Calculation of phase-space integration of sufficient inclusive

processes

Peng Zhang

Peking University
January 7, 2021

Outline

- Examples: $\gamma^{*} \rightarrow t \bar{t}+X$ at NNLO
- Reverse unitarity relation
- Differential equations
- Auxiliary mass flow
- Examples: $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[1,8]}\right)+X$ at NLO
- Summary

General integral form

General phase-space and loop integral

- form

$$
Q=\sum_{i=1}^{M} q_{i}=\sum_{i=1}^{N} k_{i}
$$

$$
F(\vec{\nu} ; \vec{s}) \equiv \int \mathrm{dPS}_{N} \prod_{\alpha} \frac{1}{\left(\mathcal{D}_{\alpha}^{\mathrm{t}}\right)^{\nu_{\alpha}^{\mathrm{t}}}}
$$

$$
\int \prod_{i=1}^{L^{+}} \frac{\mathrm{d}^{D} l_{i}^{+}}{(2 \pi)^{D}} \prod_{\beta} \frac{1}{\left(\mathcal{D}_{\beta}^{+}+\mathrm{i} 0^{+}\right)^{\nu_{\beta}^{+}}}
$$

$$
\int \prod_{j=1}^{L^{-}} \frac{\mathrm{d}^{D} l_{j}^{-}}{(2 \pi)^{D}} \prod_{\gamma} \frac{1}{\left(\mathcal{D}_{\gamma}^{-}-\mathrm{i} 0^{+}\right)^{\nu_{\gamma}^{-}}}
$$

$$
\prod_{i, j}\left(l_{i}^{+} \cdot l_{j}^{-}\right)^{-\nu_{i j}^{ \pm}},
$$

- $\vec{\nu} \equiv\left(\nu_{1}^{\mathrm{t}}, \nu_{2}^{\mathrm{t}}, \cdots, \nu_{1}^{+}, \nu_{2}^{+}, \cdots, \nu_{1}^{-}, \nu_{2}^{-}, \cdots, \nu_{11}^{ \pm}, \nu_{12}^{ \pm}, \nu_{21}^{ \pm}, \cdots\right)$
- \vec{s} : kinematical invariants (including Q^{2})
- phase-space

$$
\operatorname{dPS}_{N} \equiv(2 \pi)^{D} \delta^{D}\left(Q-\sum_{i=1}^{N} k_{i}\right) \prod_{i=1}^{N} \frac{\mathrm{~d}^{D} k_{i}}{(2 \pi)^{D}}(2 \pi) \delta\left(\mathcal{D}_{i}^{\mathrm{c}}\right) \Theta\left(k_{i}^{0}-m_{i}\right)
$$

Examples: VRR of $\boldsymbol{\gamma}^{*} \rightarrow \boldsymbol{t} \overline{\boldsymbol{t}}+\boldsymbol{X}$

Integral form

- notation: $\mathrm{V}^{L^{+}} \mathrm{R}^{N-1} \mathrm{~V}^{L^{-}}$to distinguish sub-processes
- the phase-space integrals

$$
\hat{F}(\overrightarrow{;} ; \vec{s})=\int \mathrm{dPS}_{3} \prod_{\alpha=1}^{2} \frac{1}{\left(\mathcal{D}_{\alpha}^{t}\right)^{\nu \nu_{\mathrm{a}}^{-}}} \int \frac{\mathrm{d}^{D} l_{1}^{+}}{(2 \pi)^{D}} \prod_{\beta=1}^{6} \frac{1}{\left(\mathcal{D}_{\beta}^{+}+\mathrm{i} 0^{+}\right)^{\nu^{+}}}
$$

- inverse propagators

$$
\begin{aligned}
& \mathcal{D}_{1}^{c}=k_{1}^{2}-m_{t}^{2}, \mathcal{D}_{2}^{c}=k_{2}^{2}-m_{t}^{2}, \mathcal{D}_{3}^{c}=\left(Q-k_{1}-k_{2}\right)^{2} ; \\
& \mathcal{D}_{1}^{\mathrm{t}}=\left(Q-k_{2}\right)^{2}-m_{t}^{2}, \mathcal{D}_{2}^{\mathrm{t}}=\left(Q-k_{1}\right)^{2}-m_{t}^{2} ; \\
& \mathcal{D}_{1}^{+}=\left(k_{1}+l_{1}^{+}\right)^{2}-m_{t}^{2}, \mathcal{D}_{2}^{+}=\left(k_{2}-l_{1}^{+}\right)^{2}-m_{t}^{2}, \\
& \mathcal{D}_{3}^{+}=l_{1}^{+}, \mathcal{D}_{4}^{+}=\left(Q-k_{1}-k_{2}+l_{1}^{+}\right)^{2}, \\
& \mathcal{D}_{5}^{+}=\left(Q-k_{2}+l_{1}^{+}\right)^{2}-m_{t}^{2}, \mathcal{D}_{6}^{+}=\left(Q-k_{1}-l_{1}^{+}\right)^{2}-m_{t}^{2},
\end{aligned}
$$

- phase-space

$$
\mathrm{dPS}_{N} \equiv(2 \pi)^{D} \delta^{D}\left(Q-\sum_{i=1}^{N} k_{i}\right) \prod_{i=1}^{N} \frac{\mathrm{~d}^{D} k_{i}}{(2 \pi)^{D}}(2 \pi) \delta\left(\mathcal{D}_{i}^{\mathrm{c}}\right) \Theta\left(k_{i}^{0}-m_{i}\right) \text { a typical Feynman diagrams }
$$

Reverse unitarity relation

Dirac delta function

- transformation

$$
(2 \pi) \delta\left(\mathcal{D}_{i}^{\mathrm{c}}\right)=\frac{\mathrm{i}}{\mathcal{D}_{i}^{\mathrm{c}}+\mathrm{i} 0^{+}}+\frac{-\mathrm{i}}{\mathcal{D}_{i}^{\mathrm{c}}-\mathrm{i} 0^{+}}
$$

- mass shell condition \longrightarrow propagator
- map phase-space integrals onto pure loop integrals
- use the techniques for loop integration
- integration-by-parts (IBP) reduction
- dimensional recurrence
- differential equations (DEs) w.r.t. kinematical invariants
- auxiliary mass flow (AMF) : DEs w.r.t. auxiliary mass

Reverse unitarity relation

For 1 delta function case

- with these high loop techniques, relations are the same whether the imaginary part is $\mathcal{D}_{1}^{c}+i 0^{+}$ or $\mathcal{D}_{1}^{c}-i 0^{+}$
- two parts reduce to the similar loop master integrals (MIs) (except the signature of imaginary part)
- linear function of MIs
- coefficients of MIs of two parts are the same

Reverse unitarity relation

For 1 delta function case

- choose MIs in which power of $\mathcal{D}_{1}^{c} \pm i 0^{+}$is no more than 1
- plus reduction results of two parts again
- for MIs in which power of $\mathcal{D}_{1}^{c} \pm i 0^{+}$is smaller than 1, set them to 0
- inverse propagator \longrightarrow mass shell condition
- loop integrals reduction \longrightarrow phase-space integrals reduction

Reverse unitarity relation

For 2 delta function case

$$
\begin{aligned}
(2 \pi)^{2} \delta\left(\mathcal{D}_{1}^{\mathrm{c}}\right) \delta\left(\mathcal{D}_{2}^{\mathrm{c}}\right)= & \frac{\mathrm{i}}{\mathcal{D}_{1}^{\mathrm{c}}+\mathrm{i} 0^{+}} \frac{\mathrm{i}}{\mathcal{D}_{2}^{\mathrm{c}}+\mathrm{i} 0^{+}}+\frac{\mathrm{i}}{\mathcal{D}_{1}^{\mathrm{c}}+\mathrm{i} 0^{+}} \frac{-\mathrm{i}}{\mathcal{D}_{2}^{\mathrm{c}}-\mathrm{i} 0^{+}} \\
& +\frac{-\mathrm{i}}{\mathcal{D}_{1}^{\mathrm{c}}-\mathrm{i} 0^{+}} \frac{\mathrm{i}}{\mathcal{D}_{2}^{\mathrm{c}}+\mathrm{i} 0^{+}}+\frac{-\mathrm{i}}{\mathcal{D}_{1}^{\mathrm{c}}-\mathrm{i} 0^{+}} \frac{-\mathrm{i}}{\mathcal{D}_{2}^{\mathrm{c}}-\mathrm{i} 0^{+}}
\end{aligned}
$$

- similar with 1 delta function
- four parts have the same reduction relations
- linear function of similar MIs with same coefficients
- inverse propagator \longrightarrow mass shell condition
- loop integrals reduction \longrightarrow phase-space integrals reduction

Reverse unitarity relation

Heaviside Function

- $\Theta\left(k_{i}^{0}-m_{i}\right)$ are equivalent to $\Theta\left(k_{i}^{0}\right)$ here
- its derivative is $\delta\left(k_{i}^{0}-m_{i}\right)$
- all space components of k_{i} to be at the origin
- well regularized by dimensional regularization
- set to 0

Differential equations

Reduction and DEs

- IBP reduction
- set up DEs w.r.t \vec{s} among $\operatorname{MIs}(\vec{I}(\vec{S}))$

$$
\frac{\partial}{\partial s_{i}} \vec{I}(\vec{s})=M_{i}(\vec{s}) \vec{I}(\vec{s})
$$

- for $\gamma^{*} \rightarrow t \bar{t}+X$, only two kinematical: Q^{2} and m_{t}^{2}
- take

$$
s=Q^{2}, \quad x=\frac{4 m_{t}^{2}}{s}, \quad \nu=\sum \vec{\nu}
$$

- dimensionless integrals

$$
\hat{F}(\vec{\nu} ; x) \equiv s^{N-\frac{N-1+L}{2}} D+\nu F(\vec{\nu} ; \vec{s})
$$

- set up DEs w.r.t. x

Differential equations

VRR for example

some typical Feynman diagrams

(a)

(b)

- (a) is the most complicated diagram
- (b) is (a)'s sub-diagram, take it as an example

Differential equations

VRR: sub-diagram (b)

- define MIs as

$$
\begin{aligned}
& \hat{F}\left(\left\{\nu_{1}^{\mathrm{t}}, \nu_{1}^{+}, \nu_{2}^{+}\right\} ; x\right)=s^{3-\frac{3}{2} D+\nu_{1}^{t}+\nu_{1}^{+}+\nu_{2}^{+}} \int \mathrm{dPS}_{3} \frac{1}{\mathcal{D}_{1}^{\nu_{1}^{+}}} \int \frac{\mathrm{d}^{D} l_{1}^{+}}{(2 \pi)^{D}} \frac{1}{\left(\mathcal{D}_{1}^{+}+\mathrm{i}^{+}+\nu_{1}^{+}\right.}\left(\mathcal{D}_{2}^{+}+\mathrm{i} 0^{+}\right)^{\nu_{2}^{+}} \\
& \begin{array}{l}
\mathcal{D}_{1}^{\mathrm{t}}=\left(Q-k_{2}\right)^{2}-m_{t}^{2}, \\
\mathcal{D}_{1}^{+}=\left(k_{1}+l_{1}^{+}\right)^{2}-m_{t}^{2}, \\
\mathcal{D}_{2}^{+}=\left(k_{2}-l_{1}^{+}\right)^{2}-m_{t}^{2}
\end{array}
\end{aligned}
$$

-6 MIs

$$
\begin{aligned}
& \{\hat{F}(\{0,0,1\} ; x), \hat{F}(\{-1,0,1\} ; x), \hat{F}(\{0,1,1\} ; x), \\
& \hat{F}(\{0,1,2\} ; x), \hat{F}(\{1,1,1\} ; x), \hat{F}(\{1,1,2\} ; x)\} .
\end{aligned}
$$

Differential equations

VRR: sub-diagram (b)

- Set up DEs w.r.t. x

$$
\begin{align*}
& \frac{\partial}{\partial x} \hat{F}\left(\left\{\nu_{1}^{\mathrm{t}}, \nu_{1}^{+}, \nu_{2}^{+}\right\} ; x\right)= \\
& {\left[\begin{array}{ccccc}
\frac{2+3 x-2 \epsilon-4 x \epsilon}{2(-1+x) x} & \frac{6(-1+\epsilon)}{(-1+x) x} & 0 & 0 & 0 \\
\frac{-1+\epsilon}{x} & \frac{-4(-1+\epsilon)}{x} & 0 & 0 & 0 \\
\frac{-2(-1+\epsilon)(-4-x+4 \epsilon+2 x \epsilon)}{(-1+x) x^{2}(-1+2 \epsilon)} & \frac{24(-1+\epsilon)^{2}}{(-1+x) x^{2}(-1+2 \epsilon)} & 0 & 0 & 0 \\
\frac{4\left(2-5 \epsilon+3 \epsilon^{2}\right)}{(-1+x) x^{2}} & \frac{-2(1-2 \epsilon)^{2}}{(-1+x) x} & \frac{2(x+\epsilon-3 x \epsilon)}{(-1+x) x} & 0 & 0 \\
\frac{6(-1+\epsilon)(-4-x+4 \epsilon+2 x \epsilon)}{(-1+x)^{2} x^{2}(-1+2 \epsilon)} & \frac{-72(-1+\epsilon)^{2}}{(-1+x)^{2} x^{2}(-1+2 \epsilon)} & \frac{-2(-1+2 \epsilon)}{(-1+x) x} & \frac{-2}{-1+x} & 0
\end{array}\right.} \tag{0}\\
& \left.\begin{array}{ccccc}
\frac{-4\left(4+3 x-8 \epsilon-8 x \epsilon+4 \epsilon^{2}+5 x \epsilon^{2}\right)}{(-1+x)^{2} x^{3}} & \frac{48(-1+\epsilon)^{2}}{(-1+x)^{2} x^{3}} & \frac{2(1-2 \epsilon)^{2}}{(-1+x)^{2} x} & \frac{2(-1+2 \epsilon)}{(-1+x)^{2}} & \frac{(1-2 \epsilon)(3 \epsilon-1)}{(-1+x) x} \frac{x+4 \epsilon-10 x \epsilon}{2(-1+x) x}
\end{array}\right]
\end{align*}
$$

$$
\hat{F}\left(\left\{\nu_{1}^{\mathrm{t}}, \nu_{1}^{+}, \nu_{2}^{+}\right\} ; x\right)
$$

- pole: 0, 1

Differential equations

Boundary conditions

- At ordinary point
- sector decomposition
- auxiliary mass flow
- At singularity
- analyze regions

Auxiliary mass flow

Add auxiliary mass to inverse propagators

- general phase-space and loop integral with auxiliary masses

$$
\begin{aligned}
& F(\vec{\nu} ; \vec{s}, \vec{\eta}) \equiv \int \mathrm{dPS}_{N} \prod_{\alpha} \frac{1}{\left(\mathcal{D}_{\alpha}^{\mathrm{t}}+\eta_{\alpha}^{\mathrm{t}}\right)_{\alpha}^{\mathrm{t}}} \\
& \int \prod_{i=1}^{L^{+}} \frac{\mathrm{d}^{D} l_{i}^{+}}{(2 \pi)^{D}} \prod_{\beta} \frac{1}{\left(\mathcal{D}_{\beta}^{+}+\mathrm{i} \eta_{\beta}^{+}\right)^{\nu_{\beta}^{+}}} \\
& \int \prod_{j=1}^{L^{-}} \frac{\mathrm{d}^{D} l_{j}^{-}}{(2 \pi)^{D}} \prod_{\gamma} \frac{1}{\left(\mathcal{D}_{\gamma}^{-}-\mathrm{i} \eta_{\gamma}^{-}\right)^{\nu_{\gamma}^{-}}} \\
& \prod_{i, j}\left(l_{i}^{+} \cdot l_{j}^{-}\right)^{-\nu_{i j}^{ \pm}} \\
& \vec{\eta} \equiv\left(\eta_{1}^{\mathrm{t}}, \eta_{2}^{\mathrm{t}}, \cdots, \eta_{1}^{+}, \eta_{2}^{+}, \cdots, \eta_{1}^{-}, \eta_{2}^{-}, \cdots\right) \\
& \mathrm{dPS}_{N} \equiv(2 \pi)^{D} \delta^{D}\left(Q-\sum_{i=1}^{N} k_{i}\right) \prod_{i=1}^{N} \frac{\mathrm{~d}^{D} k_{i}}{(2 \pi)^{D}}(2 \pi) \delta\left(\mathcal{D}_{i}^{\mathrm{c}}\right) \Theta\left(k_{i}^{0}-m_{i}\right)
\end{aligned}
$$

Auxiliary mass flow

Direction choice of $\vec{\eta} \rightarrow 0$

- Rule of Feynman prescription for Feynman propagators
take $\eta_{\beta}^{+} \rightarrow 0^{+}$and $\eta_{\gamma}^{-} \rightarrow 0^{+}$

$$
\begin{aligned}
& F(\vec{\nu} ; \overrightarrow{s, \vec{\eta}}) \equiv \int \operatorname{dPS}_{N} \prod_{\alpha} \frac{1}{\left(\mathcal{D}_{\alpha}^{t}+\eta_{\alpha}^{t}\right)^{\nu_{\alpha}^{t}}} \\
& \int \prod_{i=1}^{L^{+}} \frac{\mathrm{d}^{D} l_{i}^{+}}{(2 \pi)^{D}} \prod_{\beta} \frac{1}{\left(\mathcal{D}_{\beta}^{+}+\mathrm{i} \eta_{\beta}^{+}\right)^{+-}} \\
& \int \prod_{j=1}^{L^{-}} \frac{\mathrm{d}^{D} l_{j}^{-}}{(2 \pi)^{D}} \prod_{\gamma} \frac{1}{\left(\mathcal{D}_{\bar{\gamma}}-\mathrm{i} \eta_{\bar{\gamma}}\right)^{\nu^{\bar{\gamma}}}} \\
& \prod_{i, j}\left(l_{i}^{+} \cdot l_{j}^{-}\right)^{-\nu_{t}^{ \pm}}
\end{aligned}
$$

Auxiliary mass flow

Choice of finite $\vec{\eta}$

- either related to each others or completely independent
- all choices are workable
- all same
- a strong ordering
- our choice: either 0^{+}or η

$$
\begin{aligned}
& F(\vec{v}, \vec{s}, \vec{\eta}) \equiv \int \operatorname{dPS}_{N} \prod_{\alpha} \frac{1}{\left(\mathcal{D}_{\alpha}^{t}+\eta_{\alpha}^{t}\right)^{\nu_{\alpha}^{t}}} \\
& \int \prod_{i=1}^{L^{+}} \frac{\mathrm{d}^{D} l_{i}^{+}}{(2 \pi)^{D}} \prod_{\beta} \frac{1}{\left(\mathcal{D}_{\beta}^{+}+\mathrm{i} \eta_{\beta}^{+}\right)^{\nu^{+}}} \\
& \int \prod_{j=1}^{L^{-}} \frac{\mathrm{d}^{D} l_{j}^{-}}{(2 \pi)^{D}} \prod_{\gamma} \frac{1}{\left(\mathcal{D}_{\bar{\gamma}}-\mathrm{i} \eta_{\bar{\gamma}}\right)^{\nu_{\bar{\gamma}}}} \\
& \prod^{\left(l_{i}^{+} \cdot l_{j}^{-}\right)^{-\nu_{0}^{t}}}
\end{aligned}
$$

- if $\left\{\mathcal{D}_{\beta}^{+}\right\}$or $\left\{\mathcal{D}_{\gamma}^{-}\right\}$depend on \vec{s}, choose $\eta_{\alpha}^{t} \rightarrow 0^{+}$and $\eta_{\beta}^{+}=\eta_{\gamma}^{-}=\eta$
- else, choose $\eta_{\alpha}^{t}=\eta$
- introduce one auxiliary mass η

Auxiliary mass flow

VRR: sub-diagram (b)

- take $y=\eta / s$
- define dimensional integrals

$$
\begin{aligned}
& \mathcal{D}_{1}^{\mathrm{t}}=\left(Q-k_{2}\right)^{2}-m_{t}^{2}, \\
& \mathcal{D}_{1}^{+}=\left(k_{1}+l_{1}^{+}\right)^{2}-m_{t}^{2}, \\
& \mathcal{D}_{2}^{+}=\left(k_{2}-l_{1}^{+}\right)^{2}-m_{t}^{2},
\end{aligned}
$$

$$
\hat{F}\left(\left\{\nu_{1}^{\mathrm{t}}, \nu_{1}^{+}, \nu_{2}^{+}\right\} ; x, y\right)=s^{3-\frac{3}{2} D+\nu_{1}^{t}+\nu_{1}^{+}+\nu_{2}^{+}} \int \mathrm{dPS}_{3} \frac{1}{\mathcal{D}_{1}^{\text {t/ }}} \int \frac{\mathrm{d}^{D} l_{1}^{+}}{(2 \pi)^{D}} \frac{1}{\left(\mathcal{D}_{1}^{+}+\mathrm{i} \eta\right)^{\nu_{1}^{+}}\left(\mathcal{D}_{2}^{+}+\mathrm{i} \eta\right)^{\nu_{2}^{+}}}
$$

- after reduction, 7 MIs for finite η (or y)

$$
\begin{aligned}
& \{\hat{F}(\{0,0,1\} ; x, y), \hat{F}(\{-1,0,1\} ; x, y), \hat{F}(\{0,1,1\} ; x, y), \hat{F}(\{-1,1,1\} ; x, y), \\
& \hat{F}(\{0,1,2\} ; x, y), \hat{F}(\{1,1,1\} ; x, y), \hat{F}(\{1,1,2\} ; x, y)\}
\end{aligned}
$$

- 6 MIs for $\eta \rightarrow 0^{+}$(as show in page 12)

$$
\begin{aligned}
& \left\{\hat{F}\left(\{0,0,1\} ; x, 0^{+}\right), \hat{F}\left(\{-1,0,1\} ; x, 0^{+}\right), \hat{F}\left(\{0,1,1\} ; x, 0^{+}\right)\right. \\
& \left.\hat{F}\left(\{0,1,2\} ; x, 0^{+}\right), \hat{F}\left(\{1,1,1\} ; x, 0^{+}\right), \hat{F}\left(\{1,1,2\} ; x, 0^{+}\right)\right\}
\end{aligned}
$$

Auxiliary mass flow

VRR: sub-diagram (b)

- choose $x=1 / 2$ (ordinary point) and set up DEs

$$
\frac{\partial}{\partial y} \hat{F}\left(\left\{\nu_{1}^{\mathrm{t}}, \nu_{1}^{+}, \nu_{2}^{+}\right\} ; \frac{1}{2}, y\right)=
$$

- take boundaries at $\eta \rightarrow \infty$

Auxiliary mass flow

Expansion for tree propagators at $\eta \rightarrow \infty$

- scalar products among external momenta and cut momenta are finite

$$
\begin{gathered}
\frac{1}{\mathcal{D}_{\alpha}^{\mathrm{t}}+\eta} \stackrel{\eta \rightarrow \infty}{=} \frac{1}{\eta} \sum_{j=0}^{+\infty}\left(\frac{-\mathcal{D}_{\alpha}^{\mathrm{t}}}{\eta}\right)^{j} \\
\frac{1}{\mathcal{D}_{\alpha}^{\mathrm{t}}} \xlongequal{\eta \rightarrow \infty} \frac{1}{\mathcal{D}_{\alpha}^{\mathrm{t}}}
\end{gathered}
$$

- If η is introduced, tree propagators are removed
- else, tree propagators remain

Auxiliary mass flow

Expansion for loop propagators at $\eta \rightarrow \infty$

- loop momenta can be any large value
- at $\eta \rightarrow \infty$, linear combinations of loop momenta can be either at the order of $|\eta|^{1 / 2}$ or much smaller than it
- decompose \mathcal{D}_{α}^{+}into two parts

$$
\mathcal{D}_{\alpha}^{+}=\widetilde{\mathcal{D}}_{\alpha}^{+}+K_{\alpha}
$$

- $\widetilde{\mathcal{D}}_{\alpha}^{+}$: only including the part at order $|\eta|$
- K_{α} : other parts

Auxiliary mass flow

Expansion for loop propagators at $\eta \rightarrow \infty$

$$
\begin{aligned}
& \frac{1}{\mathcal{D}_{\alpha}^{+}+\mathrm{i} \eta} \xlongequal{\eta \rightarrow \infty} \frac{1}{\widetilde{\mathcal{D}}_{\alpha}^{+}+\mathrm{i} \eta} \sum_{j=0}^{+\infty}\left(\frac{-K_{\alpha}}{\widetilde{\mathcal{D}}_{\alpha}^{+}+\mathrm{i} \eta}\right)^{j}, \\
& \frac{1}{\mathcal{D}_{\alpha}^{+}+\mathrm{i} 0^{+}} \xlongequal{\eta \rightarrow \infty} \begin{cases}\frac{1}{\widetilde{\mathcal{D}}_{\alpha}^{+}+\mathrm{i} 0^{+}} \sum_{j=0}^{+\infty}\left(\frac{-K_{\alpha}}{\widetilde{\mathcal{D}}_{\alpha}^{+}+\mathrm{i} 0^{+}}\right)^{j} & \text { if } \widetilde{\mathcal{D}}_{\alpha}^{+} \neq 0, \\
\frac{1}{\mathcal{D}_{\alpha}^{+}+\mathrm{i} 0^{+}} & \text {if } \widetilde{\mathcal{D}}_{\alpha}^{+}=0,\end{cases}
\end{aligned}
$$

- expansion for \mathcal{D}_{α}^{-}are similar
- propagators (η exits and $\widetilde{\mathcal{D}}_{\alpha}^{+}=0$) removed
- decouple some loop momenta at order $|\eta|^{1 / 2}$
\rightarrow single-scale vacuum integrals factored eg: $l_{\alpha}^{+} \cdot k_{i}, l_{\alpha}^{+} \cdot q_{i}$

Auxiliary mass flow

Expansion at $\eta \rightarrow \infty$

- $F(\vec{v} ; \vec{s}, \eta)$ is simplified to a linear combination of integrals with fewer inverse propagators

$$
F(\vec{v} ; \vec{s}, \eta) \longrightarrow \sum c \times F^{\mathrm{cut}} \times F^{\mathrm{bub}}
$$

- c are rational functions of \vec{s} and η
- $F^{\text {bub }}$: single-scale vacuum bubble integrals
- studied up to five-loop order Luthe, Maier, Marquard et al., JHEP o3, (2017) o2o
- $F^{\text {cut }}$: basal phase-space integrations with the integrands being polynomials of scalar products between cut momenta.
- also studied for $m_{i}=0$ or m (no more than 2)

Auxiliary mass flow

VRR: sub-diagram (b)

$$
F_{1,1}^{\mathrm{bub}}(D) \equiv \int \frac{\mathrm{d}^{D} l_{1}^{+}}{(2 \pi)^{D}} \frac{1}{l_{1}^{+2}+\mathrm{i}}
$$

$$
\begin{aligned}
& \hat{F}\left(\{0,0,1\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{4-\frac{3}{2} D} \eta^{\frac{D}{2}-1} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}_{3}\right)_{x=1 / 2} \\
& \hat{F}\left(\{-1,0,1\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{3-\frac{3}{2} D} \eta^{\frac{D}{2}-1} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}_{3} \mathcal{D}_{1}^{\mathrm{t}}\right)_{x=1 / 2} \\
& \hat{F}\left(\{0,1,1\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{5-\frac{3}{2} D} \eta^{\frac{D}{2}-2} \frac{\mathrm{i}(D-2)}{2} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}_{3}\right)_{x=1 / 2} \\
& \hat{F}\left(\{-1,1,1\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{4-\frac{3}{2} D} \eta^{\frac{D}{2}-2} \frac{\mathrm{i}(D-2)}{2} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}_{3} \mathcal{D}_{1}^{\mathrm{t}}\right)_{x=1 / 2} \\
& \hat{F}\left(\{0,1,2\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{6-\frac{3}{2} D} \eta^{\frac{D}{2}-3} \frac{(4-D)(D-2)}{8} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}_{3}\right)_{x=1 / 2} \\
& \left.\hat{F}\left(\{1,1,1\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{6-\frac{3}{2} D} \eta^{\frac{D}{2}-2} \frac{\frac{\mathrm{i}(D-2)}{2} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}\right.}{3} \frac{1}{\mathcal{D}_{1}^{\mathrm{t}}}\right)_{x=1 / 2} \\
& \hat{F}\left(\{1,1,2\} ; \frac{1}{2}, y\right) \xlongequal{\eta \sim \infty} s^{7-\frac{3}{2} D} \eta^{\frac{D}{2}-3} \frac{(4-D)(D-2)}{8} F_{1,1}^{\mathrm{bub}}(D)\left(\int \mathrm{dPS}_{3} \frac{1}{\mathcal{D}_{1}^{\mathrm{t}}}\right)_{x=1 / 2}
\end{aligned}
$$

Auxiliary mass flow

basal phase-space integrations

- $\int \operatorname{dPS}_{3}\left(\mathcal{D}_{1}^{t}\right)^{i}$ can be reduced to two MIs of RR process
- $F_{r, N, n}^{\text {cut }}$ denote the n-th MI for N-particle-cut integrals with $m_{1}=\cdots=m_{r}=m$ and $m_{r+1}=\cdots=m_{N}=0$
- for $N=3$, two MIs: $F_{2,3,1}^{\text {cut }}$ and $F_{2,3,2}^{\text {cut }}$
- definition

$$
F_{2, N, n}^{\mathrm{cut}} \equiv \int \mathrm{dPS}_{N}\left(\left(k_{1}+k_{2}\right)^{2}\right)^{n-1}
$$

Auxiliary mass flow

basal phase-space integrations

- MI result of RR

$$
\begin{aligned}
F_{2, N, n}^{\mathrm{cut}} \equiv & \int \mathrm{dPS}_{N}\left(\left(k_{1}+k_{2}\right)^{2}\right)^{n-1}=\frac{2^{5+2 N(\epsilon-2)-2 \epsilon} \pi^{3+N(\epsilon-2)-\epsilon} \Gamma(1+n-2 \epsilon) \Gamma(1-\epsilon)^{N-1} \Gamma(n-\epsilon)}{\Gamma(2-2 \epsilon) \Gamma(n-1+N-N \epsilon) \Gamma(n-2+N+\epsilon-N \epsilon)} s^{n-3+N+\epsilon-N \epsilon} \\
& \times{ }_{3} F_{2}\left(\epsilon-\frac{1}{2}, 2-n-N+N \epsilon, 3-n-N-\epsilon+N \epsilon ; 1-n+\epsilon, 2 \epsilon-n ; \frac{4 m^{2}}{s}\right) \\
& +\frac{2^{4+2 N(\epsilon-2)} \pi^{\frac{1}{2}+N(\epsilon-2)-\epsilon} \Gamma(1-\epsilon)^{N-1} \Gamma(\epsilon-n)}{\Gamma\left(\frac{3}{2}-n\right) \Gamma((N-1)(1-\epsilon)) \Gamma((N-2)(1-\epsilon))} s^{n-3+N+\epsilon-N \epsilon}\left(\frac{4 m^{2}}{s}\right)^{n-\epsilon} \\
& \times{ }_{3} F_{2}\left(n-\frac{1}{2}, 3-N-2 \epsilon+N \epsilon, 2-N-\epsilon+N \epsilon ; 1+n-\epsilon, \epsilon ; \frac{4 m^{2}}{s}\right) \\
& +\frac{2^{4+2 N(\epsilon-2)} \pi^{\frac{1}{2}+N(\epsilon-2)-\epsilon} \Gamma(1-\epsilon)^{N-2} \Gamma(\epsilon-1) \Gamma(2 \epsilon-1-n)}{\Gamma\left(\frac{1}{2}-n+\epsilon\right) \Gamma((N-2)(1-\epsilon)) \Gamma((N-3)(1-\epsilon))} s^{n-3+N+\epsilon-N \epsilon}\left(\frac{4 m^{2}}{s}\right)^{1+n-2 \epsilon} \\
& \times{ }_{3} F_{2}\left(\frac{1}{2}+n-\epsilon, 4-N-3 \epsilon+N \epsilon, 3-N-2 \epsilon+N \epsilon ; 2+n-2 \epsilon, 2-\epsilon ; \frac{4 m^{2}}{s}\right) .
\end{aligned}
$$

Comment

basal phase-space integrations

- without η, MIs of RRR are not the basal phasespace integrations
- add η and make expansion at $\eta \rightarrow \infty$ (see Page 17)
- all \mathcal{D}_{α}^{t} come to the numerators
- then MIs are all basal phase-space integrations

Auxiliary mass flow

Flow of $\eta(y)$

- Set up DEs w.r.t. y (as shown in page 19)
- boundary condition: fixed $\mathrm{x}=1 / 2$ and $y \rightarrow \infty$
- solve DEs with the flow of y from ∞ to 0^{+}
- eg: $\widehat{F}(\{1,1,2\} ; 1 / 2,0)$
$\hat{F}\left(\{1,1,2\} ; \frac{1}{2}, 0\right)=\left(7.78790446721069262502850093774 \times 10^{-6}+2.91319469772237394135356308348 \times 10^{-6} \mathrm{i}\right)$ $+(0.000130430373015787655604488198861+0.000068404169458201184291920092123 \mathrm{i}) \epsilon$ $+(0.001077434813828191909787186362432+0.000750926876250745472210277589430 \mathrm{i}) \epsilon^{2}$ $+(0.00584278150920839062615612508136+0.00527570101382158661589031061691 \mathrm{i}) \epsilon^{3}$ $+(0.0233461280012444372334494219123+0.0270859736951617524563966282868 \mathrm{i}) \epsilon^{4}$
$+(0.0730918539437148667076104654800+0.1095165249743204252589933869672 \mathrm{i}) \epsilon^{5}$ $+(0.185975373883125986488613881520+0.366393770042708443331564801509 \mathrm{i}) \epsilon^{6}$ $+(0.393093986188519076512424694564+1.052172170765638116257825410632 \mathrm{i}) \epsilon^{7}$ $+(0.69775277299606861048706250047+2.67282546122008383022615104289 \mathrm{i}) \epsilon^{8}+\cdots$.

Auxiliary mass flow

Flow of x

- $\hat{F}(\{1,1,2\} ; 1 / 2,0)$ at fixed $x=1 / 2$ is the boundary condition of DEs w.r.t. x (as shown in Page 13)
- solve DEs w.r.t. x to obtain MIs at different values of
x

Section Summary

- Reverse unitarity relation transform the delta function to inverse propagators on cut
- with IBP reduction, complex integrals can be reduced to linear combination of MIs
- set up DEs w.r.t. kinematical invariants
- use AMF to calculate the boundary conditions
- add auxiliary mass on inverse propagators
- set up DEs w.r.t. η
- at $\eta \rightarrow \infty$, integrals are reduced to a linear combination of basal phase-space integrals multiplied by single-scale vacuum bubble integrals
- flow $\eta \rightarrow \infty$ to $\eta \rightarrow 0$ with DEs

Comment

Rapidity

- introduce $\delta\left(y-k_{i} \cdot p_{1} / k_{i} \cdot p_{2}\right)$ in dPS_{N}
- Rapidity distribution of i-th particle

Anastasiou, Dixon, Melnikov, Nucl. Phys. Proc. Suppl. 116, (2003) 193-197
Anastasiou, Dixon, Melnikov et al., Phys. Rev. Lett. 91, (2003) 182002

- add auxiliary mass in the delta functions
- solve rapidity divergence
- discussed in next section

Outline

- Examples: $\gamma^{*} \rightarrow t \bar{t}+X$ at NNLO
- Reverse unitarity relation
- Differential equations
- Auxiliary mass flow
- Examples: $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[1,8]}\right)+X$ at NLO
- Summary

Real Calculation

- Feynman Diagram
- Form of SDCs

$$
\begin{aligned}
& \int \mathrm{d} \Phi_{\text {real }} \prod_{i} \frac{1}{E_{i}^{a_{i}}} \\
= & \frac{P \cdot n}{2 z^{2}} \int \frac{\mathrm{~d}^{D} k_{1}}{(2 \pi)^{D-1}} \frac{\mathrm{~d}^{D} k_{2}}{(2 \pi)^{D-1}} \delta_{+}\left(k_{1}^{2}\right) \delta_{+}\left(k_{2}^{2}\right) \delta\left(k_{1} \cdot n+k_{2} \cdot n-\frac{1-z}{z} P \cdot n\right) \prod_{i} \frac{1}{E_{i}^{a_{i}}}
\end{aligned}
$$

in which

$$
\begin{aligned}
& E_{1}=k_{1} \cdot k_{2}, \quad E_{2}=k_{1} \cdot P, \quad E_{3}=k_{2} \cdot P, \\
& E_{4}=2 k_{1} \cdot P+1, \quad E_{5}=2 k_{2} \cdot P+1, \\
& E_{6}=2 k_{1} \cdot k_{2}+k_{1} \cdot P+k_{2} \cdot P, \\
& E_{7}=2 k_{1} \cdot k_{2}+2 k_{1} \cdot P+2 k_{2} \cdot P+1, \\
& E_{8}=k_{1} \cdot n, \quad E_{9}=k_{1} \cdot n+P \cdot n, \\
& E_{10}=k_{2} \cdot n, \quad E_{11}=k_{2} \cdot n+P \cdot n .
\end{aligned}
$$

$$
E_{12}=k_{1}^{2},
$$

$$
E_{13}=k_{2}^{2},
$$

$$
E_{14}=k_{1} \cdot n+k_{2} \cdot n-\frac{1-z}{z} P \cdot n
$$

Real Calculation

Problem in real IBP reduction

- Unregularized rapidity divergence
- For MI

$$
\int \mathrm{d} \Phi_{\text {real }} \frac{1}{E_{1} E_{4}} \quad \rightleftharpoons \begin{gathered}
E_{1}=k_{1} \cdot k_{2} \\
E_{4}=2 k_{1} \cdot P+1
\end{gathered}
$$

- integrated out $k_{1}^{-}, k_{2}^{-}, k_{2}^{+}$, we get

$$
\frac{1}{(4 \pi)^{2} z^{2}} \int_{0}^{1} \frac{1 z_{1}}{z_{1}} \int \frac{\int^{D-2} k_{1 \perp}\left(\frac{1-2}{D-2} k_{2 \perp}\right.}{(2 \pi)^{-2}\left(\frac{2 \pi}{(2 \pi)^{D-2}}\right.} \frac{1}{\left(k_{21}-k_{1 \perp}\right)^{2}\left(k_{1 \perp}^{2}+\left(\frac{1-z}{\varepsilon}\right)^{2} z_{1}\left(1-z_{1}\right)+\frac{1-z}{\frac{2}{2}}\left(1-z_{1}\right)\right)}
$$

- rapidity divergence
- unregularized in dimensional regularization
- Problems
- IBP relation?
- Value of MI?

Real Calculation

Problem in real IBP reduction

- Gluon mass regularization
- Transform the phase space integral

$$
\mathrm{d} \Phi^{\prime}=\frac{P \cdot n}{z^{2} 2!} \frac{\mathrm{d}^{D} k_{1}}{(2 \pi)^{D-1}} \frac{\mathrm{~d}^{D} k_{2}}{(2 \pi)^{D-1}} \delta_{+}\left(k_{1}^{2}-m_{g}^{2}\right) \delta_{+}\left(k_{2}^{2}-m_{g}^{2}\right) \delta\left(k_{1} \cdot n+k_{2} \cdot n-\frac{1-z}{z} P \cdot n\right)
$$

- Take the limit of $m_{g} \rightarrow 0$
- Calculation of the MI
- integrated out $k_{1 \perp}, k_{2 \perp}$, we get

$$
t=\frac{1-z}{z}
$$

$$
(4 \pi)^{-4+2 c_{g}^{-2 e}} \Gamma(\epsilon)^{2} z^{-2} \int_{0}^{1} d z_{1} z_{1}^{-1+\epsilon}\left(1-2 z_{1}+2 z_{1}^{2}\right)^{-\epsilon}\left(z^{2} z_{1}+t+m_{g}^{2} / z_{1}\right)^{-\epsilon}
$$

- Only $z_{1} \sim m_{g}^{2}$ values in the limit of $m_{g} \rightarrow 0$
- The final result is

$$
\begin{aligned}
&(4 \pi)^{-4+2 \epsilon} \Gamma(\epsilon)^{2} z^{-2} \\
& 0 \int_{0}^{\infty} \mathrm{d} y y^{-1+\epsilon}(t+1 / y)^{-\epsilon} \\
&=(4 \pi)^{-4+2 \varepsilon} z^{-2+2 \epsilon}(1-z)^{-2 \epsilon} \Gamma(2 \epsilon) \Gamma(\epsilon) \Gamma(-\epsilon) .
\end{aligned}
$$

Real Calculation

Problem in real IBP reduction

- Divide the origin express two parts
- Integrals that can be regularized:
naive IBP reduction (ignore in directly)
- Integrals that can not be regularized:
gluon mass regularization method
- The unregularized integrals cancelled finally
- Test the IBP reduction of $\int \mathrm{d} \frac{1}{E_{1} E_{4} E_{7}}$ with naive IBP method
- One of MIs is $\int \mathrm{d} \Phi_{\text {real }} \frac{1}{E_{1} E_{4}}$, but IBP relation values once we take the gluon mass regularization method in the calculation of this MI
- gluon mass regulator can indeed give correct result
- naïve IBP reduction values once the initial integrals are regularized
- Finally obtain 95 MIs

Real Calculation

Calculation of MIs

- set up differential equations (DEs)

$$
\frac{\mathrm{d} \boldsymbol{I}(\epsilon, z)}{\mathrm{d} z}=A(\epsilon, z) \boldsymbol{I}(\epsilon, z)
$$

- asymptotic expansions

$$
\left.I_{k}(z, \epsilon)\right|_{z_{0}}=\sum_{s} \sum_{i=0}^{n_{s}}\left(z-z_{0}\right)^{s} \ln ^{i}\left(z-z_{0}\right) \sum_{j=0}^{\infty} I_{k}^{s i j}(\epsilon)\left(z-z_{0}\right)^{j}
$$

- singularities in DEs: $0,1 / 2,1$

Real Calculation

Calculation of MIs

- set up differential equations (DEs)

$$
\frac{\mathrm{d} \boldsymbol{I}(\epsilon, z)}{\mathrm{d} z}=A(\epsilon, z) \boldsymbol{I}(\epsilon, z)
$$

- asymptotic expansions

$$
\left.I_{k}(z, \epsilon)\right|_{z_{0}}=\sum_{s} \sum_{i=0}^{n_{s}}\left(z-z_{0}\right)^{s} \ln ^{i}\left(z-z_{0}\right) \sum_{j=0}^{\infty} I_{k}^{s i j}(\epsilon)\left(z-z_{0}\right)^{j}
$$

- singularities in DEs: $0,1 / 2,1$
- estimate values of MIs in regions $0 \sim \frac{1}{4}, \frac{1}{4} \sim \frac{3}{4}, \frac{3}{4} \sim 1$ respectively by the asymptotic expansions of MIs at $z=0,1 / 2,1$
- coefficients at high order are related with those at lower order
- calculate the boundary at $z \rightarrow 1$
- Sector analyzation
- Sector decomposition

Virtual Calculation

- Feynman Diagram
- Form of SDCs

$$
\begin{aligned}
& \quad \int \mathrm{d} \Phi_{\text {loop }} \int \frac{\mathrm{d}^{D} l}{(2 \pi)^{D}} \prod_{i} \frac{1}{F_{i}^{a_{i}}} \\
& =\frac{P \cdot n}{z^{2}} \int \frac{\mathrm{~d}^{D} k}{(2 \pi)^{D-1}} \frac{\mathrm{~d}^{D} l}{(2 \pi)^{D}} \delta_{+}\left(k^{2}\right) \delta\left(k \cdot n-\frac{1-z}{z} P \cdot n\right) \prod_{i} \frac{1}{F_{i}^{a_{i}}} \\
& \quad \text { In Which } \\
& F_{1}=k \cdot P, \quad F_{2}=2 k \cdot P+1, \\
& F_{3}=l^{2}, \quad F_{4}=(l+k)^{2}, \quad F_{5}=(l+P)^{2}, \\
& F_{6}=\left(l+\frac{P}{2}\right)^{2}-\frac{1}{4}, \quad F_{7}=\left(l-\frac{P}{2}\right)^{2}-\frac{1}{4}, \quad F_{8}=\left(l+k+\frac{P}{2}\right)^{2}-\frac{1}{4}, \\
& F_{9}=(l+k+P)^{2}, \quad F_{10}=l \cdot n .
\end{aligned}
$$

$$
S=1
$$

- Use naïve IBP reduction
- Obtain 66 MIs

Virtual Calculation

Calculations of MIs

- Calculate the asymptotic expansions at singularities
- Singularities in DEs: 0,2($\sqrt{2}-1), 1$
complex plane

- $z=2(\sqrt{2}-1)$ does not affect the radius of convergence
- Boundaries at $z \rightarrow 1$ are difficult to calculate

Virtual Calculation

Calculations of MIs

- Use AMF method to calculate boundaries at $z=z_{0}$
- estimate values of MIs in regions $0 \sim \frac{1}{4}, \frac{1}{4} \sim \frac{3}{4}, \frac{3}{4} \sim 1$
respectively by the asymptotic expansions of MIs at $z=0,1 / 2,1$

Final results

After renormalization

$$
\begin{aligned}
& b_{0}=\frac{11 N_{c}-2 n_{f}}{6} d_{\mathrm{LO}}^{(0)}(z)=\lim _{\epsilon \rightarrow 0} d_{\mathrm{LO}}(z)=(3-2 z) z+2(1-z) \ln (1-z) \\
& d_{\mathrm{NLO}}^{[1]}(z)=\frac{\alpha_{s}^{3}}{2 \pi N_{c} m_{Q}^{3}} \times\left(d^{[1]}(z)+\ln \left(\frac{\mu_{r}^{2}}{4 m_{Q}^{2}}\right) b_{0} d_{\mathrm{LO}}^{(0)}(z)+\ln \left(\frac{\mu_{f}^{2}}{4 m_{Q}^{2}}\right) f(z)\right), \\
& d_{\mathrm{NLO}}^{[8]}(z)=\frac{\alpha_{s}^{3}\left(N_{c}^{2}-4\right)}{4 \pi N_{c}\left(N_{c}^{2}-1\right) m_{Q}^{3}} \times\left(d^{[8]}(z)+\ln \left(\frac{\mu_{r}^{2}}{4 m_{Q}^{2}}\right) b_{0} d_{\mathrm{LO}}^{(0)}(z)+\ln \left(\frac{\mu_{f}^{2}}{4 m_{Q}^{2}}\right) f(z)\right), \\
& f(z)=-\frac{n_{f}}{6} d_{\mathrm{LO}}^{(0)}(z)+N_{c}\left(-2(z+2) \mathrm{Li}_{2}(z)-2(z-1) \ln ^{2}(1-z)+2(z-1) \ln (z) \ln (1-z)\right. \\
& +(z-4) z \ln (z)-\frac{(2 z+1)\left(9 z^{2}-5 z-6\right) \ln (1-z)}{6 z} \\
& \left.+\frac{46 z^{3}+\left(8 \pi^{2}-3\right) z^{2}+4\left(\pi^{2}-9\right) z+4}{12 z}\right), \\
& \left(-\frac{N_{c}}{2 z}\right)+\sum_{i=0}^{2} \sum_{j=0}^{\infty} \ln ^{i} z(2 z)^{j}\left(A_{i j}^{f} n_{f}+A_{i j}^{[1 / 8]} N_{c}+\frac{A_{i j}^{N}}{N_{c}}\right), \quad \text { for } 0<z<\frac{1}{4} \\
& d^{[1 / 8]}(z)= \begin{cases}\sum_{j=0}^{\infty}(2 z-1)^{j}\left(B_{j}^{f} n_{f}+B_{j}^{[1 / 8]} N_{c}+\frac{B_{j}^{N}}{N_{c}}\right), & \text { for } \frac{1}{4} \leq z \leq \frac{3}{4} \\
\sum_{i=0}^{3} \sum_{j=0}^{\infty} \ln ^{i}(1-z)(2-2 z)^{j}\left(C_{i j}^{f} n_{f}+C_{i j}^{[1 / 8]} N_{c}+\frac{C_{i j}^{N}}{N_{c}}\right), & \text { for } \frac{3}{4}<z<1\end{cases}
\end{aligned}
$$

- 530 orders --> 160-digit precision

Outline

- Examples: $\gamma^{*} \rightarrow t \bar{t}+X$ at NNLO
- Reverse unitarity relation
- Differential equations
- Auxiliary mass flow
- Examples: $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[1,8]}\right)+X$ at NLO
- Summary

Summary

- Reverse unitarity relation transform phase-space integrals to pure loop integrals
- With IBP reduction, complex integrals can be reduced to linear combination of MIs
- Set up DEs w.r.t. kinematical invariants
- Use AMF to calculate the boundary conditions
- Final results can be expressed by a piecewise function of the asymptotic expansions at singularities, which gives a high precision
- The method is systematic and efficient
- Its high-precision nature makes it possible to obtain analytical results with a proper ansatz

