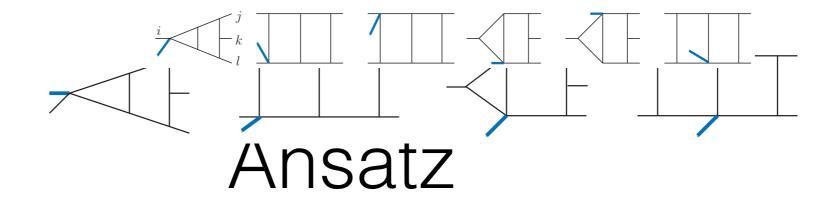
$$\{s_{12}, s_{23}, s_{34}, s_{14}, s_{13}, s_{24}, tr_5\};$$
 $tr_5 = 4i\varepsilon_{p_1p_2p_3p_4}$







Planar master integrals have been evaluated recently.



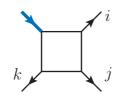
$$\mathcal{F}_{\mathcal{O},4} = \int d^4x \, e^{-iq \cdot x} \langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^+ | \operatorname{tr}(\phi^3)(x) | 0 \rangle$$

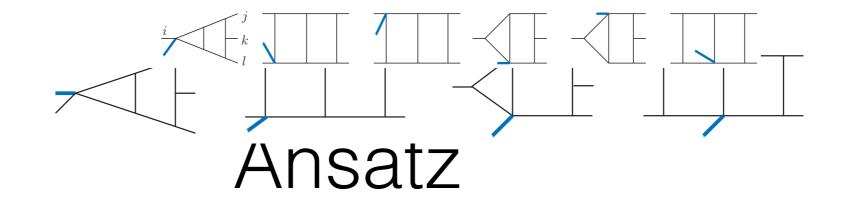
$$\mathcal{F}_4^{(0)} = \mathcal{F}_{\text{tr}(\phi_{12}^3)}^{(0)}(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^+) = \frac{\langle 31 \rangle}{\langle 34 \rangle \langle 41 \rangle}.$$

$$\mathcal{F}_4^{(1)} = \mathcal{F}_4^{(0)} \mathcal{I}_4^{(1)} = \mathcal{F}_4^{(0)} \left(B_1 \, \mathcal{G}_1^{(1)} + B_2 \, \mathcal{G}_2^{(1)} \right)$$

$$B_1 = \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 13 \rangle \langle 24 \rangle}, \quad B_2 = \frac{\langle 14 \rangle \langle 23 \rangle}{\langle 13 \rangle \langle 24 \rangle}, \quad B_1 + B_2 = 1,$$

$$\begin{split} \mathcal{G}_{1}^{(1)} &= -\frac{1}{2} I_{\text{Box}}^{(1),\text{UT}}(4,1,2) - \frac{1}{2} I_{\text{Box}}^{(1),\text{UT}}(3,4,1) - I_{\text{Bubble}}^{(1),\text{UT}}(4,1,2) \\ &- I_{\text{Bubble}}^{(1),\text{UT}}(3,4,1) + I_{\text{Bubble}}^{(1),\text{UT}}(4,1) - I_{\text{Bubble}}^{(1),\text{UT}}(2,3) \,. \end{split}$$





$$\mathcal{F}_{\mathcal{O},4} = \int d^4x \, e^{-iq \cdot x} \langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^+ | \operatorname{tr}(\phi^3)(x) | 0 \rangle$$

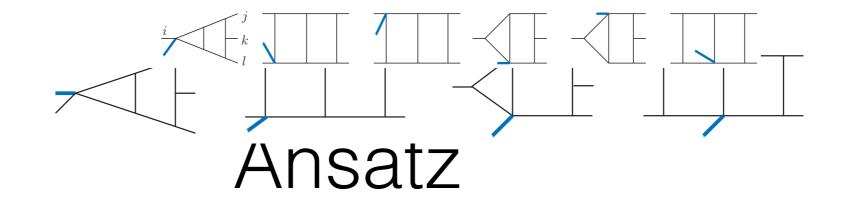
$$\mathcal{F}_4^{(0)} = \mathcal{F}_{\text{tr}(\phi_{12}^3)}^{(0)}(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^+) = \frac{\langle 31 \rangle}{\langle 34 \rangle \langle 41 \rangle}.$$

-e-loop:
$$\mathcal{F}_4^{(1)} = \mathcal{F}_4^{(0)} \mathcal{I}_4^{(1)} = \mathcal{F}_4^{(0)} \left(B_1 \, \mathcal{G}_1^{(1)} + B_2 \, \mathcal{G}_2^{(1)} \right)$$

$$B_1 = \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 13 \rangle \langle 24 \rangle}, \quad B_2 = \frac{\langle 14 \rangle \langle 23 \rangle}{\langle 13 \rangle \langle 24 \rangle}, \quad B_1 + B_2 = 1,$$

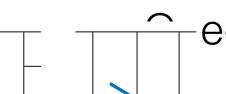
Two-loop ansatz:
$$\mathcal{F}_4^{(2)} = \mathcal{F}_4^{(0)} \left(B_1 \, \mathcal{G}_1^{(2)} + B_2 \, \mathcal{G}_2^{(2)} \right)$$

$$\mathcal{G}_a^{(2)} = \sum_{i=1}^{221} c_{a,i} I_i^{(2),\text{UT}}, \quad \mathcal{G}_2^{(2)} = \mathcal{G}_1^{(2)}|_{(p_1 \leftrightarrow p_3)}$$



$$\mathcal{F}_{\mathcal{O},4} = \int d^4x \, e^{-iq \cdot x} \langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^+ | \operatorname{tr}(\phi^3)(x) | 0 \rangle$$

$$\mathcal{F}_4^{(0)} = \mathcal{F}_{\text{tr}(\phi_{12}^3)}^{(0)}(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^+) = \frac{\langle 31 \rangle}{\langle 34 \rangle \langle 41 \rangle}.$$



-e-loop:
$$\mathcal{F}_4^{(1)} = \mathcal{F}_4^{(0)} \mathcal{I}_4^{(1)} = \mathcal{F}_4^{(0)} \left(B_1 \, \mathcal{G}_1^{(1)} + B_2 \, \mathcal{G}_2^{(1)} \right)$$

$$B_1 = \frac{\langle 12 \rangle \langle 34 \rangle}{\langle 13 \rangle \langle 24 \rangle}, \quad B_2 = \frac{\langle 14 \rangle \langle 23 \rangle}{\langle 13 \rangle \langle 24 \rangle}, \quad B_1 + B_2 = 1,$$

Two-loop ansatz:
$$\mathcal{F}_4^{(2)} = \mathcal{F}_4^{(0)} \left(B_1 \, \mathcal{G}_1^{(2)} + B_2 \, \mathcal{G}_2^{(2)} \right)$$

$$\mathcal{G}_a^{(2)} = \sum_{i=1}^{221} c_{a,i} I_i^{(2),\mathrm{UT}}, \quad \mathcal{G}_2^{(2)} = \mathcal{G}_1^{(2)}|_{(p_1 \leftrightarrow p_3)}$$

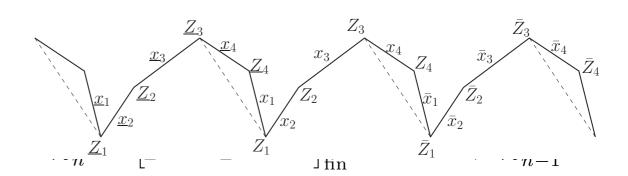
IR divergences

Collinear factorization

Spurious pole

Unitarity cut

BDS ansatz



We introduce:

$$\mathcal{I}_{4,\text{BDS}}^{(2)} = \sum_{a=1}^{2} B_a \left[\frac{1}{2} (\mathcal{G}_a^{(1)}(\epsilon))^2 + f^{(2)}(\epsilon) \mathcal{G}_a^{(1)}(2\epsilon) \right]$$

which captures all IR and collinear singularities.

$$\mathcal{R}_{4\text{-pt}}^{(2)} := \left(\mathcal{I}_{4}^{(2)} - \mathcal{I}_{4,\text{BDS}}^{(2)} \right) \Big|_{\mathcal{O}(\epsilon^{0})} \xrightarrow{p_{4} \parallel p_{3}} \mathcal{R}_{3\text{-pt}}^{(2)}$$

IR divergences

Collinear factorization

Spurious pole

Unitarity cut

Constraints	Parameters left
Symmetry of $(p_1 \leftrightarrow p_3)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	22
IR (Function)	17
Collinear limit (Funcion)	10

IR divergences

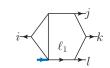
Collinear factorization

Spurious pole

Unitarity cut

Constraints	Parameters left
Symmetry of $(p_1 \leftrightarrow p_3)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	22
IR (Function)	17
Collinear limit (Funcion)	10

Spurious pole gives no new constraint.



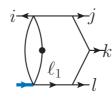
IR divergences

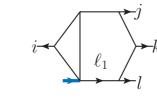
Collinear factorization

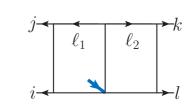
Spurious pole

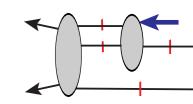
Unitarity cut

Remaining 10 parameters are related to following master integrals:









(a) BPb

(b) TP

(c) dBox2c

$$\sum_{i=1}^{10} x_i \tilde{G}_i,$$

$$\tilde{G}_{1} = I_{\text{TP}}^{\text{UT}}(1, 2, 3, 4) + I_{\text{TP}}^{\text{UT}}(3, 2, 1, 4) ,$$

$$\tilde{G}_{2} = I_{\text{BPb}}^{\text{UT}}(1, 2, 3, 4) - I_{\text{BPb}}^{\text{UT}}(4, 3, 2, 1) + (p_{1} \leftrightarrow p_{3})$$

$$\tilde{G}_{3} = B_{1}I_{\text{dBox2c}}^{\text{UT}}(1, 2, 3, 4) + B_{2}I_{\text{dBox2c}}^{\text{UT}}(3, 2, 1, 4) ,$$

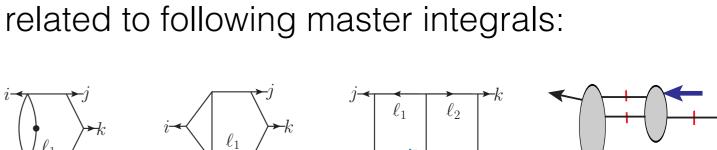
Free of above constraints.

IR divergences

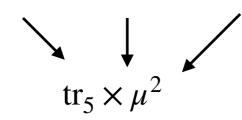
Collinear factorization

Spurious pole

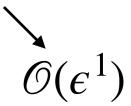
Unitarity cut



(a) BPb



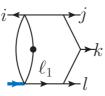
$$\operatorname{tr}_{5} = 4i\epsilon_{\mu\nu\rho\sigma}p_{1}^{\mu}p_{2}^{\nu}p_{3}^{\rho}p_{4}^{\sigma}$$
$$\mu_{ij} = \ell_{i}^{-2\epsilon} \cdot \ell_{j}^{-2\epsilon}$$

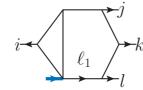


IR divergences

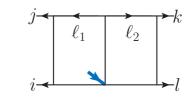
Spurious pole

Remaining 10 parameters are related to following master integrals:

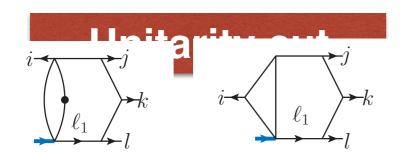


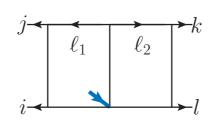


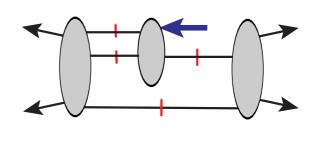
(b) TP



(c) dBox2c







$$\mathcal{F}_3^{(0)}\mathcal{A}_4^{(0),\mathrm{MHV}}\mathcal{A}_5^{(0),\mathrm{MHV}}$$

Unitarity cuts

Consider one-loop amplitudes:

What we really want

Unitarity cuts

We can perform unitarity cuts:

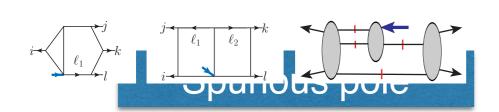
and from tree products, we derive the coefficients more directly.

Cutkosky cutting rule:
$$\frac{1}{p^2} = \longrightarrow \Rightarrow = 2\pi i \delta^{\dagger}(p^2)$$

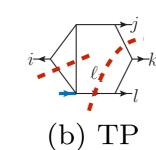
IR divergences

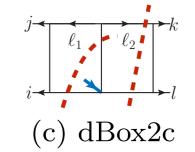
Remaining 10 parameters are related to following master integrals:

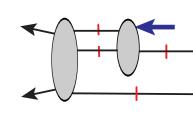
Collinear factorization



i ℓ_1 ℓ_l ℓ_l (a) BPb

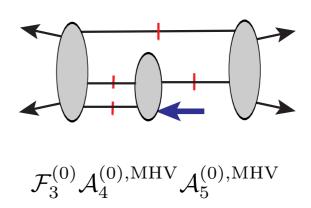






Unitarity cut

Can be fixed via simple two-double cuts:



A summary

Constraints	Parameters left
Symmetry of $(p_1 \leftrightarrow p_3)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	22
IR (Function)	17
Collinear limit (Funcion)	10
If keeping only to ϵ^0 order	6
Simple unitarity cuts	0

Numerics

Substituting in the master integral results, we have the full analytic form in GPLs, and they can be evaluated with GiNaC to 'arbitrary' high precision:

	$\mathcal{F}^{(2)}/\mathcal{F}^{(0)}$
ϵ^{-4}	8
ϵ^{-3}	-10.888626564448543787 + 25.132741228718345908i
ϵ^{-2}	-31.872672672370517258 - 16.558017711981028644i
ϵ^{-1}	-24.702889082481070673 - 2.9923229294749490751i
ϵ^0	-86.211269185142415564 - 128.27562636360640808i
$\mathcal{R}_4^{(2)}$	8.3794306422137831973 - 14.941297169128279600i

 $\{s_{12} = 241/25, s_{23} = -377/100, s_{34} = 13/50, s_{14} = -161/100, s_{13} = s_{24} = -89/100, \operatorname{tr}_5 = i\sqrt{1635802/2500}\}$

Numerics: collinear limit

Collinear limit:
$$\mathcal{R}_{4\text{-pt}}^{(2)} := (\mathcal{I}_{4}^{(2)} - \mathcal{I}_{4,\mathrm{BDS}}^{(2)})|_{\mathcal{O}(\epsilon^{0})} \xrightarrow{p_{4} \parallel p_{3} \atop \text{or } p_{4} \parallel p_{1}} \mathcal{R}_{3\text{-pt}}^{(2)}$$

$$\{s_{12} = 24/5, s_{23} = 1037/1000, s_{34} = 3111/(16 \times 10^{43}), s_{14} = 351/1000, s_{13} = 549/1000, s_{24} = 663/1000, tr_5 = i9333\sqrt{156 \times 10^{38} - 1}/10^{44}\}.$$

	$\mathcal{F}^{(2)}/\mathcal{F}^{(0)}$
ϵ^{-4}	8
ϵ^{-3}	372.73227772976457740 + 50.265482457436691815i
ϵ^{-2}	22299.426450303417729 + 2341.9459709432377859i
ϵ^{-1}	989445.74441873599952 + 140772.89586692467156i
ϵ^0	36885962.819916639458 + 6247689.7372657501908i
$\mathcal{R}_{ ext{4-pt}}^{(2)}$	$-13.79946362217945 + 9.616825584877344 \times 10^{-18}i$

$$\mathcal{R}_{3\text{-pt}}^{(2)}(\hat{s}_{12}, \hat{s}_{23}, \hat{s}_{13}) = \mathcal{R}_{3\text{-pt}}^{(2)}(\frac{24}{5}, \frac{17}{10}, \frac{9}{10})$$

$$\mathcal{R}_{3\text{-pt}}^{(2)} - \mathcal{R}_{4\text{-pt}}^{(2)} = (1.9834 \times 10^{-37} + 9.6168 \times 10^{-18}i)$$

Numerics: spurious pole

Spurious pole cancellation:

$$\mathcal{I}_{4}^{(2)} = \frac{1}{2} \left(\mathcal{G}_{1}^{(2)} + \mathcal{G}_{2}^{(2)} \right) + \frac{B_{1} - B_{2}}{2} \left(\mathcal{G}_{1}^{(2)} - \mathcal{G}_{2}^{(2)} \right) \qquad B_{1} - B_{2} = \frac{s_{12}s_{34} - s_{14}s_{23} - \text{tr}_{5}}{s_{13}s_{24}} \sim \frac{1}{\hat{\delta}}$$

	$(\mathcal{G}_1^{(2)} - \mathcal{G}_2^{(2)})/s_{24}$
ϵ^{-4}	0
ϵ^{-3}	0
ϵ^{-2}	-2.9064576941010630804 - 2.2213281389018740070i
ϵ^{-1}	7.9763731359850548468 - 9.5696847742519494379i
ϵ^0	24.831917323215069069 + 36.102098241406925338i

Kinematics: $\{s_{12} = -11/5, s_{23} = -57/20, s_{34} = 18/5, s_{14} = 5/4, s_{13} = 3, s_{24} = 10^{-20}, tr_5 > 0\}$

Technical details: symbol letters

$$\operatorname{Sym}(\mathcal{R}_{4}^{(2)}) = \sum_{i} c_{i} W_{i_{1}} \otimes W_{i_{2}} \otimes W_{i_{3}} \otimes W_{i_{4}} \qquad u_{ij} = \frac{s_{ij}}{s_{1234}}, \quad u_{ijk} = \frac{s_{ijk}}{s_{1234}}$$

Building blocks:

$$x_{ijkl}^{\pm} = \frac{1 + u_{ij} - u_{kl} \pm \sqrt{\Delta_{3,ijkl}}/s_{1234}}{2u_{ij}}, \qquad \Delta_{3,ijkl} = \operatorname{Gram}(p_i + p_j, p_k + p_l),$$

$$y_{ijkl}^{\pm} = \frac{u_{ij}u_{kl} - u_{ik}u_{jl} + u_{il}u_{jk} \pm P(ijkl)\operatorname{tr}_5/(s_{1234})^2}{2u_{ij}u_{il}}, \qquad \operatorname{tr}_5 = 4i\epsilon_{\mu\nu\rho\sigma}p_1^{\mu}p_2^{\nu}p_3^{\rho}p_4^{\sigma}$$

$$z_{ijkl}^{\pm\pm} = 1 + y_{ijkl}^{\pm} - x_{lijk}^{\pm},$$

Complicated letters:

$$U(p_{i} + p_{j}, p_{k} + p_{l}) = u_{ikl}u_{jkl} - u_{kl},$$

$$X_{1}(p_{i} + p_{j}, p_{k}, p_{l}) = \frac{u_{ij}x_{ijkl}^{+} - u_{ijl}}{u_{ij}x_{ijkl}^{-} - u_{ijl}},$$

$$X_{2}(p_{i} + p_{j}, p_{k} + p_{l}) = \frac{x_{ijkl}^{+}}{x_{ijkl}^{-}},$$

$$Y_{1}(p_{i}, p_{j}, p_{k}, p_{l}) = \frac{y_{ijkl}^{+}}{y_{ijkl}^{-}},$$

$$Y_{2}(p_{i}, p_{j}, p_{k}, p_{l}) = \frac{y_{ijkl}^{+} + 1}{y_{ijkl}^{-} + 1},$$

$$Z(p_{i}, p_{j}, p_{k}, p_{l}) = \frac{z_{ijkl}^{++} z_{ijkl}^{--}}{z_{ijkl}^{+-} z_{ijkl}^{-+}}.$$

Technical details: symbol letters

All 42 letters in remainder:

```
u_{12}, u_{13}, u_{14}, u_{23}, u_{24}, u_{34}, \\ u_{123}, u_{124}, u_{134}, u_{234}, \\ u_{123} - u_{12}, u_{123} - u_{23}, u_{124} - u_{12}, u_{124} - u_{14}, \\ u_{134} - u_{14}, u_{134} - u_{34}, u_{234} - u_{23}, u_{234} - u_{34}, \\ 1 - u_{123}, 1 - u_{124}, 1 - u_{134}, 1 - u_{234}.
```

$$X_{1}(p_{1}+p_{2},p_{3},p_{4}), X_{1}(p_{2}+p_{3},p_{4},p_{1}),$$

$$X_{1}(p_{1}+p_{4},p_{2},p_{3}), X_{1}(p_{3}+p_{4},p_{1},p_{2}),$$

$$X_{2}(p_{1}+p_{2},p_{3}+p_{4}), X_{2}(p_{2}+p_{3},p_{1}+p_{4}),$$

$$X_{2}(p_{1}+p_{4},p_{2}+p_{3}), X_{2}(p_{3}+p_{4},p_{1}+p_{2}),$$

$$U(p_{1}+p_{2},p_{3}+p_{4}), U(p_{2}+p_{3},p_{1}+p_{4}),$$

$$U(p_{1}+p_{4},p_{2}+p_{3}), U(p_{3}+p_{4},p_{1}+p_{2}),$$

$$Y_{1}(p_{1},p_{2},p_{3},p_{4}), Y_{1}(p_{1},p_{3},p_{2},p_{4}),$$

$$Y_{2}(p_{1},p_{3},p_{2},p_{4}), Y_{2}(p_{3},p_{1},p_{2},p_{4}),$$

$$Y_{2}(p_{1},p_{3},p_{4},p_{2}), Y_{2}(p_{3},p_{1},p_{4},p_{2}),$$

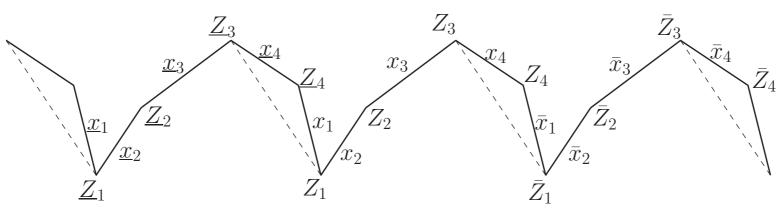
$$Z(p_{1},p_{2},p_{3},p_{4}), Z(p_{3},p_{2},p_{1},p_{4}).$$

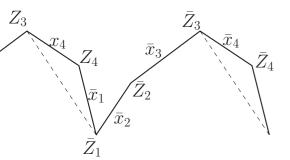
Extra 4 letters that appear in master:

$$q^2$$
, $\sqrt{\Delta_{3,1234}}$, $\sqrt{\Delta_{3,1423}}$, ${\rm tr}_5$

Technical details: collinear limit of form factors

Dual momentum space



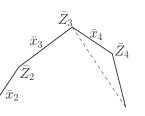


$$x_i^{\alpha\dot{\alpha}} - x_{i+1}^{\alpha\dot{\alpha}} = p_i^{\alpha\dot{\alpha}} = \lambda_i^{\alpha} \widetilde{\lambda}_i^{\dot{\alpha}} , \quad \underline{x}_i - x_i = x_i - \overline{x}_i = q$$

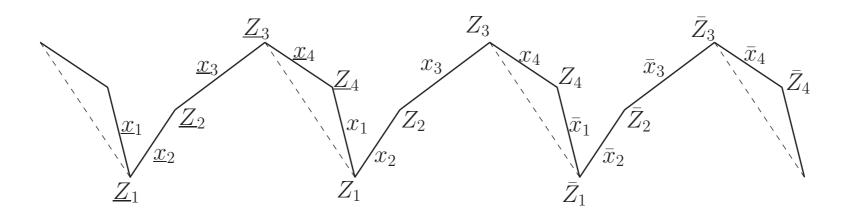
$$Z_i^A = (\lambda_i^{\alpha}, \mu_i^{\dot{\alpha}}) , \qquad \mu_i^{\dot{\alpha}} = x_i^{\alpha\dot{\alpha}} \cdot \lambda_{i\alpha} = x_{i+1}^{\alpha\dot{\alpha}} \cdot \lambda_{i\alpha}$$

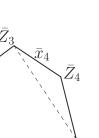
$$x_{ij}^{2} = (x_{i} - x_{j})^{2} = \frac{\langle i - 1, i, j - 1, j \rangle}{\langle i - 1, i \rangle \langle j - 1, j \rangle} \qquad \langle Z_{i} Z_{j} Z_{k} Z_{l} \rangle = \langle ijkl \rangle$$

Technical details: collinear limit of form factors

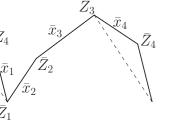


Dual momentum space





Collinear limit parametrization:



$$Z_4 = Z_3 + \delta \frac{\langle \bar{1}\bar{2}13 \rangle}{\langle \bar{1}\bar{2}12 \rangle} Z_2 + \tau \delta \frac{\langle \bar{2}123 \rangle}{\langle \bar{1}\bar{2}12 \rangle} \bar{Z}_1 + \eta \frac{\langle \bar{1}123 \rangle}{\langle \bar{1}\bar{2}12 \rangle} \bar{Z}_2$$

$$\lambda_4 = \lambda_3 + \delta \frac{\langle \bar{1}\bar{2}13 \rangle}{\langle \bar{1}\bar{2}12 \rangle} \lambda_2 + \tau \delta \frac{\langle \bar{2}123 \rangle}{\langle \bar{1}\bar{2}12 \rangle} \bar{\lambda}_1 + \eta \frac{\langle \bar{1}123 \rangle}{\langle \bar{1}\bar{2}12 \rangle} \bar{\lambda}_2$$

taking first $\eta \to 0$, followed by $\delta \to 0$.

$$y_{1234}^{+} \to \frac{(1-t)\delta}{t} \frac{(\hat{u}_{12} + \hat{u}_{13})\hat{u}_{23}}{\hat{u}_{12}}, \quad y_{1234}^{-} \to -\frac{\eta}{\delta} \frac{\hat{u}_{23}}{\hat{u}_{12} + \hat{u}_{13}},$$

$$y_{1324}^{+} \to \frac{\hat{u}_{23}}{\hat{u}_{13}}, \qquad y_{1324}^{-} \to \frac{\hat{u}_{23}}{\hat{u}_{13}},$$

$$y_{3124}^{+} \to -\frac{t}{(1-t)\delta} \frac{\hat{u}_{12}}{\hat{u}_{13}(\hat{u}_{12} + \hat{u}_{13})}, \quad y_{3124}^{-} \to \frac{\delta}{\eta} \frac{\hat{u}_{12} + \hat{u}_{13}}{\hat{u}_{13}},$$

$$y_{1342}^{+} \to \frac{t\eta}{(1-t)\delta} \frac{\hat{u}_{23}}{\hat{u}_{12} + \hat{u}_{13}}, \quad y_{1342}^{-} \to -\delta \frac{(\hat{u}_{12} + \hat{u}_{13})\hat{u}_{23}}{\hat{u}_{12}},$$

$$y_{3142}^{+} \to \frac{t}{1-t}, \qquad y_{3142}^{-} \to \frac{t}{1-t}.$$

$$t - 1 s_{12} + s_{13}$$

Technical details: numerical computation

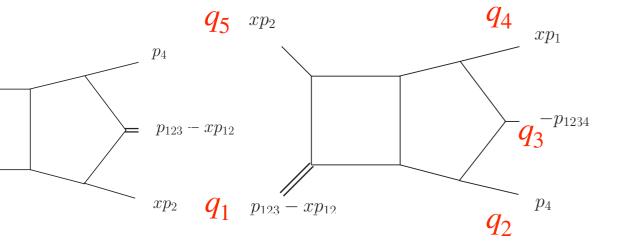
Master integrals are evaluated in multiple polylogarithm.

Canko, Papadopoulos, Syrrakos 2020

A different set of kinematics are chosen.

 $\{q_1, q_2, q_3, q_4, q_5\}$ with q_1 massive

$${x, S_{12}, S_{23}, S_{34}, S_{45}, S_{51}}.$$



$$\tilde{s}_{15} = (1 - x)S_{45} + S_{23}x,
q_1^2 = (1 - x)(S_{45} - S_{12}x),
\tilde{s}_{12} = (S_{34} - S_{12}(1 - x))x,
\tilde{s}_{23} = S_{45}, \ \tilde{s}_{34} = S_{51}x, \ \tilde{s}_{34} = S_{51}x$$

$$\tilde{s}_{ij} = (q_i + q_j)^2$$

Summary and outlook

Summary and outlook

We present a first analytic computation of a two-loop five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master integral expansion, which applies efficiently for this case.

Summary and outlook

We present a first analytic computation of a two-loop five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master integral expansion, which applies efficiently for this case.

Outlook:

Apply to more general observables.

Study the new constraints beyond collinear limit, such as OPE limit, Regge limit.

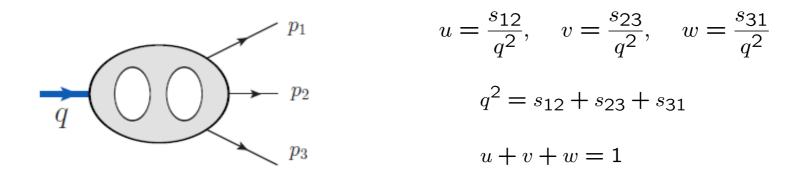
Thank you!

Extra slides

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

Two-loop 3-point example: Brandhuber, Travaglini, GY 2012



Consider two-loop three-point form factor:

$$\mathcal{R}_{3}^{(2)} := \mathcal{G}_{3}^{(2)}(\epsilon) - \frac{1}{2}(\mathcal{G}_{3}^{(1)}(\epsilon))^{2} - f^{(2)}(\epsilon)\mathcal{G}_{3}^{(1)}(2\epsilon) - C^{(2)} + \mathcal{O}(\epsilon)$$

Compute its symbol directly, without knowing the result first.

Constraints:

- Variables in symbol : $\{u, v, w; 1-u, 1-v, 1-w\}$
- Entry conditions: restriction on the position of variables
- Collinear limit : Symbol → 0
- Totally symmetric in kinematics
- Integrability condition $\sum dw_i \wedge dw_{i+1}(w_1 \otimes \cdots \otimes w_{i-1} \otimes w_{i+2} \otimes \cdots \otimes w_n) = 0$

A unique solution of the remainder symbol:

$$\mathcal{S}^{(2)} = -2u \otimes (1-u) \otimes (1-u) \otimes \frac{1-u}{u} + u \otimes (1-u) \otimes u \otimes \frac{1-u}{u}$$

$$-u \otimes (1-u) \otimes v \otimes \frac{1-v}{v} - u \otimes (1-u) \otimes w \otimes \frac{1-w}{w}$$

$$-u \otimes v \otimes (1-u) \otimes \frac{1-v}{v} - u \otimes v \otimes (1-v) \otimes \frac{1-u}{u}$$

$$+u \otimes v \otimes w \otimes \frac{1-u}{u} + u \otimes v \otimes w \otimes \frac{1-v}{v}$$

$$+u \otimes v \otimes w \otimes \frac{1-w}{w} - u \otimes w \otimes (1-u) \otimes \frac{1-w}{w}$$

$$+u \otimes w \otimes v \otimes \frac{1-u}{u} + u \otimes w \otimes v \otimes \frac{1-v}{v}$$

$$+u \otimes w \otimes v \otimes \frac{1-u}{u} + u \otimes w \otimes v \otimes \frac{1-v}{v}$$

$$+u \otimes w \otimes v \otimes \frac{1-w}{w} - u \otimes w \otimes (1-w) \otimes \frac{1-u}{u}$$

$$+ \text{cyclic permutations}.$$

It satisfies
$$\mathcal{S}_{abcd}^{(2)} - \mathcal{S}_{bacd}^{(2)} - \mathcal{S}_{abdc}^{(2)} + \mathcal{S}_{badc}^{(2)} - (a \leftrightarrow c, b \leftrightarrow d) = 0$$

therefore can be obtained from a function involving only classical polylog functions:

 $\log x_1 \log x_2 \log x_3 \log x_4$, $\operatorname{Li}_2(x_1) \log x_2 \log x_3$, $\operatorname{Li}_2(x_1) \operatorname{Li}_2(x_2)$, $\operatorname{Li}_3(x_1) \log x_2$ and $\operatorname{Li}_4(x_i)$

Reconstruct the function (plus collinear constraint):

$$\mathcal{R}_{3}^{(2)} = -2\left[J_{4}\left(-\frac{uv}{w}\right) + J_{4}\left(-\frac{vw}{u}\right) + J_{4}\left(-\frac{wu}{v}\right)\right] - 8\sum_{i=1}^{3}\left[\text{Li}_{4}\left(1 - u_{i}^{-1}\right) + \frac{\log^{4}u_{i}}{4!}\right] - 2\left[\sum_{i=1}^{3}\text{Li}_{2}(1 - u_{i}) + \frac{\log^{2}u_{i}}{2!}\right]^{2} + \frac{1}{2}\left[\sum_{i=1}^{3}\log^{2}u_{i}\right]^{2} - \frac{\log^{4}(uvw)}{4!} - \frac{23}{2}\zeta_{4}$$

$$\mathsf{J}_4(z) := \mathsf{Li}_4(z) - \mathsf{log}(-z) \mathsf{Li}_3(z) + \frac{\mathsf{log}^2(-z)}{2!} \mathsf{Li}_2(z) - \frac{\mathsf{log}^3(-z)}{3!} \mathsf{Li}_1(z) - \frac{\mathsf{log}^4(-z)}{48} \, .$$

Simple combination of classical polylog functions!

N=4 result is identical to the maximally transcendental part in QCD!

-2G(0,0,1,0,u) + G(0,0,1-v,1-v,u) + 2G(0,0,-v,1-v,u) - G(0,1,0,1-v,u) + 4G(0,1,1,0,u) - G(0,1,1-v,0,u) + G(0,1-v,0,1-v,u) + G+G(0,1-v,1-v,0,u)-G(0,1-v,-v,1-v,u)+2G(0,-v,0,1-v,u)+2G(0,-v,1-v,0,u)-2G(0,-v,1-v,1-v,u)-2G(1,0,0,1-v,u)-2G(1,0,1-v,0,u)+4G(1,1,0,0,u)-4G(1,1,1,0,u)-2G(1,1-v,0,0,u)+G(1-v,0,0,1-v,u)-G(1-v,0,1,0,u)-2G(-v,1-v,1-v,u)H(0,v)-2G(1-v,1,0,0,u) + 2G(1-v,1,0,1-v,u) + 2G(1-v,1,1-v,0,u) + G(1-v,1-v,0,0,u) + 2G(1-v,1-v,1,0,u) - 2G(1-v,1-v,1-v,u) + 2G(1-v,1-v,0,u) +-G(1-v,-v,1-v,0,u) + 4G(1-v,-v,-v,1-v,u) - 2G(-v,0,1-v,1-v,u) - 2G(-v,1-v,0,1-v,u) - 2G(-v,1-v,0,1-v,u) + 4G(1,0,1,0,u) + 4G+4G(-v,-v,1-v,1-v,u)-4G(-v,-v,-v,1-v,u)-G(0,0,1-v,u)H(0,v)-G(0,1,0,u)H(0,v)-G(0,1-v,0,u)H(0,v)+G(0,1-v,1-v,u)H(0,v)-G(0,-v,1-v,u)H(0,v) - 2G(1,0,0,u)H(0,v) + G(1,0,1-v,u)H(0,v) + G(1,1-v,0,u)H(0,v) + G(1-v,0,0,u)H(0,v) - G(1-v,0,1-v,u)H(0,v) + G(1-v,0,0,u)H(0,v) + G(1-v,0,u)H(0,v) + G(1-v,0,u)H(0,v-G(1-v,1,0,u)H(0,v)-G(1-v,1-v,0,u)H(0,v)-G(1-v,-v,1-v,u)H(0,v)+G(-v,0,1-v,u)H(0,v)+G(-v,0,1-v,u)H(0,v)+G(-v,0,1-v,0,u)H(0,v)+G(-v,-G(0,0,1-v,u)H(1,v)-G(0,0,-v,u)H(1,v)+G(0,1,0,u)H(1,v)-G(0,1-v,0,u)H(1,v)+G(0,1-v,-v,u)H(1,v)-2G(0,-v,0,u)H(1,v) $+2G(0,-v,1-v,u)H(1,v)+2G(1,0,0,u)H(1,v)-G(1-v,0,0,u)H(1,v)+G(1-v,0,-v,u)H(1,v)\\-2G(1-v,1,0,u)H(1,v)-G(1-v,0,-v,1-v,u)H(1,v)+G(1-v,0,-v,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,u)H(1,v)\\-2G(1-v,0,0,u)H(1,v)+G(1-v,0,u)H(1,v)\\-2G(1-v,0,u)H(1-v,0,u)H(1,v)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-v,0,u)H(1-v,0,u)\\-2G(1-v,0,u)H(1-v,0,u)H(1-$ +G(1-v,-v,0,u)H(1,v)-4G(1-v,-v,-v,u)H(1,v)+2G(-v,0,1-v,u)H(1,v)+2G(-v,1-v,0,u)H(1,v)-4G(-v,1-v,-v,u)H(1,v)-4G(-v,-v,1-v,u)H(1,v)+4G(-v,-v,-v,u)H(1,v)+G(0,0,u)H(0,0,v)+G(0,1-v,u)H(0,0,v)+G(1-v,0,u)H(0,0,v)+H(1,0,1,-G(0,0,u)H(0,1,v)+G(0,-v,u)H(0,1,v)-G(1,0,u)H(0,1,v)+2G(1-v,0,u)H(0,1,v)+2G(1-v,1-v,u)H(0,1,v)-G(-v,0,u)H(0,1,v) - 2G(-v,1-v,u)H(0,1,v) + 4G(-v,-v,u)H(0,1,v) - G(0,0,u)H(1,0,v) + G(0,-v,u)H(1,0,v) - G(1,0,u)H(1,0,v) - G(1,0,u)H(1,0,u) - G $+2G(1-v,0,u)H(1,0,v)-2G(1-v,1-v,u)H(1,0,v)+G(1-v,-v,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+2G(-v,1-v,u)H(1,0,v)+G(0,0,u)H(1,1,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)+G(-v,0,u)H(1,0,v)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)H(1,0,u)+G(-v,0,u)H(1,0,u)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)H(1,0,u)+G(-v,0,u)H(1,0,u)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)H(1,0,u)+G(-v,0,u)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)\\-G(-v,0,u)H(1,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)\\-G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)+G(-v,0,u)\\-G(-v,0,u)+G(-v$ -2G(0,-v,u)H(1,1,v) - 2G(-v,0,u)H(1,1,v) + 4G(-v,-v,u)H(1,1,v) + G(0,u)H(0,0,1,v) - 3G(1-v,u)H(0,0,1,v) + 4G(-v,u)H(0,0,1,v) + 4G(-v,u)H(0,u)H(0,u) + 4G(-v,u)H(0,u)H(0,u)H(0,u) + 4G(-v,u)H(0,u)H(0,u)H(0,u) + 4G(-v,u)H(0,u)H(0,u)H(0,u)H(0,u)H(0,u) + 4G(-v,u)H(0,u)+G(0,u)H(0,1,0,v)+G(1-v,u)H(0,1,0,v)-G(0,u)H(0,1,1,v)+2G(-v,u)H(0,1,1,v)+G(0,u)H(1,0,0,v)+G(1-v,u)H(1,0,0,v)+H(1,1,0,0,v)+G(1-v,u)H(0,1,u)+G(1-v,u)H(0,1,u)+G(1-v,u-G(0,u)H(1,0,1,v) + 2G(-v,u)H(1,0,1,v) - G(0,u)H(1,1,0,v) + 4G(1-v,u)H(1,1,0,v) - 2G(-v,u)H(1,1,0,v) + H(0,0,1,1,v) + H(0,1,0,1,v) + H(0,1, $+G(1-v,1-v,u)H(0,0,v)+2G(1-v,1-v,-v,u)H(1,v)\\-G(1-v,-v,0,1-v,u)+H(0,1,1,0,v)+G(1-v,0,1-v,0,u)\\-G(0,1-v,1,0,u)+G(0,1-v,0,$ +4G(-v,1-v,-v,1-v,u)

QCD

Gehrmann, Jaquier, Glover, Koukoutsakis 2011

$$\mathcal{R}_{3}^{(2)} = -2\left[J_{4}\left(-\frac{uv}{w}\right) + J_{4}\left(-\frac{vw}{u}\right) + J_{4}\left(-\frac{wu}{v}\right)\right] - 8\sum_{i=1}^{3}\left[\text{Li}_{4}\left(1 - u_{i}^{-1}\right) + \frac{\log^{4}u_{i}}{4!}\right] - 2\left[\sum_{i=1}^{3}\text{Li}_{2}(1 - u_{i}) + \frac{\log^{2}u_{i}}{2!}\right]^{2} + \frac{1}{2}\left[\sum_{i=1}^{3}\log^{2}u_{i}\right]^{2} - \frac{\log^{4}(uvw)}{4!} - \frac{23}{2}\zeta_{4}$$

Brandhuber, Travaglini, GY 2012