Bootstrapping a two－loop four－point form factor

Gang Yang
ITP，CAS

Based on the work with Yuanhong Guo（郭圆宏），Lei Wang（王磊）

圈积分－相空间积分学习群系列报告，2021．06．03

Generic strategy of loop computation

Feynman integrals

Feynman diagrams,
On-shell unitarity method, \ldots

\sum (integrand)

Solving integrals, functional identities to simplify the result, ...
\sum functions

Generic strategy of loop computation

Complicated intermediate expressions
Compact analytic form

Two-loop six-gluon amplitudes in $\mathrm{N}=4$

[Del Duca, Duhr, Smirnov 2010]

17 page complicated functions

Result can be remarkably simple

17 pages =

[Goncharov, Spradlin, Vergu, Volovich 2010]

$$
\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

a line result in terms of classical polylogarithms!

Such simplicity is totally unexpected using traditional Feynman diagrams!

Mathematical tool: "symbol"

From function to "Symbol"

Recursion definition of "Symbol":

$$
\mathrm{d} f_{k}=\sum_{i} f_{k-1}^{i} \operatorname{dLog}\left(R_{i}\right), \quad \operatorname{Symbol}\left(f_{k}\right)=\sum_{i} \operatorname{Symbol}\left(f_{k-1}^{i}\right) \otimes R_{i}
$$

Function	Differential	symbol
R	$d R$	0
$\log (R)$	$d \log (R)$	R
$\log (R 1) \log (R 2)$	$\log R 1$ dlogR2+logR2 dlogR1	$R 1 \otimes R 2+R 2 \otimes R 1$
$L i 2(R)$	$L i 1(R) d \log R$	$-(1-R) \otimes R$

Symbol

Algebraic relations:

$$
\begin{aligned}
& R_{1} \otimes \ldots \otimes\left(c R_{i}\right) \otimes \ldots \otimes R_{n}=R_{1} \otimes \ldots \otimes R_{i} \otimes \ldots \otimes R_{n} \quad c \text { is const } \\
& R_{1} \otimes \ldots \otimes\left(R_{i} R_{j}\right) \otimes \ldots \otimes R_{n}=R_{1} \otimes \ldots \otimes R_{i} \otimes \ldots \otimes R_{n}+R_{1} \otimes \ldots \otimes R_{j} \otimes \ldots \otimes R_{n}
\end{aligned}
$$

Make it easy to prove non-trivial identities, e.g.:

$$
\begin{aligned}
& \operatorname{Li}_{2}(z)=-\operatorname{Li}_{2}(1-z)-\log (1-z) \log (z)+\frac{\pi^{2}}{6} \\
& \operatorname{Li}_{2}(z)=-\operatorname{Li}_{2}\left(\frac{1}{z}\right)-\frac{1}{2} \log ^{2}(-z)-\frac{\pi^{2}}{6} / ; z \notin(0,1) \\
& \mathrm{Li}_{2}\left(\frac{x}{1-y}\right)+\mathrm{Li}_{2}\left(\frac{y}{1-x}\right)-\mathrm{Li}_{2}(x)-\mathrm{Li}_{2}(y)-\mathrm{Li}_{2}\left(\frac{x y}{(1-x)(1-y)}\right)=\log (1-x) \log (1-y)
\end{aligned}
$$

Applications

Complicated expression

Simple expression

Applications

Complicated expression

Simple expression

A better strategy:
Derive symbol directly without knowing function in advance.
Bootstrap strategy Dixon, Drummond, Henn 2011,

We will apply a different strategy based on master integrand expansion.

Outline

Background and Motivation

New bootstrap strategy

Two-loop four-point form factor
Summary and outlook

Bootstrap

Bootstrap

S-matrix program

The Analytic S-Matrix

"One should try to calculate S-matrix elements directly, without the use of field quantities, by requiring them to have some general properties that ought to be valid,"

- Eden et.al, "The Analytic S-matrix", 1966

Conformal bootstrap

Compute anomalous dimensions and correlation functions

Alexander M. Polyakov
2-dim
\longrightarrow
D-dim

Bootstrap of amplitudes

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

Bootstrap of amplitudes

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

The new strategy we will use

"moaster oootstrap"

"moaster oootstrap"

Application:
 two-loop four-point form factor

Form factors

We consider two-loop four-point form factor in N=4 SYM:

$$
\mathscr{F}_{O, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

It is a $\mathrm{N}=4$ version of Higgs+4-parton amplitudes in QCD:

$$
\xrightarrow{m_{t} \rightarrow \infty} \quad \mathcal{L}_{\text {eff }}=\hat{C}_{0} H \operatorname{tr}\left(F^{2}\right)+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{2}}\right)
$$

Form factors

We consider two-loop four-point form factor in N=4 SYM:

$$
\mathscr{F}_{\Theta, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

It is a $\mathrm{N}=4$ version of Higgs+4-parton amplitudes in QCD:

Five-point two-loop amplitudes are at frontier and under intense study:
There have been many massless five-point two-loop amplitudes obtained in analytic form. See e.g. Abreu, Dormans, Cordero, Ita. Page 2019 and many others....

For five-point two-loop amplitudes with one massive leg, so far only one result is available:

$$
u \bar{d} \rightarrow W^{+} b \bar{b}
$$

Badger, Hartanto, Zoia 2021

Form factors

Our result provides a first two-loop five-point example with a color-singlet off-shell leg.

$$
\begin{aligned}
& \mathscr{F}_{O, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle \\
& \left\{s_{12}, s_{23}, s_{34}, s_{14}, s_{13}, s_{24}, \operatorname{tr}_{5}\right\} ; \quad \operatorname{tr}_{5}=4 i \varepsilon_{p_{1} p_{2} p_{3} p_{4}}
\end{aligned}
$$

Planar master integrals have been evaluated recently.
Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020
Canko, Papadopoulos, Syrrakos 2020

Ansatz

$$
\mathscr{F}_{\mathcal{O}, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

Tree-level: $\quad \mathcal{F}_{4}^{(0)}=\mathcal{F}_{\text {tr }\left(\phi_{1}^{3}\right)}^{(0)}\left(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^{+}\right)=\frac{\langle 31\rangle}{\langle 34\rangle\langle 41\rangle}$.
One-loop: $\quad \mathcal{F}_{4}^{(1)}=\mathcal{F}_{4}^{(0)} \mathcal{I}_{4}^{(1)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(1)}+B_{2} \mathcal{G}_{2}^{(1)}\right)$

$$
\begin{aligned}
B_{1}= & \frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{2}=\frac{\langle 14\rangle\langle 23\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{1}+B_{2}=1, \\
\mathcal{G}_{1}^{(1)}= & -\frac{1}{2} I_{\mathrm{Box}}^{(1), \mathrm{UT}}(4,1,2)-\frac{1}{2} I_{\mathrm{Box}}^{(1), \mathrm{UT}}(3,4,1)-I_{\mathrm{Bubble}}^{(1), \mathrm{UT}}(4,1,2) \\
& -I_{\text {Bubble }}^{(1), \mathrm{UT}}(3,4,1)+I_{\text {Bubble }}^{(1), \mathrm{UT}}(4,1)-I_{\text {Bubble }}^{(1), \mathrm{UT}}(2,3) .
\end{aligned}
$$

Ansatz

$$
\mathscr{F}_{\mathcal{O}, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

Tree-level: $\quad \mathcal{F}_{4}^{(0)}=\mathcal{F}_{\operatorname{tr}\left(\phi_{12}^{3}\right)}^{(0)}\left(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^{+}\right)=\frac{\langle 31\rangle}{\langle 34\rangle\langle 41\rangle}$.
One-loop:

$$
\begin{aligned}
\mathcal{F}_{4}^{(1)} & =\mathcal{F}_{4}^{(0)} \mathcal{I}_{4}^{(1)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(1)}+B_{2} \mathcal{G}_{2}^{(1)}\right) \\
B_{1} & =\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{2}=\frac{\langle 14\rangle\langle 23\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{1}+B_{2}=1
\end{aligned}
$$

Two-loop ansatz:

$$
\begin{aligned}
& \mathcal{F}_{4}^{(2)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(2)}+B_{2} \mathcal{G}_{2}^{(2)}\right) \\
& \mathcal{G}_{a}^{(2)}=\sum_{i=1}^{221} c_{a, i} I_{i}^{(2), \mathrm{UT}}, \quad \mathcal{G}_{2}^{(2)}=\left.\mathcal{G}_{1}^{(2)}\right|_{\left(p_{1} \leftrightarrow p_{3}\right)}
\end{aligned}
$$

Ansatz

$$
\mathscr{F}_{\mathcal{O}, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

Tree-level: $\quad \mathcal{F}_{4}^{(0)}=\mathcal{F}_{\operatorname{tr}\left(\phi_{12}^{3}\right)}^{(0)}\left(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^{+}\right)=\frac{\langle 31\rangle}{\langle 34\rangle\langle 41\rangle}$.
One-loop:

$$
\begin{aligned}
\mathcal{F}_{4}^{(1)} & =\mathcal{F}_{4}^{(0)} \mathcal{I}_{4}^{(1)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(1)}+B_{2} \mathcal{G}_{2}^{(1)}\right) \\
B_{1} & =\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{2}=\frac{\langle 14\rangle\langle 23\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{1}+B_{2}=1
\end{aligned}
$$

Two-loop ansatz:

$$
\begin{aligned}
& \mathcal{F}_{4}^{(2)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(2)}+B_{2} \mathcal{G}_{2}^{(2)}\right) \\
& \mathcal{G}_{a}^{(2)}=\sum_{i=1}^{221}{c_{a, ~}, I_{i}^{(2), \mathrm{UT}}, \quad \mathcal{G}_{2}^{(2)}=\left.\mathcal{G}_{1}^{(2)}\right|_{\left(p_{1} \leftrightarrow p_{3}\right)}}^{l}
\end{aligned}
$$

Constraints

IR divergences

BDS ansatz

$$
\mathcal{I}^{(2), \mathrm{BDS}}=\frac{1}{2}\left(\mathcal{I}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) \mathcal{I}^{(1)}(2 \epsilon)
$$

Collinear factorization

$$
\mathcal{R}_{n}^{(2)}=\left[\mathcal{I}^{(2)}-\mathcal{I}^{(2), \mathrm{BDS}}\right]_{\mathrm{fin}} \xrightarrow{p_{i} \| p_{i+1}} \mathcal{R}_{n-1}^{(2)}
$$

Spurious pole

Unitarity cut

We introduce:

$$
\mathcal{I}_{4, \mathrm{BDS}}^{(2)}=\sum_{a=1}^{2} B_{a}\left[\frac{1}{2}\left(\mathcal{G}_{a}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) \mathcal{G}_{a}^{(1)}(2 \epsilon)\right]
$$

which captures all IR and collinear singularities.

$$
\mathcal{R}_{4-\mathrm{pt}}^{(2)}:=\left.\left(\mathcal{I}_{4}^{(2)}-\mathcal{I}_{4, \mathrm{BDS}}^{(2)}\right)\right|_{\mathcal{O}\left(\epsilon^{0}\right)} \xrightarrow[\text { or } p_{4} \| p_{1}]{p_{4} \| p_{3}} \mathcal{R}_{3-\mathrm{pt}}^{(2)}
$$

Constraints

IR divergences

Collinear factorization

Spurious pole

Constraints	Parameters left
Symmetry of $\left(p_{1} \leftrightarrow p_{3}\right)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	22
IR (Function)	17
Collinear limit (Funcion)	10

Unitarity cut

Constraints

IR divergences

\mid Constraints
Pymmetry of $\left(p_{1} \leftrightarrow p_{3}\right)$
IR (Symbol)
Collinear limit (Symbol)
Spurious pole (Symbol)
IR (Function)
Collinear limit (Funcion)

Unitarity cut
Spurious pole gives no new constraint.

Constraints

IR divergences

Remaining 10 parameters are related to following master integrals:

Collinear factorization

Spurious pole

Unitarity cut

(a) BPb

(b) TP

(c) dBox2c

$$
\begin{aligned}
& \sum_{i=1}^{10} x_{i} \tilde{G}_{i}, \\
& \tilde{G}_{1}=I_{\mathrm{TP}}^{\mathrm{UT}}(1,2,3,4)+I_{\mathrm{TP}}^{\mathrm{UT}}(3,2,1,4), \\
& \tilde{G}_{2}=I_{\mathrm{BPb}}^{\mathrm{UT}}(1,2,3,4)-I_{\mathrm{BPb}}^{\mathrm{UT}}(4,3,2,1)+\left(p_{1} \leftrightarrow p_{3}\right) \\
& \tilde{G}_{3}=B_{1} I_{\mathrm{dBox} 2 \mathrm{c}}^{\mathrm{UT}}(1,2,3,4)+B_{2} I_{\mathrm{dBox} 2 \mathrm{c}}^{\mathrm{UT}}(3,2,1,4),
\end{aligned}
$$

Free of above constraints.

Constraints

IR divergences

Collinear factorization

Spurious pole

Unitarity cut
Remaining 10 parameters are related to following master integrals:

(a) BPb

(b) TP

(c) dBox2c

$$
\begin{aligned}
& \operatorname{tr}_{5}=4 i \epsilon_{\mu \nu \rho \sigma} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\sigma} \\
& \mu_{i j}=\ell_{i}^{-2 \epsilon} \cdot \ell_{j}^{-2 \epsilon}
\end{aligned}
$$

Constraints

IR divergences

Collinear factorization

Spurious pole

Remaining 10 parameters are related to following master integrals:

(a) BPb

(b) TP

(c) dBox2c

Can be fixed via simple two-double cuts:

Unitarity cut

$$
\mathcal{F}_{3}^{(0)} \mathcal{A}_{4}^{(0), \mathrm{MHV}} \mathcal{A}_{5}^{(0), \mathrm{MHV}}
$$

Unitarity cuts

Consider one-loop amplitudes:

What we really want

Unitarity cuts

We can perform unitarity cuts:

and from tree products, we derive the coefficients more directly.

Cutkosky cutting rule: $\frac{1}{p^{2}}=\omega \Rightarrow \cdots=2 \pi i \delta^{+}\left(p^{2}\right)$

Constraints

IR divergences

Collinear factorization

Spurious pole

Remaining 10 parameters are related to following master integrals:

Unitarity cut
(b) TP

(a) BPb
(c) dBox2c

Can be fixed via simple two-double cuts:

$$
\mathcal{F}_{3}^{(0)} \mathcal{A}_{4}^{(0), \mathrm{MHV}} \mathcal{A}_{5}^{(0), \mathrm{MHV}}
$$

A summary

Constraints	Parameters left
Symmetry of $\left(p_{1} \leftrightarrow p_{3}\right)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	22
IR (Function)	17
Collinear limit (Funcion)	10
If keeping only to ϵ^{0} order	6
Simple unitarity cuts	0

Numerics

Substituting in the master integral results, we have the full analytic form in GPLs, and they can be evaluated with GiNaC to 'arbitrary' high precision:

	$\mathcal{F}^{(2)} / \mathcal{F}^{(0)}$
ϵ^{-4}	8
ϵ^{-3}	$-10.888626564448543787+25.132741228718345908 i$
ϵ^{-2}	$-31.872672672370517258-16.558017711981028644 i$
ϵ^{-1}	$-24.702889082481070673-2.9923229294749490751 i$
ϵ^{0}	$-86.211269185142415564-128.27562636360640808 i$
$\mathcal{R}_{4}^{(2)}$	$8.3794306422137831973-14.941297169128279600 i$

$\left\{s_{12}=241 / 25, s_{23}=-377 / 100, s_{34}=13 / 50, s_{14}=-161 / 100, s_{13}=s_{24}=-89 / 100, \operatorname{tr}_{5}=i \sqrt{ } 1635802 / 2500\right\}$

Numerics: collinear limit

Collinear limit: $\mathcal{R}_{4-\mathrm{pt}}^{(2)}:=\left.\left(\mathcal{I}_{4}^{(2)}-\mathcal{I}_{4, \mathrm{BDS}}^{(2)}\right)\right|_{\mathcal{O}\left(\epsilon^{0}\right)} \xrightarrow[\text { or } p_{4} \| p_{1}]{p_{1} \| p_{3}} \mathcal{R}_{3-\mathrm{pt}}^{(2)}$

$$
\begin{aligned}
& \left\{s_{12}=24 / 5, s_{23}=1037 / 1000, s_{34}=3111 /\left(16 \times 10^{43}\right), s_{14}=351 / 1000,\right. \\
& s_{13}=549 / 1000, s_{24}=663 / 1000, \operatorname{tr}_{5}=i 9333 \sqrt{\left.156 \times 10^{38}-1 / 10^{44}\right\}} \\
& \begin{array}{|c|c|}
\hline & \mathcal{F}^{(2)} / \mathcal{F}^{(0)} \\
\hline \epsilon^{-4} & 8 \\
\hline \epsilon^{-3} & 372.73227772976457740+50.265482457436691815 i \\
\hline \epsilon^{-2} & 22299.426450303417729+2341.9459709432377859 i \\
\hline \epsilon^{-1} & 989445.74441873599952+140772.89586692467156 i \\
\hline \epsilon^{0} & 36885962.819916639458+6247689.7372657501908 i \\
\hline \hline \mathcal{R}_{4-\mathrm{pt}}^{(2)} & -13.79946362217945+9.616825584877344 \times 10^{-18} i \\
\hline
\end{array}
\end{aligned}
$$

$$
\mathcal{R}_{3-\mathrm{pt}}^{(2)}\left(\hat{s}_{12}, \hat{s}_{23}, \hat{s}_{13}\right)=\mathcal{R}_{3-\mathrm{pt}}^{(2)}\left(\frac{24}{5}, \frac{17}{10}, \frac{9}{10}\right)
$$

$$
\mathcal{R}_{3-\mathrm{pt}}^{(2)}-\mathcal{R}_{4-\mathrm{pt}}^{(2)}=\left(1.9834 \times 10^{-37}+9.6168 \times 10^{-18} i\right)
$$

Numerics: spurious pole

Spurious pole cancellation:

$$
\mathcal{I}_{4}^{(2)}=\frac{1}{2}\left(\mathcal{G}_{1}^{(2)}+\mathcal{G}_{2}^{(2)}\right)+\frac{B_{1}-B_{2}}{2}\left(\mathcal{G}_{1}^{(2)}-\mathcal{G}_{2}^{(2)}\right) \quad B_{1}-B_{2}=\frac{s_{12} s_{34}-s_{14} s_{23}-\operatorname{tr}_{5}}{s_{13} s_{24}} \sim \frac{1}{\hat{\delta}}
$$

	$\left(\mathcal{G}_{1}^{(2)}-\mathcal{G}_{2}^{(2)}\right) / s_{24}$
ϵ^{-4}	0
ϵ^{-3}	0
ϵ^{-2}	$-2.9064576941010630804-2.2213281389018740070 i$
ϵ^{-1}	$7.9763731359850548468-9.5696847742519494379 i$
ϵ^{0}	$24.831917323215069069+36.102098241406925338 i$

Kinematics: $\left\{s_{12}=-11 / 5, s_{23}=-57 / 20, s_{34}=18 / 5, s_{14}=5 / 4, s_{13}=3, s_{24}=10^{-20}, \operatorname{tr}_{5}>0\right\}$

Technical details: symbol letters

$$
\operatorname{Sym}\left(\mathcal{R}_{4}^{(2)}\right)=\sum_{i} c_{i} W_{i_{1}} \otimes W_{i_{2}} \otimes W_{i_{3}} \otimes W_{i_{4}} \quad u_{i j}=\frac{s_{i j}}{s_{1234}}, \quad u_{i j k}=\frac{s_{i j k}}{s_{1234}}
$$

Building blocks:

$$
\begin{array}{ll}
x_{i j k l}^{ \pm}=\frac{1+u_{i j}-u_{k l} \pm \sqrt{\Delta_{3, i j k l} / s_{1234}},}{2 u_{i j}}, & \Delta_{3, i j k l}=\operatorname{Gram}\left(p_{i}+p_{j}, p_{k}+p_{l}\right), \\
y_{i j k l}^{ \pm}=\frac{u_{i j} u_{k l}-u_{i k} u_{j l}+u_{i l} u_{j k} \pm P(i j k l) \operatorname{tr}_{5} /\left(s_{1234}\right)^{2}}{2 u_{i j} u_{i l}}, & \operatorname{tr}_{5}=4 i \epsilon_{\mu \nu \rho \sigma} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\sigma} \\
z_{i j k l}^{ \pm \pm}=1+y_{i j k l}^{ \pm}-x_{l i j k}^{ \pm}, &
\end{array}
$$

Complicated letters:

$$
\begin{aligned}
& U\left(p_{i}+p_{j}, p_{k}+p_{l}\right)=u_{i k l} u_{j k l}-u_{k l}, \\
& X_{1}\left(p_{i}+p_{j}, p_{k}, p_{l}\right)=\frac{u_{i j} x_{i j k l}^{+}-u_{i j l}}{u_{i j} x_{i j k l}^{-i}-u_{i j l}}, \\
& X_{2}\left(p_{i}+p_{j}, p_{k}+p_{l}\right)=\frac{x_{i j k l}^{+}}{x_{i j k l}^{-}}, \\
& Y_{1}\left(p_{i}, p_{j}, p_{k}, p_{l}\right)=\frac{y_{i j k l}^{+}}{y_{i j k l}^{-}}, \\
& Y_{2}\left(p_{i}, p_{j}, p_{k}, p_{l}\right)=\frac{y_{i j k l}^{+}+1}{y_{i j k l}^{-}+1}, \\
& Z\left(p_{i}, p_{j}, p_{k}, p_{l}\right)=\frac{z_{i j k l}^{+-} z_{i j k l}^{--}}{z_{i j k l}^{+-} z_{i j k l}^{-}} .
\end{aligned}
$$

Technical details: symbol letters

All 42 letters in remainder:

$$
\begin{gathered}
u_{12}, u_{13}, u_{14}, u_{23}, u_{24}, u_{34} \\
u_{123}, u_{124}, u_{134}, u_{234} \\
u_{123}-u_{12}, u_{123}-u_{23}, u_{124}-u_{12}, u_{124}-u_{14} \\
u_{134}-u_{14}, u_{134}-u_{34}, u_{234}-u_{23}, u_{234}-u_{34} \\
1-u_{123}, 1-u_{124}, 1-u_{134}, 1-u_{234}
\end{gathered}
$$

Extra 4 letters that appear in master:

$$
q^{2}, \sqrt{\Delta_{3,1234}}, \sqrt{\Delta_{3,1423}}, \operatorname{tr}_{5}
$$

Technical details: collinear limit of form factors

Dual momentum space

Technical details: collinear limit of form factors

Dual momentum space

Collinear limit parametrization:

$$
\begin{aligned}
& Z_{4}=Z_{3}+\delta \frac{\langle\overline{1} \overline{2} 13\rangle}{\langle\overline{1} \overline{2} 12\rangle} Z_{2}+\tau \delta \frac{\langle\overline{2} 123\rangle}{\langle\overline{1} 12\rangle} \bar{Z}_{1}+\eta \frac{\langle\overline{1} 123\rangle}{\langle\overline{1} \overline{2} 12\rangle} \bar{Z}_{2} \\
& \lambda_{4}=\lambda_{3}+\delta \frac{\langle\overline{2} \overline{2} 13\rangle}{\langle\overline{1} \overline{2} 12\rangle} \lambda_{2}+\tau \delta \frac{\langle\overline{2} 123\rangle}{\langle\overline{1} \overline{2} 12\rangle} \bar{\lambda}_{1}+\eta \frac{\langle\overline{1} 123\rangle}{\langle\overline{1} \overline{2} 12\rangle} \bar{\lambda}_{2}
\end{aligned}
$$

taking first $\eta \rightarrow 0$, followed by $\delta \rightarrow 0$.

$$
\begin{aligned}
& y_{1234}^{+} \rightarrow \frac{(1-t) \delta}{t} \frac{\left(\hat{u}_{12}+\hat{u}_{13}\right) \hat{u}_{23}}{\hat{u}_{12}}, \quad y_{1234}^{-} \rightarrow-\frac{\eta}{\delta} \frac{\hat{u}_{23}}{\hat{u}_{12}+\hat{u}_{13}}, \\
& y_{1324}^{+} \rightarrow \frac{\hat{u}_{23}}{\hat{u}_{13}}, \quad y_{1324}^{-} \rightarrow \frac{\hat{u}_{23}}{\hat{u}_{13}}, \\
& y_{3124}^{+} \rightarrow-\frac{t}{(1-t) \delta} \frac{\hat{u}_{12}}{\hat{u}_{13}\left(\hat{u}_{12}+\hat{u}_{13}\right)}, y_{3124}^{-} \rightarrow \frac{\delta}{\eta} \frac{\hat{u}_{12}+\hat{u}_{13}}{\hat{u}_{13}}, \\
& y_{1342}^{+} \rightarrow \frac{t \eta}{(1-t) \delta} \frac{\hat{u}_{23}}{\hat{u}_{12}+\hat{u}_{13}}, \quad y_{1342}^{-} \rightarrow-\delta \frac{\left(\hat{u}_{12}+\hat{u}_{13}\right) \hat{u}_{23}}{\hat{u}_{12}}, \\
& y_{3142}^{+} \rightarrow \frac{t}{1-t}, \quad y_{3142}^{-} \rightarrow \frac{t}{1-t} . \\
& \tau=\frac{t-1 \frac{1}{t} \frac{s_{12}+s_{13}}{s_{12}+s_{23}}}{}
\end{aligned}
$$

Technical details: numerical computation

Master integrals are evaluated in multiple polylogarithm.
Canko, Papadopoulos, Syrrakos 2020
A different set of kinematics are chosen.
$\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\}$ with q_{1} massive $\quad\left\{x, S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\}$.

$$
\begin{aligned}
\tilde{s}_{15} & =(1-x) S_{45}+S_{23} x, \\
q_{1}^{2} & =(1-x)\left(S_{45}-S_{12} x\right), \\
\tilde{s}_{12} & =\left(S_{34}-S_{12}(1-x)\right) x, \\
\tilde{s}_{23} & =S_{45}, \tilde{s}_{34}=S_{51} x, \tilde{s}_{34}=S_{51} x \\
\tilde{s}_{i j} & =\left(q_{i}+q_{j}\right)^{2}
\end{aligned}
$$

Summary and outlook

Summary and outlook

We present a first analytic computation of a two-loop five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master integral expansion, which applies efficiently for this case.

Summary and outlook

We present a first analytic computation of a two-loop five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master integral expansion, which applies efficiently for this case.

Outlook:
Apply to more general observables.
Study the new constraints beyond collinear limit, such as OPE limit, Regge limit.

Thank you!

Extra slides

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

Two-loop 3-point example: Brandhuber, Travaglini, gy 2012

$$
\begin{aligned}
& u=\frac{s_{12}}{q^{2}}, \quad v=\frac{s_{23}}{q^{2}}, \quad w=\frac{s_{31}}{q^{2}} \\
& q^{2}=s_{12}+s_{23}+s_{31} \\
& u+v+w=1
\end{aligned}
$$

Symbol bootstrap: 2-loop 3-point form factor

Consider two-loop three-point form factor:

$$
\mathcal{R}_{3}^{(2)}:=\mathcal{G}_{3}^{(2)}(\epsilon)-\frac{1}{2}\left(\mathcal{G}_{3}^{(1)}(\epsilon)\right)^{2}-f^{(2)}(\epsilon) \mathcal{G}_{3}^{(1)}(2 \epsilon)-C^{(2)}+\mathcal{O}(\epsilon)
$$

Compute its symbol directly, without knowing the result first.
Constraints:

- Variables in symbol : $\{u, v, w ; 1-u, 1-v, 1-w\}$
- Entry conditions: restriction on the position of variables
- Collinear limit: Symbol $\rightarrow 0$
- Totally symmetric in kinematics
- Integrability condition $\sum d w_{i} \lambda d w_{i+1}\left(w_{1} \otimes \cdots \otimes w_{i-1} \otimes w_{i+2} \otimes \cdots \otimes w_{n}\right)=0$

Symbol bootstrap: 2-loop 3-point form factor

A unique solution of the remainder symbol:

$$
\mathcal{S}^{(2)}=-2 u \otimes(1-u) \otimes(1-u) \otimes \frac{1-u}{u}+u \otimes(1-u) \otimes u \otimes \frac{1-u}{u}
$$

$$
-u \otimes(1-u) \otimes v \otimes \frac{1-v}{v}-u \otimes(1-u) \otimes w \otimes \frac{1-w}{w}
$$

$$
-u \otimes v \otimes(1-u) \otimes \frac{1-v}{v}-u \otimes v \otimes(1-v) \otimes \frac{1-u}{u}
$$

$$
+u \otimes v \otimes w \otimes \frac{1-u}{u}+u \otimes v \otimes w \otimes \frac{1-v}{v}
$$

$$
+u \otimes v \otimes w \otimes \frac{1-w}{w}-u \otimes w \otimes(1-u) \otimes \frac{1-w}{w}
$$

$$
+u \otimes w \otimes v \otimes \frac{1-u}{u}+u \otimes w \otimes v \otimes \frac{1-v}{v}
$$

$$
+u \otimes w \otimes v \otimes \frac{1-w}{w}-u \otimes w \otimes(1-w) \otimes \frac{1-u}{u}
$$

+ cyclic permutations.

It satisfies

$$
\mathcal{S}_{\text {abcd }}^{(2)}-\mathcal{S}_{\text {bacd }}^{(2)}-\mathcal{S}_{\text {abdc }}^{(2)}+\mathcal{S}_{\text {badc }}^{(2)}-(a \leftrightarrow c, b \leftrightarrow d)=0
$$

therefore can be obtained from a function involving only classical polylog functions:
$\log x_{1} \log x_{2} \log x_{3} \log x_{4}, \mathrm{Li}_{2}\left(x_{1}\right) \log x_{2} \log x_{3}, \mathrm{Li}_{2}\left(x_{1}\right) \mathrm{Li}_{2}\left(x_{2}\right), \mathrm{Li}_{3}\left(x_{1}\right) \log x_{2}$ and $\mathrm{Li}_{4}\left(x_{i}\right)$

Symbol bootstrap: 2-loop 3-point form factor

Reconstruct the function (plus collinear constraint) :

$$
\begin{aligned}
\mathcal{R}_{3}^{(2)}= & -2\left[J_{4}\left(-\frac{u v}{w}\right)+J_{4}\left(-\frac{v w}{u}\right)+J_{4}\left(-\frac{w u}{v}\right)\right]-8 \sum_{i=1}^{3}\left[\operatorname{Li}_{4}\left(1-u_{i}^{-1}\right)+\frac{\log ^{4} u_{i}}{4!}\right] \\
& -2\left[\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-u_{i}\right)+\frac{\log ^{2} u_{i}}{2!}\right]^{2}+\frac{1}{2}\left[\sum_{i=1}^{3} \log ^{2} u_{i}\right]^{2}-\frac{\log ^{4}(u v w)}{4!}-\frac{23}{2} \zeta_{4} \\
J_{4}(z):= & \operatorname{Li}_{4}(z)-\log (-z) L i_{3}(z)+\frac{\log ^{2}(-z)}{2!} \operatorname{Li}_{2}(z)-\frac{\log ^{3}(-z)}{3!} \operatorname{Li}_{1}(z)-\frac{\log ^{4}(-z)}{48} .
\end{aligned}
$$

Simple combination of classical polylog functions !

Symbol bootstrap: 2-loop 3-point form factor

$\mathrm{N}=4$ result is identical to the maximally transcendental part in QCD!
$-2 G(0,0,1,0, u)+G(0,0,1-v, 1-v, u)+2 G(0,0,-v, 1-v, u)-G(0,1,0,1-v, u)+4 G(0,1,1,0, u)-G(0,1,1-v, 0, u)+G(0,1-v, 0,1-v, u)$ $+G(0,1-v, 1-v, 0, u)-G(0,1-v,-v, 1-v, u)+2 G(0,-v, 0,1-v, u)+2 G(0,-v, 1-v, 0, u)-2 G(0,-v, 1-v, 1-v, u)-2 G(1,0,0,1-v, u)$ $-2 G(1,0,1-v, 0, u)+4 G(1,1,0,0, u)-4 G(1,1,1,0, u)-2 G(1,1-v, 0,0, u)+G(1-v, 0,0,1-v, u)-G(1-v, 0,1,0, u)-2 G(-v, 1-v, 1-v, u) H(0, v)$ $-2 G(1-v, 1,0,0, u)+2 G(1-v, 1,0,1-v, u)+2 G(1-v, 1,1-v, 0, u)+G(1-v, 1-v, 0,0, u)+2 G(1-v, 1-v, 1,0, u)-2 G(1-v, 1-v,-v, 1-v, u)$
$-G(1-v,-v, 1-v, 0, u)+4 G(1-v,-v,-v, 1-v, u)-2 G(-v, 0,1-v, 1-v, u)-2 G(-v, 1-v, 0,1-v, u)-2 G(-v, 1-v, 1-v, 0, u)+4 G(1,0,1,0, u)$ $-G(1-v,-v, 1-v, 0, u)+4 G(1-v,-v,-v, 1-v, u)-2 G(-v, 0,1-v, 1-v, u)-2 G(-v, 1-v, 0,1-v, u)-2 G(-v, 1-v, 1-v, 0, u)+4 G(1,0,1,0, u)$
$+4 G(-v,-v, 1-v, 1-v, u)-4 G(-v,-v,-v, 1-v, u)-G(0,1)$ $+4 G(-v,-v, 1-v, 1-v, u)-4 G(-v,-v,-v, 1-v, u)-G(0,0,1-v, u) H(0, v)-G(0,1,0, u) H(0, v)-G(0,1-v, 0, u) H(0, v)+G(0,1-v, 1-v, u) H(0, v)$ $-G(0,-v, 1-v, u) H(0, v)-G(1-v, 1,0, u) H(0), u, u)(0, v)+(1,0,-v, u) H(0, v)+G(1,1-v, u) H, v)+G(1-v, 0,0, u) H(0, v)-G(1-v, 0,1-v, u) H(0, v)$ $-G(1-v, 1,0, u) H(0, v)-G(1-v, 1-v, 0, u) H(0, v)-G(1-v,-v, 1-v, u) H(0, v)+G(-v, 0,1-v, u) H(0, v)+G(-v, 1-v, 0, u) H(0, v)+H(1,0,0,1, v)$ (0,1 $+2 G(0,-v, 1-v, u) H(1, v)+2 G(1,0,0, u) H(1, v)-G(1-v, 0,0, u) H(1, v)+G(1-v, 0,-v, u) H(1, v)-2 G(1-v, 1,0, u) H(1, v)-G(1-v, 0,-v, 1-v, u)$ $+G(1-v,-v, 0, u) H(1, v-4 G(1-v,-v,-v, u) H(1, v)+G(0,0, u) H(0,0, v)+G(0,1-v, u) H(0,0, v)+G(1-v, 0, u) H(0,0, v)+H(1,0,1$
$-4 G(-v,-v, 1-v, u) H(1, v)+4 G(-v,-v,-v, u) H(1)$ $-4 G(-v,-v, 1-v, u) H(1, v)+4 G(-v,-v,-v, u) H(1, v)+G(0,0, u) H(0,0, v)+G(0,1-v, u) H(0,0, v)+G(1-v, 0, u) H(0,0, v)+H(1,0,1,0, v), v(1)$ $-G(0,0, u) H(0, v)+G(0,-v, u) H(0,1, v)-G(1,0, u) H(0,1, v)+2 G(1-v, 0, u) H(0,1, v)+2 G(1-v, 1-v, u) H(0,1, v)-3 G(1-v,-v, u) H(0,1, ~$ $-G(-v, 0, u) H(0,1, v)-2 G(-v, 1-v, u) H(0,1, v)+4 G(-v,-v, u) H(0,1, v)-G(0,0, u) H(1,0, v)+G(0,-v, u) H(1,0, v)-G(1,0, u) H(1,0, v)$ $+2 G(1) v, u) H(0, u)$ $2 G(0,-v, u)$ $+G(0, u) H(0,0)$ $-G(0, u) H(1,0, v)+(0 G(v, v) H, 0,0,1, v)$ $+G(1-v, 1-v, u) H(0,0, v)+2 G(1-v, 1-v,-v, u) H(1, v)-G(1-v,-v, 0,1-v, u)+H(0,1,1,0, v)+G(1-v, 0,1-v, 0, u)-G(0,1-v, 1,0, u)$ $+4 G(-v, 1-v,-v, 1-v, u)$

$$
\begin{aligned}
\mathcal{R}_{3}^{(2)}= & -2\left[J_{4}\left(-\frac{u v}{w}\right)+J_{4}\left(-\frac{v w}{u}\right)+J_{4}\left(-\frac{w u}{v}\right)\right]-8 \sum_{i=1}^{3}\left[\operatorname{Li}_{4}\left(1-u_{i}^{-1}\right)+\frac{\log ^{4} u_{i}}{4!}\right] \\
& -2\left[\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-u_{i}\right)+\frac{\log ^{2} u_{i}}{2!}\right]^{2}+\frac{1}{2}\left[\sum_{i=1}^{3} \log ^{2} u_{i}\right]^{2}-\frac{\log ^{4}(u v w)}{4!}-\frac{23}{2} \zeta_{4}
\end{aligned}
$$

QCD

Gehrmann, Jaquier,
Glover, Koukoutsakis 2011

N=4 SYM

Brandhuber, Travaglini, GY 2012

