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(

0, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H (0;u2)H

(

0, 1, 1;
u1 + u3 − 1

u1 − 1

)

− 1

4
H (0;u1)H

(

0, 1, 1;
u2 + u3 − 1

u3 − 1

)

+

1

4
H (0;u3)H

(

0, 1, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (0;u2)H (1, 0, 0;u1)−

1

2
H (0;u3) H (1, 0, 0;u1)−

1

2
H (0;u1)H (1, 0, 0;u2) +

1

2
H (0;u3) H (1, 0, 0;u2) +

1

2
H (0;u1)H (1, 0, 0;u3) −

1

2
H (0;u2)H (1, 0, 0;u3) −

1

4
H (0;u3) H

(

1, 0, 1;
u1 + u2 − 1

u2 − 1

)

−

1

4
H (0;u2)H

(

1, 0, 1;
u1 + u3 − 1

u1 − 1

)

− 1

4
H (0;u1)H

(

1, 0, 1;
u2 + u3 − 1

u3 − 1

)

−

7H (0, 0, 0, 0;u1) − 7H (0, 0, 0, 0;u2) − 7H (0, 0, 0, 0;u3) +
3

2
H

(

0, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+

3H (0, 0, 0, 1; (u1 + u2)) +
3

2
H

(

0, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+ 3H (0, 0, 0, 1; (u1 + u3)) +

3

2
H

(

0, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 3H (0, 0, 0, 1; (u2 + u3)) +
9

4
H (0, 0, 1, 0;u1) +

9

4
H (0, 0, 1, 0;u2) +

9

4
H (0, 0, 1, 0;u3) −

1

2
H (0, 1, 0, 0;u1) −

1

2
H (0, 1, 0, 0;u2) −

1

2
H (0, 1, 0, 0;u3) +

1

2
H

(

0, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

2
H

(

0, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

2
H

(

0, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ H (0, 1, 1, 0;u1) + H (0, 1, 1, 0;u2) + H (0, 1, 1, 0;u3) −

1

4
H

(

0, 1, 1, 1;
u1 + u2 − 1

u2 − 1

)

− 1

4
H

(

0, 1, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H

(

0, 1, 1, 1;
u2 + u3 − 1

u3 − 1

)

+ H

(

1, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+ H

(

1, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

H

(

1, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 2H (1, 0, 1, 0;u1) + 2H (1, 0, 1, 0;u2) + 2H (1, 0, 1, 0;u3) +

1

4
H

(

1, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

4
H

(

1, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

4
H

(

1, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (1, 1, 1, 0;u1) +

1

2
H (1, 1, 1, 0;u2) +

1

2
H (1, 1, 1, 0;u3) −

1

24
π2H (0;u3)H

(

1;
1

u123

)

− 1

24
π2H (0;u1)H

(

1;
1

u231

)

− 1

24
π2H (0;u2)H

(

1;
1

u312

)

+

1

8
π2H (0;u2)H

(

1;
1

v123

)

− 1

8
π2H (0;u3)H

(

1;
1

v123

)

+
1

24
π2H (0;u2)H

(

1;
1

v132

)

−

1

24
π2H (0;u3)H

(

1;
1

v132

)

− 1

24
π2H (0;u1)H

(

1;
1

v213

)

+
1

24
π2H (0;u3)H

(

1;
1

v213

)

−
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1

8
π2H (0;u1)H

(

1;
1

v231

)

+
1

8
π2H (0;u3)H

(

1;
1

v231

)

+
1

8
π2H (0;u1)H

(

1;
1

v312

)

−

1

8
π2H (0;u2)H

(

1;
1

v312

)

+
1

24
π2H (0;u1)H

(

1;
1

v321

)

− 1

24
π2H (0;u2)H

(

1;
1

v321

)

−

1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

u123

)

− 1

4
H (1, 0;u2)H

(

0, 1;
1

u123

)

+
1

24
π2H

(

0, 1;
1

u123

)

+

1

24
π2H

(

0, 1;
1

u231

)

− 1

4
H (0;u1) H (0;u3)H

(

0, 1;
1

u231

)

− 1

4
H (1, 0;u3)H

(

0, 1;
1

u231

)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

u312

)

− 1

4
H (1, 0;u1)H

(

0, 1;
1

u312

)

+
1

24
π2H

(

0, 1;
1

u312

)

−

1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

v123

)

+
1

4
H (0, 0;u2)H

(

0, 1;
1

v123

)

+

1

4
H (0, 0;u3)H

(

0, 1;
1

v123

)

+
1

6
π2H

(

0, 1;
1

v123

)

− 1

4
H (0;u2) H (0;u3)H

(

0, 1;
1

v132

)

+

1

4
H (0, 0;u2)H

(

0, 1;
1

v132

)

+
1

4
H (0, 0;u3)H

(

0, 1;
1

v132

)

+
1

6
π2H

(

0, 1;
1

v132

)

−

1

4
H (0;u1)H (0;u3)H

(

0, 1;
1

v213

)

+
1

4
H (0, 0;u1)H

(

0, 1;
1

v213

)

+

1

4
H (0, 0;u3)H

(

0, 1;
1

v213

)

+
1

6
π2H

(

0, 1;
1

v213

)

− 1

4
H (0;u1) H (0;u3)H

(

0, 1;
1

v231

)

+

1

4
H (0, 0;u1)H

(

0, 1;
1

v231

)

+
1

4
H (0, 0;u3)H

(

0, 1;
1

v231

)

+
1

6
π2H

(

0, 1;
1

v231

)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

v312

)

+
1

4
H (0, 0;u1)H

(

0, 1;
1

v312

)

+

1

4
H (0, 0;u2)H

(

0, 1;
1

v312

)

+
1

6
π2H

(

0, 1;
1

v312

)

− 1

4
H (0;u1) H (0;u2)H

(

0, 1;
1

v321

)

+

1

4
H (0, 0;u1)H

(

0, 1;
1

v321

)

+
1

4
H (0, 0;u2)H

(

0, 1;
1

v321

)

+
1

6
π2H

(

0, 1;
1

v321

)

−

1

2
H (0;u2)H (0;u3)H

(

1, 1;
1

v123

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v123

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v123

)

+
11

24
π2H

(

1, 1;
1

v123

)

− 1

24
π2H

(

1, 1;
1

v132

)

−

1

24
π2H

(

1, 1;
1

v213

)

− 1

2
H (0;u1) H (0;u3)H

(

1, 1;
1

v231

)

+
1

2
H (0, 0;u1)H

(

1, 1;
1

v231

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v231

)

+
11

24
π2H

(

1, 1;
1

v231

)

− 1

2
H (0;u1) H (0;u2)H

(

1, 1;
1

v312

)

+

1

2
H (0, 0;u1)H

(

1, 1;
1

v312

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v312

)

+
11

24
π2H

(

1, 1;
1

v312

)

−

1

24
π2H

(

1, 1;
1

v321

)

+
1

2
H (0;u2)H

(

0, 0, 1;
1

u123

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1

u123

)

+

1

2
H (0;u1)H

(

0, 0, 1;
1

u231

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1

u231

)

+
1

2
H (0;u1)H

(

0, 0, 1;
1

u312

)

+

1

2
H (0;u2)H

(

0, 0, 1;
1

u312

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

u123

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

u231

)

+

1

4
H (0;u2)H

(

0, 1, 1;
1

u312

)

+
1

4
H (0;u2)H

(

0, 1, 1;
1

v123

)

− 1

4
H (0;u3)H

(

0, 1, 1;
1

v123

)

−
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1

4
H (0;u2)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

v213

)

−

1

4
H (0;u3)H

(

0, 1, 1;
1

v213

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v231

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v231

)

+

1

4
H (0;u1)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u2)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v321

)

+

1

4
H (0;u2)H

(

0, 1, 1;
1

v321

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

u123

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

u231

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

u312

)

+
1

4
H (0;u2)H

(

1, 0, 1;
1

v123

)

− 1

4
H (0;u3)H

(

1, 0, 1;
1

v123

)

−

1

4
H (0;u2)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

v213

)

−

1

4
H (0;u3)H

(

1, 0, 1;
1

v213

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v231

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v231

)

+

1

4
H (0;u1)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u2)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v321

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

v321

)

+ H (0;u2)H
(

1, 1, 1;
1

v123

)

− H (0;u3)H
(

1, 1, 1;
1

v123

)

−

H (0;u1)H
(

1, 1, 1;
1

v231

)

+ H (0;u3)H
(

1, 1, 1;
1

v231

)

+ H (0;u1)H
(

1, 1, 1;
1

v312

)

−

H (0;u2)H
(

1, 1, 1;
1

v312

)

− 3

2
H
(

0, 0, 0, 1;
1

u123

)

− 3

2
H
(

0, 0, 0, 1;
1

u231

)

−

3

2
H
(

0, 0, 0, 1;
1

u312

)

− 3H
(

0, 0, 0, 1;
1

v132

)

− 3H
(

0, 0, 0, 1;
1

v213

)

− 3H
(

0, 0, 0, 1;
1

v321

)

−

1

2
H
(

0, 0, 1, 1;
1

u123

)

− 1

2
H
(

0, 0, 1, 1;
1

u231

)

− 1

2
H
(

0, 0, 1, 1;
1

u312

)

−

1

2
H
(

0, 1, 0, 1;
1

u123

)

− 1

2
H
(

0, 1, 0, 1;
1

u231

)

− 1

2
H
(

0, 1, 0, 1;
1

u312

)

+

1

4
H
(

0, 1, 1, 1;
1

v123

)

+
1

4
H
(

0, 1, 1, 1;
1

v132

)

+ ζ3H (0;u1) + ζ3H (0;u2) + ζ3H (0;u3) +

5

2
ζ3H (1;u1) +

5

2
ζ3H (1;u2) +

5

2
ζ3H (1;u3) +

1

2
ζ3H

(

1;
1

u123

)

+
1

2
ζ3H

(

1;
1

u231

)

+

1

2
ζ3H

(

1;
1

u312

)

− 1

2
H
(

1, 0, 0, 1;
1

u123

)

− 1

2
H
(

1, 0, 0, 1;
1

u231

)

− 1

2
H
(

1, 0, 0, 1;
1

u312

)

+

1

4
ζ3H

(

1;
1

v123

)

+
1

4
ζ3H

(

1;
1

v132

)

+
1

4
ζ3H

(

1;
1

v213

)

+
1

4
ζ3H

(

1;
1

v231

)

+
1

4
ζ3H

(

1;
1

v312

)

+

1

4
ζ3H

(

1;
1

v321

)

+
1

4
H
(

0, 1, 1, 1;
1

v213

)

+
1

4
H
(

0, 1, 1, 1;
1

v231

)

+
1

4
H
(

0, 1, 1, 1;
1

v312

)

+

1

4
H
(

0, 1, 1, 1;
1

v321

)

+
1

4
H
(

1, 0, 1, 1;
1

v123

)

+
1

4
H
(

1, 0, 1, 1;
1

v132

)

+
1

4
H
(

1, 0, 1, 1;
1

v213

)

+

1

4
H
(

1, 0, 1, 1;
1

v231

)

+
1

4
H
(

1, 0, 1, 1;
1

v312

)

+
1

4
H
(

1, 0, 1, 1;
1

v321

)

+
1

4
H
(

1, 1, 0, 1;
1

v123

)

+

1

4
H
(

1, 1, 0, 1;
1

v132

)

+
1

4
H
(

1, 1, 0, 1;
1

v213

)

+
1

4
H
(

1, 1, 0, 1;
1

v231

)

+
1

4
H
(

1, 1, 0, 1;
1

v312

)

+

1

4
H
(

1, 1, 0, 1;
1

v321

)

+
3

2
H
(

1, 1, 1, 1;
1

v123

)

+
3

2
H
(

1, 1, 1, 1;
1

v231

)

+
3

2
H
(

1, 1, 1, 1;
1

v312

)
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R(2)
6,WL(u1, u2, u3) = (H.1)

1

24
π2G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
; 1

)

+
1

24
π2G

(
1

u1
,

1

u1 + u2
; 1

)

+
1

24
π2G

(
1

u1
,

1

u1 + u3
; 1

)

+

1

24
π2G

(
1

1 − u2
,

u3 − 1

u2 + u3 − 1
; 1

)

+
1

24
π2G

(
1

u2
,

1

u1 + u2
; 1

)

+
1

24
π2G

(
1

u2
,

1

u2 + u3
; 1

)

+

1

24
π2G

(
1

1 − u3
,

u1 − 1

u1 + u3 − 1
; 1

)

+
1

24
π2G

(
1

u3
,

1

u1 + u3
; 1

)

+
1

24
π2G

(
1

u3
,

1

u2 + u3
; 1

)

+

3

2
G

(

0, 0,
1

u1
,

1

u1 + u2
; 1

)

+
3

2
G

(

0, 0,
1

u1
,

1

u1 + u3
; 1

)

+
3

2
G

(

0, 0,
1

u2
,

1

u1 + u2
; 1

)

+

3

2
G

(

0, 0,
1

u2
,

1

u2 + u3
; 1

)

+
3

2
G

(

0, 0,
1

u3
,

1

u1 + u3
; 1

)

+
3

2
G

(

0, 0,
1

u3
,

1

u2 + u3
; 1

)

−

1

2
G

(

0,
1

u1
, 0,

1

u2
; 1

)

+ G

(

0,
1

u1
, 0,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u1
, 0,

1

u3
; 1

)

+

G

(

0,
1

u1
, 0,

1

u1 + u3
; 1

)

− 1

2
G

(

0,
1

u1
,

1

u1
,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u1
,

1

u1
,

1

u1 + u3
; 1

)

−

1

2
G

(

0,
1

u1
,

1

u2
,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u1
,

1

u3
,

1

u1 + u3
; 1

)

− 1

2
G

(

0,
1

u2
, 0,

1

u1
; 1

)

+

G

(

0,
1

u2
, 0,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u2
, 0,

1

u3
; 1

)

+ G

(

0,
1

u2
, 0,

1

u2 + u3
; 1

)

−

1

2
G
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“multiple(Goncharov)-polylogrithm function”

17 page complicated functions



[Goncharov, Spradlin, Vergu, Volovich 2010]

a line result in terms of classical polylogarithms!

17 pages =

Result can be remarkably simple
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Classical Polylogarithms for Amplitudes and Wilson Loops
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)
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n can depend on confor-
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n = 4, 5, the first nontrivial remainder function is R(2)
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Wilson loop diagrams to obtain an analytic expression
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if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
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Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
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tion and then describe the algorithm by which it was
obtained.
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(2)
6

The remainder function R(2)
6 is usually presented as a
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, u2 =
s23s56
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, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
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±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

2

and

ℓn(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantity

J =
3
∑

i=1

(ℓ1(x
+
i )− ℓ1(x

−
i )). (6)

Note that in the Euclidean region where all ui > 0, the
x+
i never enter the lower half-plane and the x−

i never
enter the upper half-plane. The expression (3) is valid
in the Euclidean region with the understanding that the
branch cuts of Lin(x

+
i ) and Lin(1/x

−
i ) are taken to lie

below the real axis while the branch cuts of Lin(x
−
i ) and

Lin(1/x
+
i ) are taken to lie above the real axis. (The

quantities x+
i x

−
i appearing as arguments of the logs are

always positive.) In writing (3) extreme care has neces-
sarily been taken to ensure the proper analytic structure.
For example one can easily check that J naively simpli-
fies to 1

2 log(x
−/x+), but this relation only holds in the

regions ∆ > 0 or u1 + u2 + u3 < 1. We caution the
reader that any attempt to use any such naive relations,
including the well-known relation between Lin(1/x) and
Lin(x), without careful consideration of the branch struc-
ture, voids our warranty on (3).
Besides its great simplicity, two notable features of (3)

which set it apart from the DDS formula are manifest
symmetry under any permutation of the ui, and the fact
that the expression is valid and readily evaluated for all
positive ui, in particular also outside the unit cube.

DESCRIPTION OF THE ALGORITHM

A Convenient Choice of Variables

The DDS formula is expressed in terms of the classical
polylogarithms Lik as well as a collection of considerably
more complicated multiparameter generalizations stud-
ied by one of the authors [19] and defined recursively by

G(ak, ak−1, . . . ; z) =

∫ z

0
G(ak−1, . . . ; t)

dt

t− ak
(7)

with G(z) ≡ 1, of which the harmonic polylogarithms
familiar in the physics literature [20] are special cases.
The parameters of the various transcendental functions

which appear in the DDS formula involve not just the
cross-ratios (1), but also the more complicated combi-
nations 1 − ui, (1 − ui)/(1 − ui − uj), ui + uj , u

±
jkl =

1−uj−uk+ul±
√
∆

2(1−uj)ul
, and v±jkl =

uk−ul±
√

(uk+ul)2−4ujukul

2(1−uj)uk
.

This large collection of variables is redundant in an ineffi-
cient way, with many rather complicated algebraic iden-
tities amongst them.

Our computation is greatly facilitated by a judicious
choice of variables which trivializes all of these algebraic
relations. We choose to express the three ui by six vari-
ables zi valued in P1 (with an SL(2,C) redundancy) via

u1 =
z23z56
z25z36

, u2 =
z16z34
z14z36

, u3 =
z12z45
z14z25

, (8)

where zij = zi − zj . One virtue of these coordinates is
that ∆ becomes a perfect square, so that the u±

jkl are

rational functions of the zij . (The v±jkl completely drop
out as explained in the following subsection.)
We anticipate that for general n the best variables for

studying the remainder function will be the momentum
twistors of [21]. Indeed the z variables may be thought
of as a particular simplification of momentum twistors
which is valid for the special case n = 6 via the rela-
tion ⟨abcd⟩ ∝ zabzaczadzbczbdzcd. In terms of momentum
twistors

u1 =
⟨1234⟩⟨4561⟩
⟨1245⟩⟨3461⟩, x+

1 = −⟨1456⟩⟨2356⟩
⟨1256⟩⟨3456⟩, etc. (9)

The Symbol of a Transcendental Function

We define a function Tk of transcendentality degree
k as one which can be written as a linear combination
(with rational coefficients) of k-fold iterated integrals of
the form

Tk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk, (10)

where a and b are rational numbers, Ri(t) are rational
functions with rational coefficients and the iterated inte-
grals are defined recursively by

∫ b

a

d logR1 ◦ · · · ◦ d logRn =

∫ b

a

(∫ t

a

d logR1 ◦ · · · ◦ d logRn−1

)

d logRn(t). (11)

The integrals are taken along paths from a to b. When
the Ri are rational functions in several variables the issue
of local path independence (or homotopy invariance) is

important (see [22]), and we have checked that R(2)
6 has

this property.
A useful quantity associated with Tk is its symbol, an

element of the k-fold tensor product of the multiplicative
group of rational functions modulo constants (see [22,
sec. 3]). The symbol of the function shown in (10) is

symbol(Tk) = R1 ⊗ · · ·⊗Rk, (12)

and this definition is extended to all functions of degree
k by linearity.
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Such simplicity is totally unexpected using traditional Feynman diagrams!

Mathematical tool: “symbol”



Function Differential symbol

R d R 0

log(R) d log(R) R

log(R1)log(R2) logR1 dlogR2+logR2 dlogR1 R1     R2 + R2    R1

Li2(R) Li1(R) dlogR -(1-R)     R

From function to “Symbol”

⊗

⊗⊗

Recursion definition of “Symbol”:



Symbol

Algebraic relations:
c is const

Make it easy to prove non-trivial identities, e.g.:



Applications

Complicated 
expression symbol Simple 

expression



Applications

Complicated 
expression symbol

Derive symbol directly without knowing function in advance.

Bootstrap strategy

A better strategy:

Simple 
expression

We will apply a different strategy based on master integrand expansion.

Dixon, Drummond, Henn 2011, ….



Outline

Summary and outlook

New bootstrap strategy

Two-loop four-point form factor

Background and Motivation



Bootstrap



Bootstrap

Bootstrap

Top-down

Bottom-up



S-matrix program

“One should try to calculate S-matrix elements directly, 
without the use of field quantities, by requiring them to 
have some general properties that ought to be valid, .…”  

— Eden et.al, “The Analytic S-matrix”, 1966



Conformal bootstrap
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2-dim D-dim

Compute anomalous dimensions and correlation functions



Bootstrap of amplitudes

Computing the finite remainder functions using symbol techniques. 
Ansatz 

in symbols Physical constraints Solution

Sansatz(R) = ∑
i

ci[ ⊗a Wi,a]

Symbol bootstrap

S(R) = ∑
i

ci( ⊗a Wi,a)



Bootstrap of amplitudes

Computing the finite remainder functions using symbol techniques. 
Ansatz 

in symbols Physical constraints Solution

Sansatz(R) = ∑
i

ci[ ⊗a Wi,a]

Symbol bootstrap

S(R) = ∑
i
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Ansatz 
in master integrals Physical constraints Solution of 

coefficients

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l) = ∑
i

Ci I(l)
i

The new strategy we will use



“master bootstrap”

Ansatz in master 
integral expansion Physical constraints Solution of 

coefficients

Symmetry property

IR divergences

Collinear factorization

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Unitarity cut

ℱ(l),ansatz = ∑
i

Ci I(l)
i
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Application: 
two-loop four-point form factor



Form factors

We consider two-loop four-point form factor in N=4 SYM:

HHiggs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.
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2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],
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where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32

It is a N=4 version of Higgs+4-parton amplitudes in QCD:

Contents

1 Introduction 1

2 Setup 1

2.1 Effective Lagrangian 1

2.2 Divergence structure 2

2.3 Color factor 5

3 Computation 6

3.1 Gauge invariant basis 6

3.2 IBP 8

4 Results 9

4.1 Tree-level and one-loop results 11

4.2 Two-loop results 12

5 Conclusion 14

1 Introduction

2 Setup

2.1 Effective Lagrangian

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0Htr(F 2) +O

(

1

m2
t

)

, (2.1)

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.2)

where O0 = Htr(F 2) is the leading term, and the subleading terms contain dimension-7

operators [1–5]

O1 = Htr(F ν
µ F ρ

ν F µ
ρ ) , (2.3)

O2 = Htr(DρFµνD
ρFµν) , (2.4)

O3 = Htr(DρFρµDσF
σµ) , (2.5)

O4 = Htr(FµρD
ρDσF

σµ) . (2.6)

– 1 –

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩



Form factors

We consider two-loop four-point form factor in N=4 SYM:

HIt is a N=4 version of Higgs+4-parton amplitudes in QCD:

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩

Five-point two-loop amplitudes are at frontier and under intense study:

There have been many massless five-point two-loop amplitudes 
obtained in analytic form.

For five-point two-loop amplitudes with one massive leg, so far only 
one result is available: Badger, Hartanto, Zoia 2021
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We present an analytic computation of the two-loop QCD corrections to ud̄ ! W+bb̄ for an
on-shell W -boson using the leading colour and massless bottom quark approximations. We perform
an integration-by-parts reduction of the unpolarised squared matrix element using finite field recon-
struction techniques and identify an independent basis of special functions that allows an analytic
subtraction of the infrared and ultraviolet poles. This basis is valid for all planar topologies for
five-particle scattering with an o↵-shell leg.

INTRODUCTION

The production of aW -boson in association with a pair
of b-quarks at hadron colliders is of fundamental impor-
tance as a background to Higgs production in association
with a vector boson. The process is one of a prioritised
list of 2 ! 3 scattering problems for which higher or-
der corrections are necessary to keep theory in line with
data. These amplitudes are related to a large class of
processes contributing to pp ! W + 2j production and
the work presented here represents a significant step to-
wards achieving a complete classification of the missing
two-loop amplitudes.

The process has been studied extensively at next-to-
leading order (NLO) [1–5] and was the first in a set of
o↵-shell five-particle amplitudes to be studied using the
unitarity method [6, 7]. The present state of the art in
phenomenological studies allows full mass e↵ects, shower
matching, electro-weak corrections and the inclusion ad-
ditional QCD jets [8–10].

A numerical computation of the two-loop helicity am-
plitudes [11] demonstrated the importance of an e�cient
analytic form with a well understood basis of special func-
tions. Major steps forward came via e�cient numeri-
cal evaluation of the di↵erential equations [12] and ana-
lytic evaluation in terms the Goncharov Polylogarithms
(GPLs) [13, 14]. These results opened the door for a fully
analytic amplitude computation yet significant challenges
remain. The complexity of the external kinematics rep-
resents a challenge for integral reduction techniques and
the identification of a minimal basis of special functions is
required to find analytic simplifications after subtracting
universal infrared and ultraviolet divergences.

E�cient amplitude and integration-by-parts reduction
(IBP) [15, 16] using finite field arithmetic [17–27] has
gained significant interest in recent years. Through mul-
tiple evaluations of a numerical algorithm [28–31], fully
analytic forms for planar massless five-particle ampli-
tudes have been extracted using a rational parametri-
sation of the kinematics [32]. Following a complete
understanding of a pentagon function basis [33, 34], a

large number of two-loop amplitudes are now available
in compact analytic form [35–47]. We have also seen
the first phenomenological predictions at NNLO in QCD
for the production of three photons in hadron colliders
after combination with real-virtual and double real radi-
ation [48, 49].
In this short letter we outline the extension of this

method to processes with an additional mass scale.

LEADING COLOUR ud̄ ! W+bb̄ AMPLITUDES

The leading order process consists of two simple Feyn-
man diagrams as shown in Fig. 1. We label our process
as follows,

d̄(p1) + u(p2) ! b(p3) + b̄(p4) +W
+(p5), (1)

where p
2
1 = p

2
2 = p

2
3 = p

2
4 = 0 and p

2
5 = m

2
W . The colour

decomposition at leading colour is

A
(L)(1d̄, 2u, 3b, 4b̄, 5W ) =

n
L
g
2
sgW �

ī4
i1

�
ī2

i3
A

(L)(1d̄, 2u, 3b, 4b̄, 5W ), (2)

where n = m✏Nc↵s/(4⇡), ↵s = g
2
s/(4⇡) and m✏ =

i(4⇡)✏e�✏�E . gs and gW are the strong and weak cou-
pling constants respectively.
We interfere the L-loop partial amplitudes A

(L) in
Eq. (2) with the tree-level partial amplitude A

(0) to ob-
tain the unrenormalised L-loop unpolarised squared par-
tial amplitude,

M
(L) =

X

spin

A
(0)⇤

A
(L)

. (3)
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FIG. 1. Leading order Feynman diagrams contributing to
ud̄ ! W+bb̄ .
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See e.g. Abreu, Dormans, Cordero, Ita, Page 2019 and many others….



Form factors
Our result provides a first two-loop five-point example with a 
color-singlet off-shell leg.

Planar master integrals have been evaluated recently.

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩

i
j

k

l

{s12, s23, s34, s14, s13, s24, tr5}; tr5 = 4iεp1p2 p3p4

Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020
Canko, Papadopoulos, Syrrakos 2020

H



Ansatz

Tree-level:

One-loop:

2

FIG. 1: Integral topologies of maximal number of
propagators for the planar two-loop form factor.

takes the simple form as [2]

F
(0)
4 = F

(0)
tr(�3

12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (4)

The one-loop form factor is easy to compute which takes
the following form

F
(1)
4 = F

(0)
4

⇣
W1 I

(1)
1 +W2 I

(1)
2

⌘
, (5)

where Wa are rational functions of kinematic invariants

W1 =
h12i h34i

h13i h24i
, W2 =

h14i h23i

h13i h24i
, (6)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation

⇣X

i

Wi I
(1)
i (✏)

⌘2���
IR

=
hX

i

Wi

�
I
(1)
i (✏)

�2i���
IR

(7)

which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz

F
(2)
4 = F

(0)
4

⇣
W1 I

(2)
1 +W2 I

(2)
2

⌘
, (8)

in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:

I
(2)
a =

225X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
(2)
a :

I
(2)
2 = I

(2)
1 |(p1$p3) . (10)

In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:

log I = �

1X

l=1

g2l
"
�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏

#
nX

i=1

�
�
sii+1

µ2

��l✏
+O

�
✏0
�
,

(11)
which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
? ], which at two loops can be given as

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (12)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (13)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies

R
(2)
n =

⇥
I
(2)

� I
(2),BDS

⇤
fin

pi k pi+1
�������! R

(2)
n�1 . (14)

But for tr(�3), I(1) contains both kinematics factors
W1 and W2, the (I(1))2 in I

(2),BDS will introduce a pole
of h13i which cannot be canceled, thus we redefine the
subtraction as reference[] do

I
(2),BDS =

2X

i=1

Wi

h�
I
(1)
i (✏)

�2
+ f (2)(✏)I(1)

i (2✏)
i
, (15)

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩

2

i
j

k

l

FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]

F
(0)
4 = F

(0)
tr(�3

12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form

F
(1)
4 = F

(0)
4

⇣
B1 I

(1)
1 +B2 I

(1)
2

⌘
, (4)

where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (24). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation

⇣X

i

Bi I
(1)
i (✏)

⌘2���
IR

=
hX

i

Bi

�
I
(1)
i (✏)

�2i���
IR

(6)

which will be used for two-loop ansatz. [to improve]
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop form factor

F
(2)
4 = F

(0)
4

⇣
B1 I

(2)
1 +B2 I

(2)
2

⌘
, (7)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (8)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to
choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (10)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (11)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies

R
(2)
n =

⇥
I
(2)

� I
(2),BDS

⇤
fin

pi k pi+1
�������! R

(2)
n�1 . (12)

For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(6), we define the BDS ansatz part as

I
(2),BDS =

2X

i=1

Bi

h�
I
(1)
i (✏)

�2
+ f (2)(✏)I(1)

i (2✏)
i
, (13)

which has same IR part and collinear limit behavior as
before.
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (7) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing two Ba terms.
The IR and collinear constraints can often fix a sig-

nificant part of the parameters. In some cases, they are

8

Supplemental material

A. One-loop form factor

The one-loop four-point form factor can be given as

F
(1)

4
= F

(0)

4
I
(1)

4
= F

(0)

4

⇣
B1 G

(1)

1
+ (p1 $ p3)

⌘
, (24)

where B1 is defined in (5), and

G
(1)

1
= �

1

2
I(1),UT

Box
(4, 1, 2)�

1

2
I(1),UT

Box
(3, 4, 1)� I(1),UT

Bubble
(4, 1, 2)

� I(1),UT

Bubble
(3, 4, 1) + I(1),UT

Bubble
(4, 1)� I(1),UT

Bubble
(2, 3) .

Here I(1),UT

Box
and I(1),UT

Bubble
are one-loop one-mass box and bubble UT integrals:

I(1),UT

Box
(i, j, k) = sijsjk ⇥

i

jk
I(1),UT

Bubble
(1, . . . , n) =

1� 2✏

✏
⇥

1

n
(25)

B. A brief review of symbol

The symbol S of a function T (k) of transcendentality k is represented in a tensor product form as [44]

S(T (k)) =
X

i1,...,ik

wi1 ⌦ · · ·⌦ wik , (26)

where wi are rational functions of kinematic variables. Rational function has transcendentality degree 0, and by
definition, its symbol is zero.

In practice, the symbol can be derived in the following recursive way. Given the total derivative of T (k) in the form

dT (k) =
X

i

T (k�1)

i d logwi , (27)

the symbol satisfies the following recursive relation

S(T (k)) =
X

i

S(T (k�1)

i )⌦ wi . (28)

From above definition, one can see that the tensor product of wi should more properly be understood as tensor
product of logwi:

⌦
k
i=1

wi �! ⌦
k
i=1

logwi . (29)

This immediately leads to the important properties for the symbol that like the product of logarithms:

· · ·⌦ wiwj ⌦ · · · = · · ·⌦ wi ⌦ · · ·+ · · ·⌦ wj ⌦ · · · . (30)

From the definition, it is also clear that for any constant c,

· · ·⌦ cwi ⌦ · · · = · · ·⌦ wi ⌦ · · · . (31)

Let us mention other two useful properties that will be useful for the computation. One important fact is that
not all symbols correspond to symbols of functions. To be able to mapped to certain functions, a given symbol must
satisfy the so-called “integrability condition” that for any two consecutive entries of symbols:

X

i1,...,ik

wi1 ⌦ · · ·⌦ wia ⌦ wia+1 ⌦ · · ·⌦ wik

!

X

i1,...,ik

(logwia ^ logwia+1)wi1 ⌦ · · ·⌦ · · ·⌦ wik = 0 ,
(32)

2

of higher order expansion in dimensional regularization
parameter ✏ = (4�D)/2.

In this paper we describe this strategy and illustrate its
application for the two-loop four-point form factor. A few
technical points are given in the supplemental material,
and full analytic results are provided in the ancillary files.

ANSATZ OF THE FORM FACTOR

For constructing the two-loop ansatz, it is instructive to
first review the tree and one-loop results [48]. The tree-
level result takes the simple form as

F
(0)

4
= F

(0)

tr(�3
12)

(1�, 2�, 3�, 4+) =
h31i

h34ih41i
. (3)

For the one-loop form factor, we make an important ob-
servation that it can be reorganized in the following form

F
(1)

4
= F

(0)

4
I
(1)

4
= F

(0)

4

⇣
B1 G

(1)

1
+B2 G

(1)

2

⌘
, (4)

where Ba are cross ratios of spinor products

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and G
(1)

a can be given in terms of bubble and box master
integrals (see the supplemental material). Besides man-
ifesting the symmetry of (p1 $ p3), the form of (4) has
following important properties: (a) B1 ! 0, B2 ! 1
when p3 k p4; (b) G1 and G2 satisfy
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which will be used for the two-loop constraints later.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop planar form factor
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which is also suggested by the BDS ansatz we will dis-

cuss below. The loop function G
(2)

a can be expanded in
terms of a set of two-loop master integrals. Topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contains 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. Since the BPS form factor
in N = 4 SYM has uniform transcendentality degree 4,
it is convenient to choose the master integrals to be uni-
formly transcendental (UT) integrals. Such a basis has
been constructed in [7] based on the canonical di↵eren-
tial equations method [49], which we will follow in this
paper. An analysis of the topology shows that the most
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

general ansatz contains 221 master integrals for each G
(2)

a ,
namely,

G
(2)

a =
221X

i=1

ca,iI
(2),UT

i , (8)

where ca,i are the coe�cients to be solved. The (p1 $ p3)
symmetry of the form factor requires that:

G
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2
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(2)

1
|(p1$p3)

, (9)

thus c1,i and c2,i are not independent. Since both the
form factor and integral basis have degree 4, the coe�-
cients ca,i are expected to be pure rational numbers in-
dependent of dimensional regularization parameter ✏.

To summarize, our ansatz contains 221 free parameters
which are to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and further
implementations to the two-loop form factor will be given
in next section.

Two important constraints are the universal IR diver-
gences [50, 51] and collinear factorization [52–54], which
depend only on lower loop results and some universal
building blocks. For the planar amplitudes or form fac-
tors in N = 4 SYM, a convenient representation to cap-
ture both the IR and collinear behavior is the BDS ex-
pansion [55]
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where f (2)(✏) = �2⇣2 � 2⇣3✏ � 2⇣4✏2. Both the IR and
collinear singularities are contained in the first two terms
which are determined by one-loop corrections, and the
n-point finite remainder function R

(2) has nice regular

behavior R(2)

n ! R
(2)

n�1
in the collinear limit pi k pi+1.

For the form factor we consider, one complication is
that I(`) contains two kinematic factors B1 and B2, and
the (I(1))2 will introduce quadratic terms of Ba with dou-
ble pole of h13ih24i. It turns out that, one can introduce
a BDS ansatz function that is linear in Ba as
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takes the simple form as [2]
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h34ih41i
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The one-loop form factor is easy to compute which takes
the following form

F
(1)
4 = F

(0)
4

⇣
W1 I

(1)
1 +W2 I

(1)
2

⌘
, (5)

where Wa are rational functions of kinematic invariants

W1 =
h12i h34i

h13i h24i
, W2 =

h14i h23i

h13i h24i
, (6)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation
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which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz
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in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:
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ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
(2)
a :
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In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
? ], which at two loops can be given as
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the nice collinear property such that the finite remainder
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But for tr(�3), I(1) contains both kinematics factors
W1 and W2, the (I(1))2 in I

(2),BDS will introduce a pole
of h13i which cannot be canceled, thus we redefine the
subtraction as reference[] do
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form
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(1)
1 +B2 I

(1)
2
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, (4)

where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (24). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop form factor
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(2)
1 +B2 I
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2
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, (7)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (8)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to
choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
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(1)(✏)
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+ f (2)(✏)I(1)(2✏) , (10)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (11)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies
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⇤
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(6), we define the BDS ansatz part as

I
(2),BDS =

2X
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Bi

h�
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i (✏)
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which has same IR part and collinear limit behavior as
before.
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (7) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing two Ba terms.
The IR and collinear constraints can often fix a sig-

nificant part of the parameters. In some cases, they are
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X
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ca,iI
(2),UT
i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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where
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(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
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for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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(1�, 2�, 3�, 4+) =
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h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:
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a =
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
(2),BDS =

2X

a=1

Ba

h�
G
(1)
a (✏)

�2
+ f (2)(✏)G(1)

a (2✏)
i
, (14)

which has same IR part and collinear limit behavior as
before.
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result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants
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and I
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor

F
(2)
4 = F

(0)
4

⇣
B1 G

(2)
1 +B2 G

(2)
2

⌘
, (8)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

G
(2)
2 = G

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

G
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (11)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (12)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
(2),BDS =
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a=1
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h�
G
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+ f (2)(✏)G(1)
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which has same IR part and collinear limit behavior as
before.

2

of higher order expansion in dimensional regularization
parameter ✏ = (4�D)/2.

In this paper we describe this strategy and illustrate its
application for the two-loop four-point form factor. A few
technical points are given in the supplemental material,
and full analytic results are provided in the ancillary files.

ANSATZ OF THE FORM FACTOR

For constructing the two-loop ansatz, it is instructive to
first review the tree and one-loop results [48]. The tree-
level result takes the simple form as

F
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(1�, 2�, 3�, 4+) =
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h34ih41i
. (3)

For the one-loop form factor, we make an important ob-
servation that it can be reorganized in the following form
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where Ba are cross ratios of spinor products

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and G
(1)

a can be given in terms of bubble and box master
integrals (see the supplemental material). Besides man-
ifesting the symmetry of (p1 $ p3), the form of (4) has
following important properties: (a) B1 ! 0, B2 ! 1
when p3 k p4; (b) G1 and G2 satisfy
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which will be used for the two-loop constraints later.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop planar form factor
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which is also suggested by the BDS ansatz we will dis-

cuss below. The loop function G
(2)

a can be expanded in
terms of a set of two-loop master integrals. Topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contains 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. Since the BPS form factor
in N = 4 SYM has uniform transcendentality degree 4,
it is convenient to choose the master integrals to be uni-
formly transcendental (UT) integrals. Such a basis has
been constructed in [7] based on the canonical di↵eren-
tial equations method [49], which we will follow in this
paper. An analysis of the topology shows that the most
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

general ansatz contains 221 master integrals for each G
(2)

a ,
namely,

G
(2)

a =
221X

i=1

ca,iI
(2),UT

i , (8)

where ca,i are the coe�cients to be solved. The (p1 $ p3)
symmetry of the form factor requires that:

G
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2
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(2)

1
|(p1$p3)

, (9)

thus c1,i and c2,i are not independent. Since both the
form factor and integral basis have degree 4, the coe�-
cients ca,i are expected to be pure rational numbers in-
dependent of dimensional regularization parameter ✏.

To summarize, our ansatz contains 221 free parameters
which are to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and further
implementations to the two-loop form factor will be given
in next section.

Two important constraints are the universal IR diver-
gences [50, 51] and collinear factorization [52–54], which
depend only on lower loop results and some universal
building blocks. For the planar amplitudes or form fac-
tors in N = 4 SYM, a convenient representation to cap-
ture both the IR and collinear behavior is the BDS ex-
pansion [55]
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(2)+O(✏) , (10)

where f (2)(✏) = �2⇣2 � 2⇣3✏ � 2⇣4✏2. Both the IR and
collinear singularities are contained in the first two terms
which are determined by one-loop corrections, and the
n-point finite remainder function R

(2) has nice regular

behavior R(2)

n ! R
(2)

n�1
in the collinear limit pi k pi+1.

For the form factor we consider, one complication is
that I(`) contains two kinematic factors B1 and B2, and
the (I(1))2 will introduce quadratic terms of Ba with dou-
ble pole of h13ih24i. It turns out that, one can introduce
a BDS ansatz function that is linear in Ba as
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FIG. 1: Integral topologies of maximal number of
propagators for the planar two-loop form factor.

takes the simple form as [2]
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(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (4)

The one-loop form factor is easy to compute which takes
the following form
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where Wa are rational functions of kinematic invariants

W1 =
h12i h34i

h13i h24i
, W2 =

h14i h23i

h13i h24i
, (6)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation
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which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz
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(2)
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2

⌘
, (8)

in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:

I
(2)
a =

225X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
(2)
a :
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In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
? ], which at two loops can be given as
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part satisfies
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But for tr(�3), I(1) contains both kinematics factors
W1 and W2, the (I(1))2 in I

(2),BDS will introduce a pole
of h13i which cannot be canceled, thus we redefine the
subtraction as reference[] do
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form
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(1)
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, (4)

where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (24). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop form factor
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(2)
4 = F

(0)
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⇣
B1 I

(2)
1 +B2 I

(2)
2

⌘
, (7)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (8)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to
choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
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1
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+ f (2)(✏)I(1)(2✏) , (10)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
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I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies
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⇤
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(6), we define the BDS ansatz part as

I
(2),BDS =

2X
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Bi
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which has same IR part and collinear limit behavior as
before.
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (7) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing two Ba terms.
The IR and collinear constraints can often fix a sig-

nificant part of the parameters. In some cases, they are

2

i
j

k

l

FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor

F
(2)
4 = F

(0)
4

⇣
B1 G

(2)
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, (8)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:
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221X
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ca,iI
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i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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where
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(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
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which has same IR part and collinear limit behavior as
before.
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor

F
(2)
4 = F

(0)
4

⇣
B1 G

(2)
1 +B2 G

(2)
2

⌘
, (8)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
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a : Thus we have

an ansatz:
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (11)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (12)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies

R
(2)
n =

⇥
I
(2)

� I
(2),BDS

⇤
fin

pi k pi+1
�������! R

(2)
n�1 . (13)

For the form factor of tr(�3), I(1) contains two kine-
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(7), we define the BDS ansatz part as
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o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).
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color-singlet q-leg. Since the form factor we consider is
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transcendentality degree 4, it is therefore convenient to
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.
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As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
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of higher order expansion in dimensional regularization
parameter ✏ = (4�D)/2.

In this paper we describe this strategy and illustrate its
application for the two-loop four-point form factor. A few
technical points are given in the supplemental material,
and full analytic results are provided in the ancillary files.

ANSATZ OF THE FORM FACTOR

For constructing the two-loop ansatz, it is instructive to
first review the tree and one-loop results [48]. The tree-
level result takes the simple form as
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For the one-loop form factor, we make an important ob-
servation that it can be reorganized in the following form
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where Ba are cross ratios of spinor products

B1 =
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h13i h24i
, B2 =

h14i h23i
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, B1 +B2 = 1 , (5)

and G
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a can be given in terms of bubble and box master
integrals (see the supplemental material). Besides man-
ifesting the symmetry of (p1 $ p3), the form of (4) has
following important properties: (a) B1 ! 0, B2 ! 1
when p3 k p4; (b) G1 and G2 satisfy
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which will be used for the two-loop constraints later.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop planar form factor
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which is also suggested by the BDS ansatz we will dis-

cuss below. The loop function G
(2)

a can be expanded in
terms of a set of two-loop master integrals. Topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contains 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. Since the BPS form factor
in N = 4 SYM has uniform transcendentality degree 4,
it is convenient to choose the master integrals to be uni-
formly transcendental (UT) integrals. Such a basis has
been constructed in [7] based on the canonical di↵eren-
tial equations method [49], which we will follow in this
paper. An analysis of the topology shows that the most
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

general ansatz contains 221 master integrals for each G
(2)

a ,
namely,

G
(2)

a =
221X
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ca,iI
(2),UT

i , (8)

where ca,i are the coe�cients to be solved. The (p1 $ p3)
symmetry of the form factor requires that:

G
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2
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(2)

1
|(p1$p3)
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thus c1,i and c2,i are not independent. Since both the
form factor and integral basis have degree 4, the coe�-
cients ca,i are expected to be pure rational numbers in-
dependent of dimensional regularization parameter ✏.

To summarize, our ansatz contains 221 free parameters
which are to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and further
implementations to the two-loop form factor will be given
in next section.

Two important constraints are the universal IR diver-
gences [50, 51] and collinear factorization [52–54], which
depend only on lower loop results and some universal
building blocks. For the planar amplitudes or form fac-
tors in N = 4 SYM, a convenient representation to cap-
ture both the IR and collinear behavior is the BDS ex-
pansion [55]
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where f (2)(✏) = �2⇣2 � 2⇣3✏ � 2⇣4✏2. Both the IR and
collinear singularities are contained in the first two terms
which are determined by one-loop corrections, and the
n-point finite remainder function R

(2) has nice regular
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n�1
in the collinear limit pi k pi+1.

For the form factor we consider, one complication is
that I(`) contains two kinematic factors B1 and B2, and
the (I(1))2 will introduce quadratic terms of Ba with dou-
ble pole of h13ih24i. It turns out that, one can introduce
a BDS ansatz function that is linear in Ba as

I
(2)

4,BDS
=

2X

a=1

Ba


1

2

�
G
(1)

a (✏)
�2

+ f (2)(✏)G(1)

a (2✏)

�
. (11)



IR divergences

Collinear factorization

Constraints

Spurious pole

Unitarity cut

BDS ansatz

2

FIG. 1: Integral topologies of maximal number of
propagators for the planar two-loop form factor.

takes the simple form as [2]
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The one-loop form factor is easy to compute which takes
the following form
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where Wa are rational functions of kinematic invariants

W1 =
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h13i h24i
, W2 =

h14i h23i
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and I
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a can be given in terms of bubble and box integrals

as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation
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which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz
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in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:
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where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
(2)
a :
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In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
? ], which at two loops can be given as
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But for tr(�3), I(1) contains both kinematics factors
W1 and W2, the (I(1))2 in I

(2),BDS will introduce a pole
of h13i which cannot be canceled, thus we redefine the
subtraction as reference[] do
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in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
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ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
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behavior for N = 4 loop quantities is the BDS ansatz [?
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But for tr(�3), I(1) contains both kinematics factors
W1 and W2, the (I(1))2 in I

(2),BDS will introduce a pole
of h13i which cannot be canceled, thus we redefine the
subtraction as reference[] do
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which captures all IR and collinear singularities.
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FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)
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whereR(2)
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is the two-loop remainder of three-point form

factor Ftr(�3
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(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)
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When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint
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While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.

2

of higher order expansion in dimensional regularization
parameter ✏ = (4�D)/2.

In this paper we describe this strategy and illustrate its
application for the two-loop four-point form factor. A few
technical points are given in the supplemental material,
and full analytic results are provided in the ancillary files.

ANSATZ OF THE FORM FACTOR

For constructing the two-loop ansatz, it is instructive to
first review the tree and one-loop results [48]. The tree-
level result takes the simple form as

F
(0)

4
= F

(0)

tr(�3
12)

(1�, 2�, 3�, 4+) =
h31i

h34ih41i
. (3)

For the one-loop form factor, we make an important ob-
servation that it can be reorganized in the following form

F
(1)

4
= F

(0)

4
I
(1)

4
= F

(0)

4

⇣
B1 G

(1)

1
+B2 G

(1)

2

⌘
, (4)

where Ba are cross ratios of spinor products

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and G
(1)

a can be given in terms of bubble and box master
integrals (see the supplemental material). Besides man-
ifesting the symmetry of (p1 $ p3), the form of (4) has
following important properties: (a) B1 ! 0, B2 ! 1
when p3 k p4; (b) G1 and G2 satisfy

G
(1)

1

���
IR

= G
(1)

2

���
IR

=
4X

i=1

✓
�

1

✏2
+

log(�si,i+1)

✏

◆
, (6)

which will be used for the two-loop constraints later.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop planar form factor

F
(2)

4
= F

(0)

4
I
(2)

4
= F

(0)

4

⇣
B1 G

(2)

1
+B2 G

(2)

2

⌘
, (7)

which is also suggested by the BDS ansatz we will dis-

cuss below. The loop function G
(2)

a can be expanded in
terms of a set of two-loop master integrals. Topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contains 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. Since the BPS form factor
in N = 4 SYM has uniform transcendentality degree 4,
it is convenient to choose the master integrals to be uni-
formly transcendental (UT) integrals. Such a basis has
been constructed in [7] based on the canonical di↵eren-
tial equations method [49], which we will follow in this
paper. An analysis of the topology shows that the most

i
j

k

l

FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

general ansatz contains 221 master integrals for each G
(2)

a ,
namely,

G
(2)

a =
221X

i=1

ca,iI
(2),UT

i , (8)

where ca,i are the coe�cients to be solved. The (p1 $ p3)
symmetry of the form factor requires that:

G
(2)

2
= G

(2)

1
|(p1$p3)

, (9)

thus c1,i and c2,i are not independent. Since both the
form factor and integral basis have degree 4, the coe�-
cients ca,i are expected to be pure rational numbers in-
dependent of dimensional regularization parameter ✏.

To summarize, our ansatz contains 221 free parameters
which are to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and further
implementations to the two-loop form factor will be given
in next section.

Two important constraints are the universal IR diver-
gences [50, 51] and collinear factorization [52–54], which
depend only on lower loop results and some universal
building blocks. For the planar amplitudes or form fac-
tors in N = 4 SYM, a convenient representation to cap-
ture both the IR and collinear behavior is the BDS ex-
pansion [55]

I
(2) =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏)+R

(2)+O(✏) , (10)

where f (2)(✏) = �2⇣2 � 2⇣3✏ � 2⇣4✏2. Both the IR and
collinear singularities are contained in the first two terms
which are determined by one-loop corrections, and the
n-point finite remainder function R

(2) has nice regular

behavior R(2)

n ! R
(2)

n�1
in the collinear limit pi k pi+1.

For the form factor we consider, one complication is
that I(`) contains two kinematic factors B1 and B2, and
the (I(1))2 will introduce quadratic terms of Ba with dou-
ble pole of h13ih24i. It turns out that, one can introduce
a BDS ansatz function that is linear in Ba as

I
(2)

4,BDS
=

2X

a=1

Ba


1

2

�
G
(1)

a (✏)
�2

+ f (2)(✏)G(1)

a (2✏)

�
. (11)
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked

Spurious pole gives no new constraint.
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as
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i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.
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(0),MHV

4
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5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table V, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table V, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table V, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as
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i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table V, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
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i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked



Constraints

Can be fixed via simple two-double cuts:

IR divergences

Collinear factorization

Spurious pole

Unitarity cut

Remaining 10 parameters are 
related to following master integrals:
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table V, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked



Unitarity cuts

Consider one-loop amplitudes:

What we really want



Unitarity cuts

We can perform unitarity cuts:

and from tree products, we derive the coefficients more directly.

Cutkosky cutting rule:



Constraints

Can be fixed via simple two-double cuts:

IR divergences

Collinear factorization

Spurious pole

Unitarity cut

Remaining 10 parameters are 
related to following master integrals: 4
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11
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�
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l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS in (11). By matching (19) with Sym(I
(2)

4,BDS) at
1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
I
UT

BPb(i, j, k, l), I
UT

TP (i, j, k, l), and I
UT

dBox2c(i, j, k, l), whose
topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1p

⌫
2p

⇢
3p

�
4 , (20)

and µij = `
�2✏
i · `

�2✏
j is related to the components of

the loop momenta beyond four dimensions. These terms
can be organized as

P10

i=1 xiG̃i, where xi depend on free
parameters and

G̃1 =I
UT

TP (1, 2, 3, 4) + I
UT

TP (3, 2, 1, 4) , (21)

G̃2 =I
UT

BPb(1, 2, 3, 4)� I
UT

BPb(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c(1, 2, 3, 4) +B2I
UT

dBox2c(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals I

UT

dBox2c are of O(✏)
order, so they are irrelevant if one is only interested in
getting the ✏

0
order of the form factor. All these master

coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏
0
order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3 A
(0),MHV

4 A
(0),MHV

5 . With this
cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral I

UT

TP . It is a
linear combination of two masters used in [7, 8] as

j
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i
`1 tr5µ11 = i

j k

l
`1

tr5µ11
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tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
I
UT

TP has a few nice properties: (1) It starts from O(✏
0
)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into I

UT

TP , suggesting the latter
to be a more physical choice. Thus we use I

UT

TP to replace
the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)

2
and

one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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FIG. 3: Fig. (a)-(c) are master integrals related to
remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
10

i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT

BPb
(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as

j

k

l

i
`1 tr5µ11 = i

j k

l
`1

tr5µ11

2✏
�

j

k

l

i

`1

tr5µ11

✏
(22)

in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table V, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked
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remaining 10 free parameters. All of them can be

determined by the unitarity cuts in Fig. (d).

First, the divergent parts must reproduce that of

I
(2)

4,BDS
in (11). By matching (19) with Sym(I(2)

4,BDS
) at

1/✏m orders with m = 4, 3, 2, 1, one can solve for 139 of
ca,i. Next, after subtracting the BDS part, the finite re-
mainder in collinear limits should match with the 3-point
result as (12), which fixes 44 parameters. Furthermore,
the absence of spurious pole h24i implies the constraint

(14) on G
(2)

a . Applying this constraint at symbol level up
to finite order, the remaining degree of freedom is 22.

The symbol does not concern the terms that contain
transcendental numbers such as ⇡, ⇣n. It is therefore
worth considering the full function of the master inte-
grals [8]. Practically, to fix the coe�cients, it is conve-
nient to do numerical computation with high enough pre-
cision (see next section for more discussion on numerics).
Consider further the IR and then collinear constrains at
function level, the degrees of freedom are reduced to 17
and then 10. The spurious pole condition (14) is auto-
matically satisfied up to finite order and does not provide
any new constraint.

We find that all terms depending on remaining 10 pa-
rameters are related to three kinds of master integrals:
IUT

BPb
(i, j, k, l), IUT

TP
(i, j, k, l), and IUT

dBox2c
(i, j, k, l), whose

topologies are given in Fig. 3. Interestingly, their numer-
ators are all proportional to tr5 ⇥ µij , where

tr5 = 4i✏µ⌫⇢�p
µ
1
p⌫
2
p⇢
3
p�
4
, (20)

and µij = `�2✏
i · `�2✏

j is related to the components of
the loop momenta beyond four dimensions. These terms
can be organized as

P
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i=1
xiG̃i, where xi depend on free

parameters and

G̃1 =IUT

TP
(1, 2, 3, 4) + IUT

TP
(3, 2, 1, 4) , (21)

G̃2 =IUT

BPb
(1, 2, 3, 4)� IUT
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(4, 3, 2, 1) + (p1 $ p3) ,

G̃3 =B1I
UT

dBox2c
(1, 2, 3, 4) +B2I

UT

dBox2c
(3, 2, 1, 4) ,

together with other G̃i given by cyclic permutations. All
G̃i functions are free of IR divergences and vanish in the
collinear limit, and they are also free of spurious pole up
to finite order; thus they are not constrained in the above
procedure. Additionally, the integrals IUT

dBox2c
are of O(✏)

order, so they are irrelevant if one is only interested in
getting the ✏0 order of the form factor. All these master
coe�cients can be fixed by the single type of two-double
cuts shown by Fig. 3(d), given by the product of three

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 22

IR (Function) 17

Collinear limit (Funcion) 10

If keeping only to ✏0 order 6

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

tree building blocks: F
(0)

3
A

(0),MHV

4
A

(0),MHV

5
. With this

cut constraint, we fix all remaining degrees of freedom.
Let us comment on the master integral IUT

TP
. It is a

linear combination of two masters used in [7, 8] as
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`1 tr5µ11 = i
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in which the UT numerators are indicated. The integral
IUT

TP
has a few nice properties: (1) It starts from O(✏0)

order and has no double propagator; (2) The final form
factor solution shows that the two masters on the RHS
of (22) precisely combine into IUT

TP
, suggesting the latter

to be a more physical choice. Thus we use IUT

TP
to replace

the first integral on the RHS of (22) in the 221 master
basis.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers, and the full solution is provided
in the ancillary file.
As cross checks, we have also applied a spanning set

of D-dimensional unitarity cuts and find full consistency
with the bootstrap result.

FULL FORM FACTOR AND REMAINDER

The full analytic form factor can be obtained in terms of
Goncharov polylogarithm functions (GPL) using the an-
alytic expressions of masters [8]. We recall that the result
is determined by seven independent Lorentz invariants:
six parity-even Mandelstam variables sij = (pi+pj)2 and
one parity-odd variable tr5 (only the sign of tr5 matters).
In GPLs given in [8], a special set of function letters are
used based on the SDE approach [65], where a transfor-
mation is used to simplify the di↵erential equations. A
brief discussion of the kinematics in GPLs are given in
the supplemental material.
In Table II, we give a numerical data point evaluated

via GiNaC [66] through the Mathematica interface pro-
vided by PolyLogTools [67]. The result is cross-checked



Numerics
Substituting in the master integral results, we have the 
full analytic form in GPLs, and they can be evaluated 
with GiNaC to ‘arbitrary’ high precision: 5

F (2)/F (0)

✏�4 8

✏�3 �10.888626564448543787 + 25.132741228718345908i

✏�2 �31.872672672370517258� 16.558017711981028644i

✏�1 �24.702889082481070673� 2.9923229294749490751i

✏0 �86.211269185142415564� 128.27562636360640808i

R(2)
4 8.3794306422137831973� 14.941297169128279600i

TABLE II: Numerical result of the two-loop form factor
up to finite order with the kinematics: {s12 = 241/25,

s23 = �377/100, s34 = 13/50, s14 = �161/100,
s13 = s24 = �89/100, tr5 = i

p
1635802/2500}.

by computations via FIESTA [68] and pySecDec [69].
Other numerical data points which check the collinear
limit and spurious pole cancellation are also given in the
supplemental material.

Below we discuss the two-loop finite remainder and
focus on the property of its symbol. The two-loop re-
mainder has degree 4 and its symbol can be expressed in
terms of tensor:

Sym(R(2)

4-pt
) =

X

i

ciwi1 ⌦ wi2 ⌦ wi3 ⌦ wi4 , (23)

where wi are symbol letters. We find that as expected
for the BPS form factors in N = 4 SYM [26], the remain-
der are function of dimensionless ratios of Lorentz vari-
ables. One can introduce uij = sij/q2, uijk = sijk/q2,
thus the letter q2 will never appear in the remain-
der. Besides, three more letters:

p
�3,1234,

p
�3,1423

and tr5 which appear in master integrals, also can-
cel in the finite remainder, similar to the observation
in [25]. Here �3,ijkl = �Gram(pi + pj , pk + pl) and
tr2

5
= Gram(p1, p2, p3, p4) are all related to Gram de-

terminants.
To give some details about letters in each entry: (1)

the first-entry contains 8 letters, corresponding to phys-
ical poles ui,i+1 and ui,i+1,i+2; (2) the second entry is
free from {X1, Y1, Y2, Z, u13, u24}, and there are 28 let-
ters; (3) third entry contains all 42 letters except u123; (4)
the last-entry is free from {X1, X2, Z, uijk, 1�uijk, u12�

u123, u23 � u123}, and there are 22 letters. Explicit def-
initions of Xi, Yi, Z can be found in the supplemental
material.

The expressions of remainder symbol and the form fac-
tor function (in GPLs) are provided in the ancillary files.

DISCUSSION

We present an analytic computation of the two-loop four-
point form factor with tr(�3

12
) operator in planar N = 4

SYM, which provides a first 2-loop example of 2 ! 3
scattering with one color-singlet o↵-shell leg. We also

develop a new bootstrap strategy based on an ansatz of
IBP master-integral expansion.
Unlike the traditional Feynman diagrams computa-

tion, the bootstrap strategy allows constructing the re-
sult by using physical constraints directly. For the form
factor we consider, after applying IR, collinear and spu-
rious pole constraints, one only needs a simple type of
unitarity cut to fix the full result. Our strategy is di↵er-
ent from the usual symbol bootstrap as the latter starts
from pure symbols, while here we take the advantage of
known master integrals. This indeed contains more input
comparing to the symbol bootstrap, but it also has the
advantage of using constraints from IR and unitarity cuts
that are not available in the latter. Besides, the result
may be used to extract the information of O(✏) orders.
Since our ansatz uses theory-independent basis inte-

grals, the strategy in principle can be used for loop am-
plitudes and form factors in general theories. It would
be thus very interesting to consider more general observ-
ables based on this method. One application is that it
can be used to explain the observed universal maximally
transcendental parts for form factors [26, 46, 47, 56, 70–
79]. For example, applying our strategy for the two-loop
minimal form factors, it turns out that IR constraint
alone is enough to fix the maximally transcendental part;
since the maximally transcendental part of IR divergence
is universal (i.e. theroy-independent), this explains the
equality between the results of N  4 SYM and QCD.
Similar argument together with further constraints can
be applied to the 2-loop 3-point form factor with stress
tensor multiplet. More details will be given in [80].
An important direction would be exploring other phys-

ical constraints such as OPE limits [81–83] and Regge
limits [84–86]. Based on the recent progress of form fac-
tor OPE [87, 88], symbol bootstrap has been used to
construct a 3-point form factor up to five loops in planar
N = 4 SYM [43]. It would be very interesting to extend
these studies for more general form factors. Given more
analytic results, it would be also interesting to explore
possible hidden symmetries for form factors, for exam-
ple, the Q̄-like equation [89, 90], as well as the structure
in the context of cluster algebras [91].
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✏�3 �10.888626564448543787 + 25.132741228718345908i

✏�2 �31.872672672370517258� 16.558017711981028644i

✏�1 �24.702889082481070673� 2.9923229294749490751i

✏0 �86.211269185142415564� 128.27562636360640808i

R(2)
4 8.3794306422137831973� 14.941297169128279600i

TABLE V: Numerical result of the two-loop form factor up to finite order with the
Kinematics:

{s12 = 241/25, s23 = �377/100, s34 = 13/50, s14 = �161/100, s13 = s24 = �89/100, tr5 = i
p
1635802/2500}.



Numerics: collinear limit
Collinear limit:

11

each master integrals, then {S12, S23, S34, S45, S51} are
transformed into kinematics si,i+1 and sijk in our result.
Finally, the GPLs can be evaluated by GiNaC e�ciently
to high precision.

Below we comment on the subtle point about ambigu-
ities for two types of integral expressions given in [8]:

a. Integrals with numerator proportional to
p
�3:

IUT

TBub3b
and IUT

TT4
(see the ancillary file). For a set

of kinematics {s̃ij} one will find 2 sets of solutions
{x±, S±

12
, S±

23
, S±

34
, S±

45
, S±

51
} by solving (66), we give

x± here:

x± =
s̃23 + s̃45 � q21 ±

p
(s̃23 + s̃45 � q21)

2 � 4s̃23s̃45
2s̃23

. (68)

The integrals will have negative sign if one chooses
the solution with x� to evaluate. The ambiguity
comes from

p
�3 = ±(S±

12
� S±

45
)x±.

b. Integrals with numerators proportional to tr5:
IUT

BPb
, IUT

TP
and IUT

dBox2c
(see the ancillary file). In

the GPLs of master integrals we use, the letters
l13 and l15 contain square root term

p
�1, where

l13, l15 and �1 are defined in Appendix A of [8],
and one can find �5 = tr2

5
= x4�1. In the refer-

ence, the simplification
p
�5 ! x2

p
�1 has been

done for the letters, which may bring a error in the
sign of those integrals when x is a complex num-
ber. However, the ambiguity can be corrected by
mapping

p
�1 back to

p
�5/x2. The infinitesimal

analytic continuation of
p
�5 is

p
�5 + ia⌘x =

(
+
p
�5, �5 > 0

+Sgn(a)
p
��5, �5 < 0

, (69)

and the additional sign factor Sgn(
p
�5 + ia⌘x/tr5)

is needed to add for each odd master integrals.

Another potential ambiguity is that, we note the
convention of µanc

ij in the ancillary file of [7, 8] is

di↵erent from µij = `�2✏
i · `�2✏

j as µij = �16µanc

ij ,
the correct expressions of µij is given in ancillary
file.

G. Numerical check for the collinear limit and
spurious pole cancellation

Here we provide two numerical data points, one is related
to the collinear limit and the other is relation to the check
of spurious pole cancellation.

First, we consider the collinear limit p3 k p4. In this
limit the kinematics behave as

{h34i, [34] , tr5} ⇠ � , (70)

where � ⌧ 1. Such a numerical data point and the cor-
responding form factor result are given in Table III. A

F (2)/F (0)

✏�4 8

✏�3 372.73227772976457740 + 50.265482457436691815i

✏�2 22299.426450303417729 + 2341.9459709432377859i

✏�1 989445.74441873599952 + 140772.89586692467156i

✏0 36885962.819916639458 + 6247689.7372657501908i

R(2)
4-pt �13.79946362217945 + 9.616825584877344⇥ 10�18i

TABLE III: A numerical data point for the collinear
limit of the 2-loop 4-point form factor up to finite order,

with the kinematics: {s12 = 24/5, s23 = 1037/1000,
s34 = 3111/(16⇥ 1043), s14 = 351/1000, s13 = 549/1000,
s24 = 663/1000, tr5 = i9333

p
156⇥ 1038 � 1/1044}.

(G(2)
1 � G(2)

2 )⇥ 1020

✏�4 0

✏�3 0

✏�2 �2.9064576941010630804� 2.2213281389018740070i

✏�1 7.9763731359850548468� 9.5696847742519494379i

✏0 24.831917323215069069 + 36.102098241406925338i

TABLE IV: A numerical check for the spurious pole
cancellation up to finite order, with the kinematics:
{s12 = �11/5, s23 = �57/20, s34 = 18/5, s14 = 5/4,

s13 = 3, s24 = 10�20, tr5 > 0}.

consistency requirement is that the four-point finite re-

mainder R
(2)

4-pt
should reduce to the 2-loop 3-point re-

mainder [56] R(2)

3-pt
(ŝ12, ŝ23, ŝ13) with

ŝ12 = s12 = 24/5 ,

ŝ23 = s23 + s24 = 17/10 ,

ŝ13 = s13 + s14 = 9/10 . (71)

Indeed, we find that the di↵erence is

R
(2)

3-pt
�R

(2)

4-pt
= (1.9834⇥ 10�37 + 9.6168⇥ 10�18i) ⇠ � .

Next, we consider the spurious pole cancellation, which

requires that (B1�B2)(G
(2)

1
�G

(2)

2
) should be finite when

h24i ! 0. To get the kinematics corresponding to the
limit h24i ! 0, one can take s24 = �̂ with �̂ ⌧ 1, and
also choose tr5 = s14s23� s12s34+O(�̂) (only the sign of
tr5 matters), such that

B1 �B2 =
s12s34 � s14s23 � tr5

s13s24
⇠

1

�̂
. (72)

Such a numerical data point and the corresponding result
are given in Table IV, where one finds the spurious pole
indeed cancels.
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s13s24
⇠

1

�̂
. (72)

Such a numerical data point and the corresponding result are given in Table IV, where one finds the spurious pole
indeed cancels.
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FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)

R
(2)

4-pt
:=

�
I
(2)

4
� I

(2)

4,BDS

���
O(✏0)

p4 k p3
��������!

or p4 k p1
R

(2)

3-pt
, (12)

whereR(2)

3-pt
is the two-loop remainder of three-point form

factor Ftr(�3
12)

(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)

4

I
(2)

4
=

1

2

⇣
G
(2)

1
+ G

(2)

2

⌘
+

B1 �B2

2

⇣
G
(2)

1
� G

(2)

2

⌘
. (13)

When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint

on G
(2)

a as

G
(2)

1
� G

(2)

2

h24i ! � ⌧ 1
�����������! O(�) . (14)

While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.

13

where s̃ij = (qi + qj)2.
To evaluate the master integrals out of Euclidean regions, proper analytic continuation is needed. The rule

is to give each positive kinematics a small positive imaginary part i⌘x, then it will lead to two solutions of
{x, S12, S23, S34, S45, S51}, and which one should be chosen is determined by the following condition

(�s̃15)
�✏ = (�S45)

�✏

✓
1�

S45 � S23

S45x

◆�✏

, (67)

(�q2
1
)�✏ = (1� x)�✏(�S45)

�✏

✓
1�

S12

S45

x

◆�✏

,

(�s̃12)
�✏ = x�✏(S12 � S34)

�✏

✓
1�

S12

S12 � S34

x

◆�✏

,

(�s̃34)
�✏ = (�S51)

�✏x�✏ , (�s̃45)
�✏ = (�S12)

�✏x�2✏ .

The form factor in the main text is obtained by replacing {q1, q2, q3, q4, q5} with momentum {q, pi, pj , pk, pl} for each
master integrals, then {S12, S23, S34, S45, S51} are transformed into kinematics si,i+1 and sijk in our result. Finally,
the GPLs can be evaluated by GiNaC e�ciently to high precision.

Below we comment on the subtle point about ambiguities for two types of integral expressions given in [8]:

a. Integrals with numerator proportional to
p
�3: IUT

TBub3b
and IUT

TT4
(see the ancillary file). For a set of kinematics

{s̃ij} one will find 2 sets of solutions {x±, S±

12
, S±

23
, S±

34
, S±

45
, S±

51
} by solving (66), we give x± here:

x± =
s̃23 + s̃45 � q21 ±

p
(s̃23 + s̃45 � q21)

2 � 4s̃23s̃45
2s̃23

. (68)

The integrals will have negative sign if one chooses the solution with x� to evaluate. The ambiguity comes
from

p
�3 = ±(S±

12
� S±

45
)x±.

b. Integrals with numerators proportional to tr5: IUT

BPb
, IUT

TP
and IUT

dBox2c
(see the ancillary file). In the GPLs of

master integrals we use, the letters l13 and l15 contain square root term
p
�1, where l13, l15 and �1 are defined

in Appendix A of [8], and one can find �5 = tr2
5
= x4�1. In the reference, the simplification

p
�5 ! x2

p
�1

has been done for the letters, which may bring a error in the sign of those integrals when x is a complex
number. However, the ambiguity can be corrected by mapping

p
�1 back to

p
�5/x2. The infinitesimal

analytic continuation of
p
�5 is

p
�5 + ia⌘x =

(
+
p
�5, �5 > 0

+Sgn(a)
p
��5, �5 < 0

, (69)

and the additional sign factor Sgn(
p
�5 + ia⌘x/tr5) is needed to add for each odd master integrals.

Another potential ambiguity is that, we note the convention of µanc

ij in the ancillary file of [7, 8] is di↵erent from

µij = `�2✏
i · `�2✏

j as µij = �16µanc

ij , the correct expressions of µij is given in ancillary file.

G. Numerical check for the collinear limit and spurious pole cancellation

Kinematics:
{s12 = 24/5, s23 = 1037/1000, s34 = 3111/(16⇥ 1043), s14 = 351/1000,
s13 = 549/1000, s24 = 663/1000, tr5 = i9333

p
156⇥ 1038 � 1/1044}.

Here we provide two numerical data points, one is related to the collinear limit and the other is relation to the check
of spurious pole cancellation.

First, we consider the collinear limit p3 k p4. In this limit the kinematics behave as

{h34i, [34] , tr5} ⇠ � , (70)

where � ⌧ 1. Such a numerical data point and the corresponding form factor result are given in Table III. A

consistency requirement is that the four-point finite remainder R
(2)

4-pt
should reduce to the 2-loop 3-point remainder

14

F (2)/F (0)

✏�4 8

✏�3 372.73227772976457740 + 50.265482457436691815i

✏�2 22299.426450303417729 + 2341.9459709432377859i

✏�1 989445.74441873599952 + 140772.89586692467156i

✏0 36885962.819916639458 + 6247689.7372657501908i

R(2)
4-pt �13.79946362217945 + 9.616825584877344⇥ 10�18i

TABLE III: A numerical data point for the collinear limit of the 2-loop 4-point form factor up to finite order,
Kinematics: {s12 = 24/5, s23 = 1037/1000, s34 = 3111/(16⇥ 1043), s14 = 351/1000,

s13 = 549/1000, s24 = 663/1000, tr5 = i9333
p
156⇥ 1038 � 1/1044}.

(G(2)
1 � G(2)

2 )⇥ 1020

✏�4 0

✏�3 0

✏�2 �2.9064576941010630804� 2.2213281389018740070i

✏�1 7.9763731359850548468� 9.5696847742519494379i

✏0 24.831917323215069069 + 36.102098241406925338i

TABLE IV: A numerical check for the spurious pole cancellation up to finite order,
Kinematics: {s12 = �11/5, s23 = �57/20, s34 = 18/5, s14 = 5/4, s13 = 3, s24 = 10�20, tr5 > 0}.

[56] R(2)

3-pt
(ŝ12, ŝ23, ŝ13) = R

(2)

3-pt
( 24

5
, 17

10
, 9

10
) with

ŝ12 = s12 = 24/5 ,

ŝ23 = s23 + s24 = 17/10 ,

ŝ13 = s13 + s14 = 9/10 . (71)

Indeed, we find that the di↵erence is

R
(2)

3-pt
�R

(2)

4-pt
= (1.9834⇥ 10�37 + 9.6168⇥ 10�18i) ⇠ � .

Next, we consider the spurious pole cancellation, which requires that (B1 �B2)(G
(2)

1
� G

(2)

2
) should be finite when

h24i ! 0. To get the kinematics corresponding to the limit h24i ! 0, one can take s24 = �̂ with �̂ ⌧ 1, and also
choose tr5 = s14s23 � s12s34 +O(�̂) (only the sign of tr5 matters), such that

B1 �B2 =
s12s34 � s14s23 � tr5

s13s24
⇠

1

�̂
. (72)

Such a numerical data point and the corresponding result are given in Table IV, where one finds the spurious pole
indeed cancels.



Numerics: spurious pole
Spurious pole cancellation:
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F (2)/F (0)

✏�4 8

✏�3 372.73227772976457740 + 50.265482457436691815i

✏�2 22299.426450303417729 + 2341.9459709432377859i

✏�1 989445.74441873599952 + 140772.89586692467156i

✏0 36885962.819916639458 + 6247689.7372657501908i

R(2)
4-pt �13.79946362217945 + 9.616825584877344⇥ 10�18i

TABLE III: A numerical data point for the collinear limit of the 2-loop 4-point form factor up to finite order,
Kinematics: {s12 = 24/5, s23 = 1037/1000, s34 = 3111/(16⇥ 1043), s14 = 351/1000,

s13 = 549/1000, s24 = 663/1000, tr5 = i9333
p
156⇥ 1038 � 1/1044}.

(G(2)
1 � G(2)

2 )/s24

✏�4 0

✏�3 0

✏�2 �2.9064576941010630804� 2.2213281389018740070i

✏�1 7.9763731359850548468� 9.5696847742519494379i

✏0 24.831917323215069069 + 36.102098241406925338i

TABLE IV: A numerical check for the spurious pole cancellation up to finite order,
Kinematics: {s12 = �11/5, s23 = �57/20, s34 = 18/5, s14 = 5/4, s13 = 3, s24 = 10�20, tr5 > 0}.

[56] R(2)

3-pt
(ŝ12, ŝ23, ŝ13) = R

(2)

3-pt
( 24

5
, 17

10
, 9

10
) with

ŝ12 = s12 = 24/5 ,

ŝ23 = s23 + s24 = 17/10 ,

ŝ13 = s13 + s14 = 9/10 . (71)

Indeed, we find that the di↵erence is

R
(2)

3-pt
�R

(2)

4-pt
= (1.9834⇥ 10�37 + 9.6168⇥ 10�18i) ⇠ � .

Next, we consider the spurious pole cancellation, which requires that (B1 �B2)(G
(2)

1
� G

(2)

2
) should be finite when

h24i ! 0. To get the kinematics corresponding to the limit h24i ! 0, one can take s24 = �̂ with �̂ ⌧ 1, and also
choose tr5 = s14s23 � s12s34 +O(�̂) (only the sign of tr5 matters), such that

B1 �B2 =
s12s34 � s14s23 � tr5

s13s24
⇠

1

�̂
. (72)

Such a numerical data point and the corresponding result are given in Table IV, where one finds the spurious pole
indeed cancels.
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FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)

R
(2)

4-pt
:=

�
I
(2)

4
� I

(2)

4,BDS

���
O(✏0)

p4 k p3
��������!

or p4 k p1
R

(2)

3-pt
, (12)

whereR(2)

3-pt
is the two-loop remainder of three-point form

factor Ftr(�3
12)

(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)

4

I
(2)

4
=

1

2

⇣
G
(2)

1
+ G

(2)

2

⌘
+

B1 �B2

2

⇣
G
(2)

1
� G

(2)

2

⌘
. (13)

When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint

on G
(2)

a as

G
(2)

1
� G

(2)

2

h24i ! � ⌧ 1
�����������! O(�) . (14)

While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.

14

F (2)/F (0)

✏�4 8

✏�3 372.73227772976457740 + 50.265482457436691815i

✏�2 22299.426450303417729 + 2341.9459709432377859i

✏�1 989445.74441873599952 + 140772.89586692467156i

✏0 36885962.819916639458 + 6247689.7372657501908i

R(2)
4-pt �13.79946362217945 + 9.616825584877344⇥ 10�18i

TABLE III: A numerical data point for the collinear limit of the 2-loop 4-point form factor up to finite order,
Kinematics: {s12 = 24/5, s23 = 1037/1000, s34 = 3111/(16⇥ 1043), s14 = 351/1000,

s13 = 549/1000, s24 = 663/1000, tr5 = i9333
p
156⇥ 1038 � 1/1044}.

(G(2)
1 � G(2)

2 )/s24

✏�4 0

✏�3 0

✏�2 �2.9064576941010630804� 2.2213281389018740070i

✏�1 7.9763731359850548468� 9.5696847742519494379i

✏0 24.831917323215069069 + 36.102098241406925338i

TABLE IV: A numerical check for the spurious pole cancellation up to finite order,
Kinematics: {s12 = �11/5, s23 = �57/20, s34 = 18/5, s14 = 5/4, s13 = 3, s24 = 10�20, tr5 > 0}.

[56] R(2)

3-pt
(ŝ12, ŝ23, ŝ13) = R

(2)

3-pt
( 24

5
, 17

10
, 9

10
) with

ŝ12 = s12 = 24/5 ,

ŝ23 = s23 + s24 = 17/10 ,

ŝ13 = s13 + s14 = 9/10 . (71)

Indeed, we find that the di↵erence is

R
(2)

3-pt
�R

(2)

4-pt
= (1.9834⇥ 10�37 + 9.6168⇥ 10�18i) ⇠ � .

Next, we consider the spurious pole cancellation, which requires that (B1 �B2)(G
(2)

1
� G

(2)

2
) should be finite when

h24i ! 0. To get the kinematics corresponding to the limit h24i ! 0, one can take s24 = �̂ with �̂ ⌧ 1, and also
choose tr5 = s14s23 � s12s34 +O(�̂) (only the sign of tr5 matters), such that

B1 �B2 =
s12s34 � s14s23 � tr5

s13s24
⇠

1

�̂
. (72)

Such a numerical data point and the corresponding result are given in Table IV, where one finds the spurious pole
indeed cancels.
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✏�4 8

✏�3 372.73227772976457740 + 50.265482457436691815i

✏�2 22299.426450303417729 + 2341.9459709432377859i

✏�1 989445.74441873599952 + 140772.89586692467156i

✏0 36885962.819916639458 + 6247689.7372657501908i

R(2)
4-pt �13.79946362217945 + 9.616825584877344⇥ 10�18i

TABLE III: A numerical data point for the collinear limit of the 2-loop 4-point form factor up to finite order,
Kinematics: {s12 = 24/5, s23 = 1037/1000, s34 = 3111/(16⇥ 1043), s14 = 351/1000,

s13 = 549/1000, s24 = 663/1000, tr5 = i9333
p
156⇥ 1038 � 1/1044}.

(G(2)
1 � G(2)

2 )/s24

✏�4 0

✏�3 0

✏�2 �2.9064576941010630804� 2.2213281389018740070i

✏�1 7.9763731359850548468� 9.5696847742519494379i

✏0 24.831917323215069069 + 36.102098241406925338i

TABLE IV: A numerical check for the spurious pole cancellation up to finite order,
Kinematics: {s12 = �11/5, s23 = �57/20, s34 = 18/5, s14 = 5/4, s13 = 3, s24 = 10�20, tr5 > 0}.

[56] R(2)

3-pt
(ŝ12, ŝ23, ŝ13) = R

(2)

3-pt
( 24

5
, 17

10
, 9

10
) with

ŝ12 = s12 = 24/5 ,

ŝ23 = s23 + s24 = 17/10 ,

ŝ13 = s13 + s14 = 9/10 . (71)

Indeed, we find that the di↵erence is

R
(2)

3-pt
�R

(2)

4-pt
= (1.9834⇥ 10�37 + 9.6168⇥ 10�18i) ⇠ � .

Next, we consider the spurious pole cancellation, which requires that (B1 �B2)(G
(2)

1
� G

(2)

2
) should be finite when

h24i ! 0. To get the kinematics corresponding to the limit h24i ! 0, one can take s24 = �̂ with �̂ ⌧ 1, and also
choose tr5 = s14s23 � s12s34 +O(�̂) (only the sign of tr5 matters), such that

B1 �B2 =
s12s34 � s14s23 � tr5

s13s24
⇠

1

�̂
. (72)

Such a numerical data point and the corresponding result are given in Table IV, where one finds the spurious pole
indeed cancels.



Technical details: symbol letters

Building blocks:

Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020

8

We can separate the letters that appear in the remain-
der into two parts. The first part are simple u variables
or the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to B2 ⇠ W21 in [16].

To introduce the second part, we define variables:

x±
ijkl =

1 + sij � skl ±
p

�3,ijkl

2sij
, (42)

y±ijkl =
tr±(ijkl)

2sijsil
, (43)

z±±
ijkl = 1 + y±ijkl � x±

lijk , (44)

where �3 appears in 3-massive triangle integral

�3,ijkl = Gram(pi + pj , pk + pl) , (45)

and

tr±(ijkl) = sijskl � siksjl + silsjk ± tr5 , (46)

in which the odd kinematics

tr5 = 4i✏µ⌫⇢�p
µ
1p

⌫
2p

⇢
3p

�
4 (47)

is relate to Gram determinant

�5 = Gram(p1, p2, p3, p4) = tr25 . (48)

Given these definition, we introduce following letters that
will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (49)

X1(pi + pj , pk, pl) =
uijx

+
ijkl � uijl

uijx
�
ijkl � uijl

, (50)

X2(pi + pj , pk + pl) =
x+
ijkl

x�
ijkl

, (51)

Y1(pi, pj , pk, pl) =
tr+(ijkl)

tr�(ijkl)
=

y+ijkl
y�ijkl

, (52)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (53)

Z(pi, pj , pk, pl) =
z++
ijklz

��
ijkl

z+�
ijklz

�+
ijkl

. (54)

They satisfy relations:

X1(pi + pj , pk, pl) = 1/X1(pi + pj , pl, pk) , (55)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(56)

To make connection to the notation of [16]:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (57)

To summarize: there are in total 42 letters given in
(41) and (56) that appear in the remainder function. For
the 221 master integrals, there are four extra letters to
consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (58)

giving in total 46 letters.

D. Momentum twistor and letters

To consider the collinear limit of 4-point form factor,
we consider the momentum twistor variables [37, 38], us-
ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum

twistor space is shown in Fig. 2.
The letters can be represented by momentum twistor
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giving in total 46 letters.
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ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum
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The letters can be represented by momentum twistor

Complicated letters:

4

2

3

1

4

(a) dBub

1 2

3

4

(b) dBub

2

3

4

1

`1

(c) BPb

2

3

4

1 `1

(d) TP

1

2 3

4

`1 `2

(e) dBox2c

FIG. 3: Masters to be determined by unitarity cuts,
plus their permutations given in (21).

The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

[ remaining parameters are not fixed by IR, collinear,
their combination are finite and have good collinear be-
havior ]

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters
IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].
[µ-term and D-dim cut]

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.
The two-loop remainder has degree 4 and its symbol

can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciWi1 ⌦Wi2 ⌦Wi3 ⌦Wi4 , (22)
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for all a = 1, . . . , k � 1. Another useful property is that the symbol of the product of functions can be constructed
from the shu✏e product of symbols of functions:

S(TA TB) = S(TA) S(TB) . (33)

More precisely, given S(TA) = ⌦
m
↵=1

w↵ and S(TB) = ⌦
n
�=1

w� , one has

S(TA TB) =
X

⇡(i)2{↵} {�}

⌦
m+n
i=1

w⇡(i) , (34)

where {↵} {�} is the shu✏e product of {↵} and {�}, i.e. the ordered product that preserves the ordering of {↵}
and {�} within the merged list.
Finally, let use give some simple examples, we have

S(pure numbers) = S(rational functions) = 0 , (35)

S(log(x)) = x , (36)

S(log(xy)) = x⌦ y + y ⌦ x , (37)

S(Lik(x)) = �(1� x)⌦ x⌦ · · ·⌦ x| {z }
k�1 times

. (38)

The last relation can be obtained using the definition of classical polylogarithms

Lik(x) =

Z x

0

Lik�1(t)d log t , Li1(z) = � log(1� z) .

C. Symbol letters

We discuss the letters that appear in the symbol of the UT master integrals [7]. The remainder functions of half-BPS
form factors in N = 4 preserve scale invariance and are function of dimensionless ratios of Mandelstam variables [26].
We introduce ratio variables

uij =
sij
s1234

, uijk =
sijk
s1234

. (39)

There are only five independent ratio variables, which can be chosen as five of uij :

{u12, u23, u34, u14, u13, u24} , (40)

u12 + u23 + u34 + u14 + u13 + u24 = 1 .

We can separate the letters that appear in the remainder into two parts. The first part are simple u variables or
the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to W2, . . . ,W21 in [7].
To introduce the second part, we define variables:

x±

ijkl =
1 + uij � ukl ±

p
�3,ijkl/s1234

2uij
,

y±ijkl =
uijukl � uikujl + uilujk ± P (ijkl)tr5/(s1234)2

2uijuil
,

z±±

ijkl = 1 + y±ijkl � x±

lijk , (42)
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where P (ijkl) is the signature of the permutation with canonical order (1234), �3 also appears in 3-massive triangle
integral

�3,ijkl = �Gram(pi + pj , pk + pl)

= (q2 � sij � skl)
2
� 4sijskl , (43)

and in our convention the odd kinematics tr5 can be treated as tr5 = h12i [23] h34i [41]� [12] h23i [34] h41i, relating to
Gram determinant as

tr2
5
= �5 = Gram(p1, p2, p3, p4)

= (s12s34 + s14s23 � s13s24)
2
� 4s12s23s34s14 . (44)

Given these definition, we introduce following letters that will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (45)

X1(pi + pj , pk, pl) =
uijx

+

ijkl � uijl

uijx
�

ijkl � uijl
, (46)

X2(pi + pj , pk + pl) =
x+

ijkl

x�

ijkl

, (47)

Y1(pi, pj , pk, pl) =
y+ijkl
y�ijkl

, (48)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (49)

Z(pi, pj , pk, pl) =
z++

ijklz
��

ijkl

z+�

ijklz
�+

ijkl

. (50)

They satisfy relations:

X1(pi + pj , pk, pl) =
1

X1(pi + pj , pl, pk)
, (51)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(52)
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u12 + u23 + u34 + u14 + u13 + u24 = 1 .

We can separate the letters that appear in the remainder into two parts. The first part are simple u variables or
the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to W2, . . . ,W21 in [7].
To introduce the second part, we define variables:

x±

ijkl =
1 + uij � ukl ±

p
�3,ijkl/s1234

2uij
,

y±ijkl =
uijukl � uikujl + uilujk ± P (ijkl)tr5/(s1234)2

2uijuil
,

z±±

ijkl = 1 + y±ijkl � x±

lijk , (42)
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where P (ijkl) is the signature of the permutation with canonical order (1234), �3 also appears in 3-massive triangle
integral

�3,ijkl = �Gram(pi + pj , pk + pl)

= (q2 � sij � skl)
2
� 4sijskl , (43)

and in our convention the odd kinematics tr5 can be treated as tr5 = h12i [23] h34i [41]� [12] h23i [34] h41i, relating to
Gram determinant as

tr2
5
= �5 = Gram(p1, p2, p3, p4)

= (s12s34 + s14s23 � s13s24)
2
� 4s12s23s34s14 . (44)

Given these definition, we introduce following letters that will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (45)

X1(pi + pj , pk, pl) =
uijx

+

ijkl � uijl

uijx
�

ijkl � uijl
, (46)

X2(pi + pj , pk + pl) =
x+

ijkl

x�

ijkl

, (47)

Y1(pi, pj , pk, pl) =
y+ijkl
y�ijkl

, (48)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (49)

Z(pi, pj , pk, pl) =
z++

ijklz
��

ijkl

z+�

ijklz
�+

ijkl

. (50)

They satisfy relations:

X1(pi + pj , pk, pl) =
1

X1(pi + pj , pl, pk)
, (51)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(52)
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They are related to the letters Wi defined in [7] as follows:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (53)

To summarize: there are in total 42 letters given in (41) and (52) that appear in the remainder function. For the
221 master integrals, there are four extra letters to consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (54)

giving in total 46 letters.

D. Collinear limit of letters

As discussed in the main text, to consider the collinear limit of form factors, it is convenient to use the momentum
twistor variables [62, 63], based on the periodic Wilson line picture [59–61].

Consider the 4-point form factor, where the dual periodic Wilson line configuration in momentum twistor space
is shown in Fig. 2. The basic letters ui,i+1 = x2

i,i+2
/x2

i,i+4
and ui,i+1,i+2 = x2

i,i+2
/x2

i�1,i+3
, can be represented by

momentum twistor as

ui,i+1 =
hi� 1, i, i+ 1, i+ 2i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 1, i+ 2i
,

ui�1,i,i+1 =
hi� 1, i, i+ 2, i+ 3i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 2, i+ 3i
,

(55)

where the abbreviation for the four-brackets is used

hZiZjZkZli = hijkli . (56)

The y± variables can be given in spinor form as

y+ijkl =
hl|k|j]

hl|i|j]
, y�ijkl =

hj|k|l]

hj|i|l]
, (57)

and can be given as

y+
1234

=
h1234i

h4123i
, y�ijkl =

ujkukl

uijuil

⇣
y+ijkl

⌘�1

, (58)

y+
1324

=
1

B2

u23

u123 � u12 � u23

, y+
3124

= y+
1324

��
p1$p3

,

y+
1342

=
1

B1

u34

u134 � u14 � u34

, y+
3142

= y+
1342

��
p1$p3

.

Now we discuss the collinear limit for the kinematic variables and the letters. For convenience of notation, we
introduce a new variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (59)

From (17)-(18) one has h34i / �, [34] / ⌘
� . Keeping the leading term in the collinear limit, the u variables behave

as

u12 ! û12 , u23 ! (1� t)û23 ,

u14 ! tû13 , u34 ! �⌘û13û23 ,

u24 ! tû23 , u13 ! (1� t)û13 ,

u234 ! û23 , u123 ! 1� t(û13 + û23) ,

u341 ! û13 , u412 ! û12 + t(û13 + û23) , (60)

Extra 4 letters that appear in master:
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FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

the new I
(2),BDS has same infrared subtraction part and

collinear limit behavior as before.
A further simple constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (8) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing twoWa terms.

They above constraints usually can fix a significant
part of the parameters. For example, for two-loop three-
point form factor of stress-tensor operator in N = 4 [?
], they are su�cient to fix the full results. In general
more complicated cases, there are remaining parameters
which ask for further constraints. Powerful constraints
includes the OPE limit and Regge limit, which may be
roughly understood as the higher order constraints in the
collinear limit expansion. Using symbol bootstrap, this
has been used to construct a up to five-loop three-point
form factor in N = 4 [].

While such constraints are not yet available for the
four-point form factor under study, we will use another
powerful tool – the unitarity cut constraints []. Unitar-
ity cut method is a powerful universal method which in
principle can determine the full result. However, here we
would like to stress that after using the above IR and
collinear constraints, only few simple unitarity cuts are
needed to fix the remaining free parameters, as we will
shown in the next section.

Collinear limit of form factors

Before apply the above constraints, we discuss the
collinear limit of the kinematic variables for the form fac-
tor. Collinear limit can be conveniently defined dual mo-
mentum space picture and momentum twistor variables
[3, 4]. For the form factor we study, it can be represented
by a periodic Wilson line in the dual momentum (twistor)
space [5–7], where xi are dual coordinates defined as

xi � xi+1 = pi = �i
e�i , xi � xi = xi � x̄i = q . (16)

and momentum twistors can be defined as

ZA
i = (�↵

i , µ
�
i ) , µ�

i = x↵�
i · �i↵ = x↵�

i+1 · �i↵ . (17)

The configuration for four-point form factor is shown in
Figure 2. For reader who is not familiar with the nota-
tion, an introduction of the dual picture and momentum
twistor variables is given in Supplemental material.

Consider the collinear limit p4 k p3, it is convenient to
parametrize twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (18)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. This is similar
to the amplitudes case used in [8]. Because of the pe-
riodicity condition, same limit applies simultaneously to
Z4, Z̄4. And the collinear limit of spinor variables using
(17) satisfies a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 . (19)

Given these parametrization, one can take the collinear
limit of any kinematic variables of four-point form fac-
tors. The explicit collinear limit for all letter variables
are given in Supplemental material
Finally we point out that the s24 spurious pole cancel-

lation can be studied by taking p4 k p2 which is similar
to collinear limit as above.

SOLVING THE ANSATZ

Now we apply the constraints to solve for the coe�cients
of the ansatz in (9). To simplify the discussion of each
step, we will first apply of the constraints at symbol level
and then at the level of full functions.

At symbol level

The symbol was first introduced to simplify the two-
loop six-gluon amplitudes [9]. The symbol of all two-loop
masters have been given in []. Plugging them into our
ansatz (8), we obtain an ✏-expansion form of the form
factor:

Sym(F (2)
4 ) =

X

k�0

✏k�4
X

↵(c)⌦k
i=1 Ri , (20)

where are Ri are rational function of Mandelstam vari-
ables and are classified as symbol letters. [more on letters]
First, from the BDS formula and one-loop data, one

computes the divergent part of 1/✏m,m = 4, 3, 2, 1. By
matching their symbol with our ansatz, we can solve for
⇠ 100 parameters.
Next, we take the collinear limits for the symbol of the

finite part which should match with the two-loop three-
point result as

R
(2)
4

p4 k p3
��������!

or p4 k p1
R

(2)
3 (21)
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FIG. 2: Dual periodic Wilson line configuration for the
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Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)

R
(2)

4-pt
:=

�
I
(2)

4
� I

(2)

4,BDS

���
O(✏0)

p4 k p3
��������!

or p4 k p1
R

(2)

3-pt
, (12)

whereR(2)

3-pt
is the two-loop remainder of three-point form

factor Ftr(�3
12)

(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)

4

I
(2)

4
=

1

2

⇣
G
(2)

1
+ G

(2)

2

⌘
+

B1 �B2

2

⇣
G
(2)

1
� G

(2)

2

⌘
. (13)

When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint

on G
(2)

a as

G
(2)

1
� G

(2)

2

h24i ! � ⌧ 1
�����������! O(�) . (14)

While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.
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Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)

R
(2)

4-pt
:=

�
I
(2)

4
� I

(2)

4,BDS

���
O(✏0)

p4 k p3
��������!

or p4 k p1
R

(2)

3-pt
, (12)

whereR(2)

3-pt
is the two-loop remainder of three-point form

factor Ftr(�3
12)

(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)

4

I
(2)

4
=

1

2

⇣
G
(2)

1
+ G

(2)

2

⌘
+

B1 �B2

2

⇣
G
(2)

1
� G

(2)

2

⌘
. (13)

When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint

on G
(2)

a as

G
(2)

1
� G

(2)

2

h24i ! � ⌧ 1
�����������! O(�) . (14)

While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.
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They are related to the letters Wi defined in [7] as follows:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (53)

To summarize: there are in total 42 letters given in (41) and (52) that appear in the remainder function. For the
221 master integrals, there are four extra letters to consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (54)

giving in total 46 letters.

D. Collinear limit of letters

As discussed in the main text, to consider the collinear limit of form factors, it is convenient to use the momentum
twistor variables [62, 63], based on the periodic Wilson line picture [59–61].

Consider the 4-point form factor, where the dual periodic Wilson line configuration in momentum twistor space
is shown in Fig. 2. The basic letters ui,i+1 = x2

i,i+2
/x2

i,i+4
and ui,i+1,i+2 = x2

i,i+2
/x2

i�1,i+3
, can be represented by

momentum twistor as

ui,i+1 =
hi� 1, i, i+ 1, i+ 2i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 1, i+ 2i
,

ui�1,i,i+1 =
hi� 1, i, i+ 2, i+ 3i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 2, i+ 3i
,

(55)

where the abbreviation for the four-brackets is used

hZiZjZkZli = hijkli . (56)

The y± variables can be given in spinor form as

y+ijkl =
hl|k|j]

hl|i|j]
, y�ijkl =

hj|k|l]

hj|i|l]
, (57)

and can be given as

y+
1234

=
h1234i

h4123i
, y�ijkl =

ujkukl

uijuil

⇣
y+ijkl

⌘�1

, (58)

y+
1324

=
1

B2

u23

u123 � u12 � u23

, y+
3124

= y+
1324

��
p1$p3

,

y+
1342

=
1

B1

u34

u134 � u14 � u34

, y+
3142

= y+
1342

��
p1$p3

.

Now we discuss the collinear limit for the kinematic variables and the letters. For convenience of notation, we
introduce a new variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (59)

From (17)-(18) one has h34i / �, [34] / ⌘
� . Keeping the leading term in the collinear limit, the u variables behave

as

u12 ! û12 , u23 ! (1� t)û23 ,

u14 ! tû13 , u34 ! �⌘û13û23 ,

u24 ! tû23 , u13 ! (1� t)û13 ,

u234 ! û23 , u123 ! 1� t(û13 + û23) ,

u341 ! û13 , u412 ! û12 + t(û13 + û23) , (60)
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They are related to the letters Wi defined in [7] as follows:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (53)

To summarize: there are in total 42 letters given in (41) and (52) that appear in the remainder function. For the
221 master integrals, there are four extra letters to consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (54)

giving in total 46 letters.

D. Collinear limit of letters

As discussed in the main text, to consider the collinear limit of form factors, it is convenient to use the momentum
twistor variables [62, 63], based on the periodic Wilson line picture [59–61].

Consider the 4-point form factor, where the dual periodic Wilson line configuration in momentum twistor space
is shown in Fig. 2. The basic letters ui,i+1 = x2

i,i+2
/x2

i,i+4
and ui,i+1,i+2 = x2

i,i+2
/x2

i�1,i+3
, can be represented by

momentum twistor as

ui,i+1 =
hi� 1, i, i+ 1, i+ 2i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 1, i+ 2i
,

ui�1,i,i+1 =
hi� 1, i, i+ 2, i+ 3i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 2, i+ 3i
,

(55)

x2

ij = (xi � xj)
2 =

hi� 1, i, j � 1, ji

hi� 1, iihj � 1, ji

where the abbreviation for the four-brackets is used

hZiZjZkZli = hijkli . (56)

The y± variables can be given in spinor form as

y+ijkl =
hl|k|j]

hl|i|j]
, y�ijkl =

hj|k|l]

hj|i|l]
, (57)

and can be given as

y+
1234

=
h1234i

h4123i
, y�ijkl =

ujkukl

uijuil

⇣
y+ijkl

⌘�1

, (58)

y+
1324

=
1

B2

u23

u123 � u12 � u23

, y+
3124

= y+
1324

��
p1$p3

,

y+
1342

=
1

B1

u34

u134 � u14 � u34

, y+
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= y+
1342

��
p1$p3

.

Now we discuss the collinear limit for the kinematic variables and the letters. For convenience of notation, we
introduce a new variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (59)
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the new I
(2),BDS has same infrared subtraction part and

collinear limit behavior as before.
A further simple constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (8) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing twoWa terms.

They above constraints usually can fix a significant
part of the parameters. For example, for two-loop three-
point form factor of stress-tensor operator in N = 4 [?
], they are su�cient to fix the full results. In general
more complicated cases, there are remaining parameters
which ask for further constraints. Powerful constraints
includes the OPE limit and Regge limit, which may be
roughly understood as the higher order constraints in the
collinear limit expansion. Using symbol bootstrap, this
has been used to construct a up to five-loop three-point
form factor in N = 4 [].

While such constraints are not yet available for the
four-point form factor under study, we will use another
powerful tool – the unitarity cut constraints []. Unitar-
ity cut method is a powerful universal method which in
principle can determine the full result. However, here we
would like to stress that after using the above IR and
collinear constraints, only few simple unitarity cuts are
needed to fix the remaining free parameters, as we will
shown in the next section.

Collinear limit of form factors

Before apply the above constraints, we discuss the
collinear limit of the kinematic variables for the form fac-
tor. Collinear limit can be conveniently defined dual mo-
mentum space picture and momentum twistor variables
[3, 4]. For the form factor we study, it can be represented
by a periodic Wilson line in the dual momentum (twistor)
space [5–7], where xi are dual coordinates defined as

xi � xi+1 = pi = �i
e�i , xi � xi = xi � x̄i = q . (16)

and momentum twistors can be defined as

ZA
i = (�↵

i , µ
�
i ) , µ�

i = x↵�
i · �i↵ = x↵�

i+1 · �i↵ . (17)

The configuration for four-point form factor is shown in
Figure 2. For reader who is not familiar with the nota-
tion, an introduction of the dual picture and momentum
twistor variables is given in Supplemental material.

Consider the collinear limit p4 k p3, it is convenient to
parametrize twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (18)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. This is similar
to the amplitudes case used in [8]. Because of the pe-
riodicity condition, same limit applies simultaneously to
Z4, Z̄4. And the collinear limit of spinor variables using
(17) satisfies a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 . (19)

Given these parametrization, one can take the collinear
limit of any kinematic variables of four-point form fac-
tors. The explicit collinear limit for all letter variables
are given in Supplemental material
Finally we point out that the s24 spurious pole cancel-

lation can be studied by taking p4 k p2 which is similar
to collinear limit as above.

SOLVING THE ANSATZ

Now we apply the constraints to solve for the coe�cients
of the ansatz in (9). To simplify the discussion of each
step, we will first apply of the constraints at symbol level
and then at the level of full functions.

At symbol level

The symbol was first introduced to simplify the two-
loop six-gluon amplitudes [9]. The symbol of all two-loop
masters have been given in []. Plugging them into our
ansatz (8), we obtain an ✏-expansion form of the form
factor:

Sym(F (2)
4 ) =

X

k�0

✏k�4
X

↵(c)⌦k
i=1 Ri , (20)

where are Ri are rational function of Mandelstam vari-
ables and are classified as symbol letters. [more on letters]
First, from the BDS formula and one-loop data, one

computes the divergent part of 1/✏m,m = 4, 3, 2, 1. By
matching their symbol with our ansatz, we can solve for
⇠ 100 parameters.
Next, we take the collinear limits for the symbol of the

finite part which should match with the two-loop three-
point result as

R
(2)
4

p4 k p3
��������!

or p4 k p1
R

(2)
3 (21)
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4-point form factor in momentum twistor space.

the new I
(2),BDS has same infrared subtraction part and

collinear limit behavior as before.
A further simple constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (8) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing twoWa terms.

They above constraints usually can fix a significant
part of the parameters. For example, for two-loop three-
point form factor of stress-tensor operator in N = 4 [?
], they are su�cient to fix the full results. In general
more complicated cases, there are remaining parameters
which ask for further constraints. Powerful constraints
includes the OPE limit and Regge limit, which may be
roughly understood as the higher order constraints in the
collinear limit expansion. Using symbol bootstrap, this
has been used to construct a up to five-loop three-point
form factor in N = 4 [].

While such constraints are not yet available for the
four-point form factor under study, we will use another
powerful tool – the unitarity cut constraints []. Unitar-
ity cut method is a powerful universal method which in
principle can determine the full result. However, here we
would like to stress that after using the above IR and
collinear constraints, only few simple unitarity cuts are
needed to fix the remaining free parameters, as we will
shown in the next section.

Collinear limit of form factors

Before apply the above constraints, we discuss the
collinear limit of the kinematic variables for the form fac-
tor. Collinear limit can be conveniently defined dual mo-
mentum space picture and momentum twistor variables
[3, 4]. For the form factor we study, it can be represented
by a periodic Wilson line in the dual momentum (twistor)
space [5–7], where xi are dual coordinates defined as

xi � xi+1 = pi = �i
e�i , xi � xi = xi � x̄i = q . (16)

and momentum twistors can be defined as

ZA
i = (�↵

i , µ
�
i ) , µ�

i = x↵�
i · �i↵ = x↵�

i+1 · �i↵ . (17)

The configuration for four-point form factor is shown in
Figure 2. For reader who is not familiar with the nota-
tion, an introduction of the dual picture and momentum
twistor variables is given in Supplemental material.

Consider the collinear limit p4 k p3, it is convenient to
parametrize twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (18)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. This is similar
to the amplitudes case used in [8]. Because of the pe-
riodicity condition, same limit applies simultaneously to
Z4, Z̄4. And the collinear limit of spinor variables using
(17) satisfies a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 . (19)

Given these parametrization, one can take the collinear
limit of any kinematic variables of four-point form fac-
tors. The explicit collinear limit for all letter variables
are given in Supplemental material
Finally we point out that the s24 spurious pole cancel-

lation can be studied by taking p4 k p2 which is similar
to collinear limit as above.

SOLVING THE ANSATZ

Now we apply the constraints to solve for the coe�cients
of the ansatz in (9). To simplify the discussion of each
step, we will first apply of the constraints at symbol level
and then at the level of full functions.

At symbol level

The symbol was first introduced to simplify the two-
loop six-gluon amplitudes [9]. The symbol of all two-loop
masters have been given in []. Plugging them into our
ansatz (8), we obtain an ✏-expansion form of the form
factor:

Sym(F (2)
4 ) =

X

k�0

✏k�4
X

↵(c)⌦k
i=1 Ri , (20)

where are Ri are rational function of Mandelstam vari-
ables and are classified as symbol letters. [more on letters]
First, from the BDS formula and one-loop data, one

computes the divergent part of 1/✏m,m = 4, 3, 2, 1. By
matching their symbol with our ansatz, we can solve for
⇠ 100 parameters.
Next, we take the collinear limits for the symbol of the

finite part which should match with the two-loop three-
point result as
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Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)

R
(2)

4-pt
:=

�
I
(2)

4
� I

(2)

4,BDS

���
O(✏0)

p4 k p3
��������!

or p4 k p1
R

(2)

3-pt
, (12)

whereR(2)

3-pt
is the two-loop remainder of three-point form

factor Ftr(�3
12)

(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)

4

I
(2)

4
=

1

2

⇣
G
(2)

1
+ G

(2)

2

⌘
+

B1 �B2

2

⇣
G
(2)

1
� G

(2)

2

⌘
. (13)

When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint

on G
(2)

a as

G
(2)

1
� G

(2)

2

h24i ! � ⌧ 1
�����������! O(�) . (14)

While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.
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where {û12, û23, û13} represent the variables of the 3-point form factor obtained in the collinear limit.
For y±ijkl, because tr±(1234) ! 0 when p3 k p4, one needs to take the collinear limit carefully using momentum

twistor variables as (17)-(18), which give:

y+
1234

!
(1� t)�

t

(û12 + û13)û23

û12

, y�
1234

! �
⌘

�

û23

û12 + û13

,

y+
1324

!
û23

û13

, y�
1324

!
û23

û13

,

y+
3124

! �
t

(1� t)�

û12

û13(û12 + û13)
, y�

3124
!

�

⌘

û12 + û13

û13

,

y+
1342

!
t⌘

(1� t)�

û23

û12 + û13

, y�
1342

! ��
(û12 + û13)û23

û12

,

y+
3142

!
t

1� t
, y�

3142
!

t

1� t
. (61)

The collinear limit of x±

ijkl seems a little subtle, since �3 can not be treated as momentum twistor. Fortunately,
their limit are finite

�3,1234 !(1� û12)
2 ,

�3,1423 !(1 +
û13

1 + t
� û23)

2
�

4û13

1 + t
,

(62)

so that all the limit of x±

ijkl is finite. Only �3,1234 can turn to a square when p3 k p4 implies that x±

1234
and x±

3412
are

free from square root, and it is worth noticing that

x�

3412
!

1

1� û12

+O(⌘) . (63)

And a non-trivial relation we will use is

X1(pi + pj , pk, pl)X1(pk + pl, pi, pj)

X2(pi + pj , pk + pl)X2(pk + pl, pi + pj)

pj k pk
�����! 1 .

F. Kinematics and evaluation of GPL functions

Master integrals has been obtained in Goncharov polylogarithms (GPLs) in [8]. The GPLs are given in terms of a
new set of variables {x, S12, S23, S34, S45, S51}. In the ancillary files, we provide the explicit expressions of the relevant
function letters. We briefly review the definition of these variables below, following [8].

The new variables are related to {q1, q2, q3, q4, q5} with q1 massive, through following relations:

s̃15 = (1� x)S45 + S23x , (64)

q2
1
= (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 , s̃34 = S51x , s̃34 = S51x .

where s̃ij = (qi + qj)2.
To evaluate the master integrals out of Euclidean regions, proper analytic continuation is needed. The rule

is to give each positive kinematics a small positive imaginary part i⌘x, then it will lead to two solutions of
{x, S12, S23, S34, S45, S51}, and which one should be chosen is determined by the following condition

(�s̃15)
�✏ = (�S45)

�✏

✓
1�

S45 � S23

S45x

◆�✏

, (65)

(�q2
1
)�✏ = (1� x)�✏(�S45)

�✏

✓
1�

S12

S45

x

◆�✏

,

(�s̃12)
�✏ = x�✏(S12 � S34)

�✏

✓
1�

S12

S12 � S34

x

◆�✏

,

(�s̃34)
�✏ = (�S51)

�✏x�✏ , (�s̃45)
�✏ = (�S12)

�✏x�2✏ .

Collinear limit parametrization:
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FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

Using (6) and the property of Ba, one can prove that

I
(2)

BDS
captures the full 2-loop IR and collinear singulari-

ties, and the following defined finite remainder has nice
collinear behavior (note that one collinear leg should be
gluon)
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whereR(2)

3-pt
is the two-loop remainder of three-point form

factor Ftr(�3
12)

(1�, 2�, 3�) [56].
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. In
the form factor (7), Ba factors contain a spurious pole
h24i, which can be seen from the following equivalent

representation of I(2)
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When h24i ! 0, B1�B2 will go to infinity as 1/h24i, the
cancellation of the pole implies the following constraint

on G
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a as
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(2)
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h24i ! � ⌧ 1
�����������! O(�) . (14)

While above constraints can often fix a significant part
of the parameters, there are in general some parameters
left which require further constraints. This is indeed the
case for the 4-point form factor we consider. To fix them
we will use the constraint of unitarity cuts [53, 57, 58].
Although unitarity cuts can in principle determine the
full result, we would like to stress that after using IR,
collinear and spurious pole constraints, only few simple
unitarity cuts are needed to fix the remaining degrees of
freedom, as we will shown in next section.

Collinear limit of form factors

Before applying the above constraints, we discuss the
collinear limit for form factors using dual periodic Wil-
son line in the dual momentum space [59–61]. The dual
coordinates xi can be defined as

x↵↵̇
i �x↵↵̇

i+1
= p↵↵̇i = �↵

i
e�↵̇
i , xi�xi = xi� x̄i = q , (15)

and corresponding momentum twistors [62, 63] can be
defined as

ZA
i = (�↵

i , µ
↵̇
i ) , µ↵̇

i = x↵↵̇
i · �i↵ = x↵↵̇

i+1
· �i↵ . (16)

The configuration for the four-point form factor is shown
in Fig. 2.
Momentum twistor variables are convenient for

parametrizing collinear limits. Consider the limit p4 k p3,
analogous to the amplitude case [64], one can parametrize
the twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (17)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. Because of the
periodicity condition, the same limit applies simultane-
ously to Z

4
, Z̄4. Using (16), the spinor variables satisfy

a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 , (18)

as well as for �
4
, �̄4. Given this parametrization, one can

obtain collinear limit of any kinematic variable of four-
point form factors.

SOLVING THE ANSATZ

Now we implement the constraints to solve for the coe�-
cients in the ansatz (8). To simplify the computation in
each step, we will first apply of the constraints at symbol
level and then at the level of functions.
The symbol was introduced in [44] to greatly simplify

the two-loop six-gluon amplitudes. It can be understood
as a mathematical tool to simplify transcendental func-
tions into tensor products of function arguments, for sim-
ple examples: S(log(x)) = x,S(Li2(x)) = �(1 � x) ⌦ x.
A brief review of symbol is given in the supplemental ma-
terial. For the problem at hand, the symbol expressions
of all two-loop masters have been obtained in [7]. Substi-
tuting them into our ansatz (7), we obtain an ✏-expansion
form of the form factor:

Sym(I(2)

4
) =

X

k�0

✏k�4
X

I

↵I(c)⌦
k
i=1

wIi , (19)

where wI are rational functions of kinematic variables
and are called symbol letters. For the 221 master inte-
grals we consider, there are 46 independent letters. Their
explicit definition and the collinear limit behavior are
given in the supplemental material. ↵I(c) are linear com-
binations of ca,i in (8) which are to be constrained as
below.
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They are related to the letters Wi defined in [7] as follows:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (53)

To summarize: there are in total 42 letters given in (41) and (52) that appear in the remainder function. For the
221 master integrals, there are four extra letters to consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (54)

giving in total 46 letters.

D. Collinear limit of letters

As discussed in the main text, to consider the collinear limit of form factors, it is convenient to use the momentum
twistor variables [62, 63], based on the periodic Wilson line picture [59–61].

Consider the 4-point form factor, where the dual periodic Wilson line configuration in momentum twistor space
is shown in Fig. 2. The basic letters ui,i+1 = x2

i,i+2
/x2

i,i+4
and ui,i+1,i+2 = x2

i,i+2
/x2

i�1,i+3
, can be represented by

momentum twistor as

ui,i+1 =
hi� 1, i, i+ 1, i+ 2i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 1, i+ 2i
,

ui�1,i,i+1 =
hi� 1, i, i+ 2, i+ 3i hi+ 3, i+ 4i

hi� 1, i, i+ 3, i+ 4i hi+ 2, i+ 3i
,

(55)

x2

ij = (xi � xj)
2 =

hi� 1, i, j � 1, ji

hi� 1, iihj � 1, ji

where the abbreviation for the four-brackets is used

hZiZjZkZli = hijkli . (56)

The y± variables can be given in spinor form as

y+ijkl =
hl|k|j]

hl|i|j]
, y�ijkl =

hj|k|l]

hj|i|l]
, (57)

and can be given as

y+
1234

=
h1234i

h4123i
, y�ijkl =

ujkukl

uijuil

⇣
y+ijkl

⌘�1

, (58)

y+
1324

=
1

B2

u23

u123 � u12 � u23

, y+
3124

= y+
1324

��
p1$p3

,

y+
1342

=
1

B1

u34

u134 � u14 � u34

, y+
3142

= y+
1342

��
p1$p3

.

Now we discuss the collinear limit for the kinematic variables and the letters. For convenience of notation, we
introduce a new variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (59)



Technical details:  
numerical computation
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as

u12 =
x2
13

x2
11̄

=
h4123i h41̄i

h4141̄i h23i
, u23 =

x2
24

x2
22̄

=
h1234i h1̄2̄i

h121̄2̄i h34i
,

u34 =
x2
31̄

x2
33̄

=
h2341̄i h2̄3̄i

h232̄3̄i h41̄i
, u14 =

x2
42̄

x44
=

h341̄2̄i h34i

h3434i h1̄2̄i
,

u123 =
x2
14

x2
11̄

=
h4134i h41̄i

h4141̄i h34i
, u234 =

x2
21̄

x22̄
=

h1241̄i h1̄2̄i

h121̄2̄i h41̄i
,

u341 =
x2
32̄

x2
33̄

=
h231̄2̄i h2̄3̄i

h232̄3̄i h1̄2̄i
, u412 =

x2
43

x2
44

=
h3423i h34i

h3434i h23i
.

(59)
and we know

y+ijkl =
tr+(ijkl)

2sijsil
=

hl|k|j]

hl|i|j]
, y�ijkl =

tr�(ijkl)

2sijsil
=

hj|k|l]

hj|i|l]
,

(60)
so that

y+1234 =
h1234i

h4123i
, y�1234 =

ujkukl

u

h2341̄i

h341̄2̄i
,

y+1324 =
1

W2

✓
u123 � u12

u23
� 1

◆�1

, y+3124 = y+1324
��
p1$p3

,

y+1342 =
1

W1

✓
u134 � u14

u34
� 1

◆�1

, y+3142 = y+1342
��
p1$p3

,

y�ijkl =
ujkukl

uijuil

⇣
y+ijkl

⌘�1
,

(61)
each uij and uijk can expressed as momentum twistor.

E. Collinear limit of letters

Following the discussion in the main text, here we give
the collinear limit for the kinematic variables and the
letters. For convenience of notation, we introduce a new
variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (62)

It is easy to see that h34i / �, [34] / ⌘
� . Keep the lead-

ing term in the collinear limit, the behavior of u variables
at the collinear limit as follow

u12 ! û12, u23 ! (1� t)û23,

u14 ! tû13 u34 ! �⌘û13û23,

u24 ! tû23, u13 ! (1� t)û13,

u234 ! û23, u123 ! 1� t(û13 + û23),

u341 ! û13, u412 ! û12 + t(û13 + û23), (63)

where {û12, û23, û13} are the variables for the 3-point
form factor obtained in the collinear limit.
The collinear limit of x±

ijkl seems a little subtle, since
�3 can not be treated as momentum twistor. Fortu-

nately, their limit are finite

�3,1234 !(1� û12)
2,

�3,1423 !(1 +
û13

1 + t
� û23)

2
�

4û13

1 + t
,

(64)

so that all the limit of x±
ijkl is finite. Only �3,1234 can

turn to a square when p3 k p4 means x±
1234 and x±

3412 will
free from square root, and it worth notices that

x�
3412 !

1

1� û12
+O(⌘) . (65)

And a non-trivial relation we will use is

X1(pi + pj , pk, pl)X1(pk + pl, pi, pj)

X2(pi + pj , pk + pl)X2(pk + pl, pi + pj)

pj k pk
�����! 1 .

(66)
For y±ijkl, because of tr±(1234) ! 0 when p3 k p4, one

needs to take the collinear limit carefully using momen-
tum twistor variables, which give:

y+1234 !
(1� t)�

t

(û12 + û13)û23

û12
, y�1234 ! �

⌘

�

û23

û12 + û13
,

y+1324 !
û23

û13
, y�1324 !

û23

û13
,

y+3124 ! �
t

(1� t)�

û12

û13(û12 + û13)
, y�3124 !

�

⌘

û12 + û13

û13
,

y+1342 !
t⌘

(1� t)�

û23

û12 + û13
, y�1342 ! ��

(û12 + û13)û23

û12
,

y+3142 !
t

1� t
, y�3142 !

t

1� t
. (67)

F. On function variables and letters

The function form of master integrals has been ob-
tained in GPL in [17]. The GPLs are given in terms of
a new set of variables {x, S12, S23, S34, S45, S51}. The
new variables are related to external five momenta,
{q1, q2, q3, q4, q5} with q1 massive, through following re-
lations:

q21 = (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 ,

s̃34 = S51x ,

s̃45 = S12x
2 ,

s̃15 = (1� x)S45 + S23x . (68)

where s̃ij = (qi + qj)2.
To evaluate the master integrals out of Euclidean re-

gions, proper analytic continuation is needed. The rule
is gives each positive kinematics a small positive imag-
inary part i⌘x, then it will lead to two solutions of
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as

u12 =
x2
13

x2
11̄

=
h4123i h41̄i

h4141̄i h23i
, u23 =

x2
24

x2
22̄

=
h1234i h1̄2̄i

h121̄2̄i h34i
,

u34 =
x2
31̄

x2
33̄

=
h2341̄i h2̄3̄i

h232̄3̄i h41̄i
, u14 =

x2
42̄

x44
=

h341̄2̄i h34i

h3434i h1̄2̄i
,

u123 =
x2
14

x2
11̄

=
h4134i h41̄i

h4141̄i h34i
, u234 =

x2
21̄

x22̄
=

h1241̄i h1̄2̄i

h121̄2̄i h41̄i
,

u341 =
x2
32̄

x2
33̄

=
h231̄2̄i h2̄3̄i

h232̄3̄i h1̄2̄i
, u412 =

x2
43

x2
44

=
h3423i h34i

h3434i h23i
.

(59)
and we know

y+ijkl =
tr+(ijkl)

2sijsil
=

hl|k|j]

hl|i|j]
, y�ijkl =

tr�(ijkl)

2sijsil
=

hj|k|l]

hj|i|l]
,

(60)
so that

y+1234 =
h1234i

h4123i
, y�1234 =

ujkukl

u

h2341̄i

h341̄2̄i
,

y+1324 =
1

W2

✓
u123 � u12

u23
� 1

◆�1

, y+3124 = y+1324
��
p1$p3

,

y+1342 =
1

W1

✓
u134 � u14

u34
� 1

◆�1

, y+3142 = y+1342
��
p1$p3

,

y�ijkl =
ujkukl

uijuil

⇣
y+ijkl

⌘�1
,

(61)
each uij and uijk can expressed as momentum twistor.

E. Collinear limit of letters

Following the discussion in the main text, here we give
the collinear limit for the kinematic variables and the
letters. For convenience of notation, we introduce a new
variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (62)

It is easy to see that h34i / �, [34] / ⌘
� . Keep the lead-

ing term in the collinear limit, the behavior of u variables
at the collinear limit as follow

u12 ! û12, u23 ! (1� t)û23,

u14 ! tû13 u34 ! �⌘û13û23,

u24 ! tû23, u13 ! (1� t)û13,

u234 ! û23, u123 ! 1� t(û13 + û23),

u341 ! û13, u412 ! û12 + t(û13 + û23), (63)

where {û12, û23, û13} are the variables for the 3-point
form factor obtained in the collinear limit.
The collinear limit of x±

ijkl seems a little subtle, since
�3 can not be treated as momentum twistor. Fortu-

nately, their limit are finite

�3,1234 !(1� û12)
2,

�3,1423 !(1 +
û13

1 + t
� û23)

2
�

4û13

1 + t
,

(64)

so that all the limit of x±
ijkl is finite. Only �3,1234 can

turn to a square when p3 k p4 means x±
1234 and x±

3412 will
free from square root, and it worth notices that

x�
3412 !

1

1� û12
+O(⌘) . (65)

And a non-trivial relation we will use is

X1(pi + pj , pk, pl)X1(pk + pl, pi, pj)

X2(pi + pj , pk + pl)X2(pk + pl, pi + pj)

pj k pk
�����! 1 .

(66)
For y±ijkl, because of tr±(1234) ! 0 when p3 k p4, one

needs to take the collinear limit carefully using momen-
tum twistor variables, which give:

y+1234 !
(1� t)�

t

(û12 + û13)û23

û12
, y�1234 ! �

⌘

�

û23

û12 + û13
,

y+1324 !
û23

û13
, y�1324 !

û23

û13
,

y+3124 ! �
t

(1� t)�

û12

û13(û12 + û13)
, y�3124 !

�

⌘

û12 + û13

û13
,

y+1342 !
t⌘

(1� t)�

û23

û12 + û13
, y�1342 ! ��

(û12 + û13)û23

û12
,

y+3142 !
t

1� t
, y�3142 !

t

1� t
. (67)

F. On function variables and letters

The function form of master integrals has been ob-
tained in GPL in [17]. The GPLs are given in terms of
a new set of variables {x, S12, S23, S34, S45, S51}. The
new variables are related to external five momenta,
{q1, q2, q3, q4, q5} with q1 massive, through following re-
lations:

q21 = (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 ,

s̃34 = S51x ,

s̃45 = S12x
2 ,

s̃15 = (1� x)S45 + S23x . (68)

where s̃ij = (qi + qj)2.
To evaluate the master integrals out of Euclidean re-

gions, proper analytic continuation is needed. The rule
is gives each positive kinematics a small positive imag-
inary part i⌘x, then it will lead to two solutions of

Master integrals are evaluated in multiple polylogarithm.

G
P2
a1···a11 := e

2�E✏
Z

d
d
k1

i⇡d/2

d
d
k2

i⇡d/2

1

k
2a1
1 (k1 � q1234)2a2(k1 � q234)2a3(k1 � q34)2a4

⇥
1

k
2a5
2 (k2 � q34)2a6(k2 � q4)2a7(k1 � k2)2a8(k2 � q1234)2a9(k2 � q234)2a10(k1 � q4)2a11

,

(2.4)

G
P3
a1···a11 := e

2�E✏
Z

d
d
k1

i⇡d/2

d
d
k2

i⇡d/2

1

k
2a1
1 (k1 + q2)2a2(k1 + q23)2a3(k1 + q234)2a4

⇥
1

k
2a5
2 (k2 + q234)2a6(k2 � q1)2a7(k1 � k2)2a8(k1 � q1)2a9(k2 + q2)2a10(k2 + q23)2a11

, (2.5)

where qi...j := qi + . . .+ qj .
The P1 family consists of 74 Master integrals. For P2 and P3 the corresponding numbers

are 75 and 86. This can easily be verified using standard IBP reduction software, such as
FIRE6 [45] and Kira [46, 47]. The top-sector integrals are shown in Fig. 2.

xp1

xp2

�p1234

p123 � xp12

p4

xp1 xp2

�p1234

p123 � xp12

p4

xp2

p123 � xp12

xp1

p4

�p1234

Figure 2. The two-loop diagrams representing the top-sector of the planar pentabox family P1,
P2 and P3. All external momenta are incoming.

2.1 Canonical basis and Differential Equations

In order to express all integrals given by Eqs.(2.3 – 2.5), the easiest way is to define a basis
that satisfies a canonical differential equation. By basis we mean a combination of Feynman
Integrals with coefficients depending on the set of invariants and the dimensionality of space-
time d = 4�2✏. Let us assume that such a basis is known, then the DE is written in general
as

d~g = ✏

X

a

d log (Wa) M̃a~g (2.6)

where ~g represents a vector containing all elements of the canonical basis, Wa are functions
of the kinematics and M̃a are matrices independent of the kinematical invariants, whose
matrix elements are pure rational numbers. Notice that Eq. (2.6) is a multi-variable equa-
tion and in the case under consideration the differentiation is understood with respect to
the six-dimensional array of independent kinematical invariants, {q21, s12, s23, s34, s45, s15}.
Since Wa are in general algebraic functions of the kinematical invariants a straightforward
integration of Eq. (2.6) in terms of generalized poly-logarithms is not an easy task.

– 4 –

A different set of kinematics are chosen.
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From (17)-(18) one has h34i / �, [34] / ⌘
� . Keeping the leading term in the collinear limit, the u variables behave

as

u12 ! û12 , u23 ! (1� t)û23 ,

u14 ! tû13 , u34 ! �⌘û13û23 ,

u24 ! tû23 , u13 ! (1� t)û13 ,

u234 ! û23 , u123 ! 1� t(û13 + û23) ,

u341 ! û13 , u412 ! û12 + t(û13 + û23) , (60)

where {û12, û23, û13} represent the variables of the 3-point form factor obtained in the collinear limit.
For y±ijkl, because tr±(1234) ! 0 when p3 k p4, one needs to take the collinear limit carefully using momentum

twistor variables as (17)-(18), which give:

y+
1234

!
(1� t)�

t

(û12 + û13)û23

û12

, y�
1234

! �
⌘

�

û23

û12 + û13

,

y+
1324

!
û23

û13

, y�
1324

!
û23

û13

,

y+
3124

! �
t

(1� t)�

û12

û13(û12 + û13)
, y�

3124
!

�

⌘

û12 + û13

û13

,

y+
1342

!
t⌘

(1� t)�

û23

û12 + û13

, y�
1342

! ��
(û12 + û13)û23

û12

,

y+
3142

!
t

1� t
, y�

3142
!

t

1� t
. (61)

The collinear limit of x±

ijkl seems a little subtle, since �3 can not be treated as momentum twistor. Fortunately,
their limit are finite

�3,1234 !(1� û12)
2 ,

�3,1423 !(1 +
û13

1 + t
� û23)

2
�

4û13

1 + t
,

(62)

so that all the limit of x±

ijkl is finite. Only �3,1234 can turn to a square when p3 k p4 implies that x±

1234
and x±

3412
are

free from square root, and it is worth noticing that

x�

3412
!

1

1� û12

+O(⌘) . (63)

And a non-trivial relation we will use is

X1(pi + pj , pk, pl)X1(pk + pl, pi, pj)

X2(pi + pj , pk + pl)X2(pk + pl, pi + pj)

pj k pk
�����! 1 .

F. Kinematics and evaluation of GPL functions

Master integrals has been obtained in Goncharov polylogarithms (GPLs) in [8]. The GPLs are given in terms of a
new set of variables {x, S12, S23, S34, S45, S51}. In the ancillary files, we provide the explicit expressions of the relevant
function letters. We briefly review the definition of these variables below, following [8].

The new variables are related to {q1, q2, q3, q4, q5} with q1 massive, through following relations:

s̃15 = (1� x)S45 + S23x , (64)

q2
1
= (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 , s̃34 = S51x , s̃34 = S51x .

where s̃ij = (qi + qj)2.
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From (17)-(18) one has h34i / �, [34] / ⌘
� . Keeping the leading term in the collinear limit, the u variables behave

as

u12 ! û12 , u23 ! (1� t)û23 ,

u14 ! tû13 , u34 ! �⌘û13û23 ,

u24 ! tû23 , u13 ! (1� t)û13 ,

u234 ! û23 , u123 ! 1� t(û13 + û23) ,

u341 ! û13 , u412 ! û12 + t(û13 + û23) , (60)

where {û12, û23, û13} represent the variables of the 3-point form factor obtained in the collinear limit.
For y±ijkl, because tr±(1234) ! 0 when p3 k p4, one needs to take the collinear limit carefully using momentum

twistor variables as (17)-(18), which give:

y+
1234

!
(1� t)�

t

(û12 + û13)û23

û12

, y�
1234

! �
⌘

�

û23

û12 + û13

,

y+
1324

!
û23

û13

, y�
1324

!
û23

û13

,

y+
3124

! �
t

(1� t)�

û12

û13(û12 + û13)
, y�

3124
!

�

⌘

û12 + û13

û13

,

y+
1342

!
t⌘

(1� t)�

û23

û12 + û13

, y�
1342

! ��
(û12 + û13)û23

û12

,

y+
3142

!
t

1� t
, y�

3142
!

t

1� t
. (61)

The collinear limit of x±

ijkl seems a little subtle, since �3 can not be treated as momentum twistor. Fortunately,
their limit are finite

�3,1234 !(1� û12)
2 ,

�3,1423 !(1 +
û13

1 + t
� û23)

2
�

4û13

1 + t
,

(62)

so that all the limit of x±

ijkl is finite. Only �3,1234 can turn to a square when p3 k p4 implies that x±

1234
and x±

3412
are

free from square root, and it is worth noticing that

x�

3412
!

1

1� û12

+O(⌘) . (63)

And a non-trivial relation we will use is

X1(pi + pj , pk, pl)X1(pk + pl, pi, pj)

X2(pi + pj , pk + pl)X2(pk + pl, pi + pj)

pj k pk
�����! 1 .

F. Kinematics and evaluation of GPL functions

Master integrals has been obtained in Goncharov polylogarithms (GPLs) in [8]. The GPLs are given in terms of a
new set of variables {x, S12, S23, S34, S45, S51}. In the ancillary files, we provide the explicit expressions of the relevant
function letters. We briefly review the definition of these variables below, following [8].

The new variables are related to {q1, q2, q3, q4, q5} with q1 massive, through following relations:

s̃15 = (1� x)S45 + S23x , (64)

q2
1
= (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 , s̃34 = S51x , s̃34 = S51x .

where s̃ij = (qi + qj)2.
q1

q4

q3

q2

q5
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five-point scattering with one color-singlet off-shell leg.
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integral expansion, which applies efficiently for this case.



Summary and outlook

We present a first analytic computation of a two-loop 
five-point scattering with one color-singlet off-shell leg.

Apply to more general observables.

Study the new constraints beyond collinear limit, such as 
OPE limit, Regge limit.

Outlook:

We develop a new bootstrap strategy based on master 
integral expansion, which applies efficiently for this case.



Thank you!



Extra slides



Symbol bootstrap

Computing the finite remainder functions using symbol techniques. 
Ansatz 

in symbols Physical constraints Solution

Sansatz(R) = ∑
i

ci[ ⊗a Wi,a] S(R) = ∑
i

ci( ⊗a Wi,a)

Brandhuber, Travaglini, GY 2012Two-loop 3-point example:



Symbol bootstrap: 
2-loop 3-point form factor

Constraints: 

•   Variables in symbol : 
•   Entry conditions: restriction on the position of variables  
•   Collinear limit : 
•   Totally symmetric in kinematics 
•   Integrability condition 

Compute its symbol directly, without knowing the result first. 

Consider two-loop three-point form factor: 



therefore can be obtained from a function involving only classical polylog functions: 

It satisfies 

Symbol bootstrap: 
2-loop 3-point form factor

A unique 
solution of 

the 
remainder 
symbol:



Reconstruct the function (plus collinear constraint) : 

Simple combination of classical polylog functions ! 

Symbol bootstrap: 
2-loop 3-point form factor



N=4 SYM

QCD

N=4 result is identical to the maximally transcendental part in QCD!

Symbol bootstrap: 
2-loop 3-point form factor

Gehrmann, Jaquier, 
Glover, Koukoutsakis 2011

Brandhuber, Travaglini, GY 2012


