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Motivations

• Multi-scale Feynman integrals have been the bottleneck in the application of 
perturbative QFT. 

• They are difficult because of the large space of functions and combinatorics in 
multiple variables in the final integrated result. (Disaster of dimensions!) 

• In the method of differential equations, boundary conditions are still demanding. 
How to choose a wise boundary?



Method of regions

• One way to simplify the multi-scale integrals is to use the method of regions. 

• This kind of analysis has led to (and is the base of) effective field theories, such as 
SCET. 

• The idea is to expand a complicated integral within dim-reg to a sum of simpler 
integrals, at the integrand level. 

• Simpler means fewer scales involved. 

• The ultimate version: Each term depends only on a single scale. 

• The accuracy can be improved systematically.  



4 steps

1. Determine the large and small scales in the problem 

2. Divide the loop integration domain into regions in which each loop momentum is 
of the order of one of the scales in the problem 

3. Perform a Taylor expansion in the parameters, which are small in the given region. 

4. Integrate over the entire loop integration domain in every region.



An example

• First, we assume m<M. The full result can be expanded as 

• This is called an asymptotic expansion since the result is not analytic in m/M. 

•  We may naively Taylor expand the integrand in the small m limit.
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Introduce a scale:  m ⌧ ⇤ ⌧ M
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Introducing a scale makes the calculation complicated. Try working in dim-reg.  
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Another example
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In the z-anti-hard-collinear region:  k ⇠ Q(z, 1,
p
z)
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The sum of the above two  regions reproduce the full result.  
The poles in the full result arise in the IR regions, so one may look at these regions. 
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Introduction to SCET
• The method of regions focuses mainly on the momentum space. The Feynman diagrams 

are still generated by traditional methods. 

• Effective field theories set up power counting from the Lagrangian, for both momenta and 
fields. Symmetries are also more explicitly implemented.  

• Soft collinear effective theory (SCET) is very suitable for QCD (loop) integrals since it 
describes the regions where divergences appear. 

• Tremendous improvement has been achieved during the last two decades, e.g., the general 
structures of divergences of amplitudes, the relations between (external)  massless 
amplitudes and massive ones, the anomalous dimensions of TMD PDFs, the global 
subtraction of IR divergences in differential (N)NNLO QCD corrections, the subleading 
power structures of large logarithms in cross sections, non-global logs, super-leading logs. 



Fermion fields

In QCD, the fermion fields are described by:  Lq =  ̄iDµ�
µ 

In SCET, the fermion fields split to different modes:   =  c +  s

To extract the large component, we define 
(see Peskin’s book, sec.3.3 ) 
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Gauge fields and E.o.M
In SCET, the gauge fields split to different modes:  Aµ(x) ! Aµ
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Lagrangian of SCET
LSCET =  ̄siD/s s + ⇠̄

n̄/

2


in ·D + iD/c?

1

in̄ ·Dc
iD/c?

�
⇠ � 1

4

�
F s,a
µ⌫

�2 � 1

4

�
F c,a
µ⌫

�2

Collinear gauge field strengths:  igF c
µ⌫ = [iDµ, iD⌫ ] , Dµ = n ·Dn̄µ

2
+ n̄ ·Dc

nµ

2
+Dµ

c?

The interaction between collinear and soft modes can be removed by field redefinitions.  
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This conclusion holds to all orders, though it is not so clear from the diagrams.  



Decoupling of soft gauge fields
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Operators of SCET
The SCET Lagrangian describes the interaction in the single collinear or soft modes, as it 
should be. 

The interaction between different collinear directions involves hard scales that live beyond the 
control of SCET, and are governed by (hard) operators and associating Wilson coefficients. 

Consider the simple current operator in QCD:    .  Since there are only two 
quark fields, we can choose a frame in which they move back-to-back. Matching this operator 
into that in SCET. 

 

The new collinear fields are defined by     
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Matching & Collinear Wilson lines
We perform matching by calculating the matrix elements of the operators in both the full and 
effective theories. The matching coefficient should not depend on the external states one 
chooses.
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Matching Wilson Coefficient
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Solve the renormalization group equation to obtain the all-order result

The cusp part controls the structure of double logs and has been studied in the 
renormalization of closed Wilson lines with cusps in 1980’s. 



Factorization of x-sec. for thrust
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Factorization of x-sec. for thrust
The fixed-order result is  
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Factorization of x-sec. for thrust

In the limit of , the cross section becomes  
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Factorization of x-sec. for thrust

The x-section contains contribution from the scales: 
 Q2, m2 ∼ Q2λ2 ∼ Q2τ, k2 ∼ Q2λ4 ∼ Q2τ2

The summation of large log comes from the running from one scale to another: 
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Factorization of x-sec. for thrust
The U’s satisfy  
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Factorization of x-sec. for thrust
The jet function’s RGE is non-local. 
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A similar solution can be found for the soft function. 
And then the convolution between two jet and one soft function can be done analytically.



Summary

• In this talk, I give a short introduction to the method of regions, which can be used 
to obtain the integrals in certain limits. This can also be used to determine the 
boundary constants of differential equations. 

• In another part of the talk, I review the basic ideas of SCET. The development in 
this field deepens our understanding of the IR structure of the QCD amplitudes and 
many results have been used in pQCD. 

• Many more contents have been skipped.



Thanks a lot !


