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• Examples: 𝛾∗ → 𝑡 ҧ𝑡 + 𝑋 at NNLO
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General phase-space and loop integral
• form

•

• Ԧ𝑠: kinematical invariants (including 𝑄2)

• phase-space

General integral form
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Integral form

• notation: V𝐿
+
R𝑁−1V𝐿

−
to distinguish sub-processes

• the phase-space integrals

• inverse propagators 

• phase-space

Examples: VRR of 𝜸∗ → 𝒕 ҧ𝒕 + 𝑿

a typical Feynman diagrams
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Dirac delta function

• transformation

• mass shell condition        propagator

• map phase-space integrals onto pure loop integrals

• use the techniques for loop integration
• integration-by-parts (IBP) reduction

• dimensional recurrence

• differential equations (DEs) w.r.t. kinematical invariants 

• auxiliary mass flow (AMF) : DEs w.r.t. auxiliary mass

Reverse unitarity relation

𝒟𝑖
𝑐 = 𝑘𝑖

2 −𝑚𝑖
2
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For 1 delta function case

• with these high loop techniques, relations are the 
same whether the imaginary part is 𝒟1

𝑐+𝑖0+

or 𝒟1
𝑐−𝑖0+

• two parts reduce to the similar loop master 
integrals (MIs) (except the signature of imaginary 
part)

• linear function of MIs

• coefficients of MIs of two parts are the same

Reverse unitarity relation
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For 1 delta function case

• choose MIs in which power of 𝒟1
𝑐±𝑖0+ is no more 

than 1

• plus reduction results of two parts again

• for MIs in which power of 𝒟1
𝑐±𝑖0+ is smaller than 

1, set them to 0

• inverse propagator         mass shell condition

• loop integrals reduction         phase-space integrals 
reduction

Reverse unitarity relation
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For 2 delta function case

• similar with 1 delta function

• four parts have the same reduction relations

• linear function of similar MIs with same coefficients

• inverse propagator         mass shell condition

• loop integrals reduction         phase-space integrals 
reduction

Reverse unitarity relation
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Heaviside Function

• 𝛩(𝑘𝑖
0 −𝑚𝑖) are equivalent to 𝛩(𝑘𝑖

0) here

• its derivative is 𝛿(𝑘𝑖
0 −𝑚𝑖)

• all space components of 𝑘𝑖 to be at the origin

• well regularized by dimensional regularization

• set to 0

Reverse unitarity relation
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Reduction and DEs

• IBP reduction

• set up DEs w.r.t Ԧ𝑠 among MIs ( Ԧ𝐼(𝑠))

• for 𝛾∗ → 𝑡 ҧ𝑡 + 𝑋 , only two kinematical: 𝑄2 and 𝑚𝑡
2

• take

• dimensionless integrals

• set up DEs w.r.t. x

Differential equations
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Chetyrkin, Tkachov, Nucl. Phys. B 192, (1981) 159-204
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VRR for example

some typical Feynman diagrams

• (a) is the most complicated diagram

• (b) is (a)’s sub-diagram, take it as an example

Differential equations
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VRR: sub-diagram (b)

• define MIs as

• 6 MIs

Differential equations
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VRR: sub-diagram (b)

• Set up DEs w.r.t. x

• pole: 0, 1

Differential equations
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Boundary conditions

• At ordinary point

• sector decomposition

• auxiliary mass flow

• At singularity

• analyze regions

Differential equations
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Binoth, Heinrich, Nucl. Phys. B 585 (2000) 741–759
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Add auxiliary mass to inverse propagators

• general phase-space and loop integral with 
auxiliary masses

Auxiliary mass flow
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Direction choice of  Ԧ𝜂 → 𝟎

• Rule of Feynman 
prescription for Feynman 
propagators

take 𝜂𝛽
+ → 0+ and 𝜂𝛾

− → 0+

• 𝜂𝛼
𝑡 → 0+ or 𝜂𝛼

𝑡 → 0− are 
both fine

take 𝜂𝛼
𝑡 → 0+ for convenient

Auxiliary mass flow
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Choice of finite  Ԧ𝜂

• either related to each others or completely 
independent

• all choices are workable
• all same

• a strong ordering

• our choice: either 0+ or 𝜂
• if {𝒟𝛽

+} or {𝒟𝛾
−} depend on Ԧ𝑠, choose 𝜂𝛼

𝑡 → 0+ and  

𝜂𝛽
+ = 𝜂𝛾

− = 𝜂

• else, choose 𝜂𝛼
𝑡 = 𝜂

• introduce one auxiliary mass 𝜂

Auxiliary mass flow
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VRR: sub-diagram (b)

• take 𝑦 = 𝜂/𝑠

• define dimensional integrals

• after reduction, 7 MIs for finite 𝜂 (or 𝑦)

• 6 MIs for 𝜂 → 0+( as show in page 12)

Auxiliary mass flow
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VRR: sub-diagram (b)

• choose 𝑥 = 1/2 (ordinary point) and set up DEs

• take boundaries at 𝜂 → ∞

Auxiliary mass flow
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Expansion for tree propagators at 𝜂 → ∞

• scalar products among external momenta and cut 
momenta are finite

• If 𝜂 is introduced, tree propagators are removed

• else, tree propagators remain

Auxiliary mass flow
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Expansion for loop propagators at 𝜂 → ∞

• loop momenta can be any large value

• at 𝜂 → ∞, linear combinations of loop momenta 
can be either at the order of 𝜂 1/2 or much smaller 
than it

• decompose 𝒟𝛼
+ into two parts

𝒟𝛼
+ = ෩𝒟𝛼

+ + 𝐾𝛼
• ෩𝒟𝛼

+: only including the part at order 𝜂

• 𝐾𝛼: other parts

Auxiliary mass flow
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Expansion for loop propagators at 𝜂 → ∞

• expansion for 𝒟𝛼
− are similar

• propagators (𝜂 exits and ෩𝒟𝛼
+ = 0) removed

• decouple some loop momenta at order 𝜂 1/2

−→ single-scale vacuum integrals factored

Auxiliary mass flow

eg: 𝑙𝛼
+ ⋅ 𝑘𝑖, 𝑙𝛼

+ ⋅ 𝑞𝑖
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Expansion at 𝜂 → ∞

• 𝐹 Ԧ𝜈; Ԧ𝑠, 𝜂 is simplified to a linear combination of 
integrals with fewer inverse propagators

• 𝑐 are rational functions of Ԧ𝑠 and 𝜂

• 𝐹bub: single-scale vacuum bubble integrals
• studied up to five-loop order

• 𝐹cut : basal phase-space integrations with the 
integrands being polynomials of scalar products 
between cut momenta.
• also studied for 𝑚𝑖 = 0 or 𝑚 (no more than 2)

Auxiliary mass flow
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VRR: sub-diagram (b)

Auxiliary mass flow
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basal phase-space integrations

• ∫ dPS3(𝒟1
𝑡)𝑖 can be reduced to two MIs of RR 

process

• 𝐹𝑟,𝑁,𝑛
cut denote the n-th MI for N-particle-cut 

integrals with 𝑚1 = ⋯ = 𝑚𝑟 = 𝑚 and          
𝑚𝑟+1 = ⋯ = 𝑚𝑁 = 0

• for 𝑁 = 3, two MIs: 𝐹2,3,1
cut and 𝐹2,3,2

cut

• definition

Auxiliary mass flow
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basal phase-space integrations

• MI result of RR

Auxiliary mass flow
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basal phase-space integrations

• without 𝜂, MIs of RRR are not the basal phase-
space integrations 

• add 𝜂 and make expansion at 𝜂 → ∞ (see Page 17)

• all 𝒟𝛼
𝑡 come to the numerators

• then MIs are all basal phase-space integrations

Comment
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Flow of 𝜂 (𝑦)

• Set up DEs w.r.t. 𝑦 (as shown in page 19)

• boundary condition: fixed x= 1/2 and 𝑦 → ∞

• solve DEs with the flow of 𝑦 from ∞ to 0+

• eg: ෠𝐹 {1,1,2}; 1/2,0

Auxiliary mass flow
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Flow of 𝑥

• ෠𝐹 {1,1,2}; 1/2,0 at fixed x= 1/2 is the boundary 

condition of DEs w.r.t.  𝑥 (as shown in Page 13)

• solve DEs w.r.t. 𝑥 to obtain MIs at different values of 

𝑥

Auxiliary mass flow
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• Reverse unitarity relation transform the delta 
function to inverse propagators on cut

• with IBP reduction, complex integrals can be 
reduced to linear combination of MIs

• set up DEs w.r.t. kinematical invariants 

• use AMF to calculate the boundary conditions
• add auxiliary mass on inverse propagators

• set up DEs w.r.t. 𝜂

• at 𝜂 → ∞, integrals are reduced to a linear combination 
of basal phase-space integrals multiplied by single-scale 
vacuum bubble integrals

• flow 𝜂 → ∞ to 𝜂 → 0 with DEs

Section Summary
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Rapidity

• introduce 𝛿(𝑦 − 𝑘𝑖 ⋅ 𝑝1/𝑘𝑖 ⋅ 𝑝2) in dPS𝑁

• Rapidity distribution of 𝑖-th particle

• add auxiliary mass in the delta functions 

• solve rapidity divergence

• discussed in next section

Comment

31/44

Anastasiou, Dixon, Melnikov, Nucl. Phys. Proc. Suppl. 116, (2003) 193-197
Anastasiou, Dixon, Melnikov et al., Phys. Rev. Lett. 91, (2003) 182002



Outline

• Examples: 𝛾∗ → 𝑡 ҧ𝑡 + 𝑋 at NNLO

• Reverse unitarity relation

• Differential equations

• Auxiliary mass flow

• Examples: 𝑔 → 𝑄 ത𝑄(1𝑆0
1,8

) + 𝑋 at NLO

• Summary

32/44



• Feynman Diagram

• Form of SDCs

in which

Real Calculation

𝑆 = 2

𝑆 = 1
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Problem in real IBP reduction

• Unregularized rapidity divergence
• For MI

• integrated out 𝑘1
−, 𝑘2

−, 𝑘2
+ , we get 

• rapidity divergence 

• unregularized in dimensional regularization

• Problems
• IBP relation?

• Value of MI?

Real Calculation

𝐸1 = 𝑘1 ⋅ 𝑘2
𝐸4 = 2𝑘1 ⋅ 𝑃 + 1
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Problem in real IBP reduction

• Gluon mass regularization
• Transform the phase space integral

• Take the limit of 𝑚𝑔 → 0

• Calculation of the MI
• integrated out 𝑘1⊥, 𝑘2⊥, we get 

• Only  𝑧1 ∼ 𝑚𝑔
2 values in the limit of 𝑚𝑔 → 0

• The final result is 

Real Calculation

𝑡 =
1 − 𝑧

𝑧
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Problem in real IBP reduction
• Divide the origin express two parts

• Integrals that can be regularized: 

naive IBP reduction (ignore 𝑖𝜂 directly)

• Integrals that can not be regularized: 

gluon mass regularization method

• The unregularized integrals cancelled finally

• Test the IBP reduction of                 with naive IBP method 
• One of MIs is                   , but IBP relation values once we take the 

gluon mass regularization method in the calculation of this MI

• gluon mass regulator can indeed give correct result

• naïve IBP reduction values once the initial integrals are regularized

• Finally obtain 95 MIs

Real Calculation

36/44



Calculation of MIs
• set up differential equations (DEs)

• asymptotic expansions

• singularities in DEs: 0, 1/2, 1

Real Calculation

Henn, J. Phys. A48 (2015) 153001
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Calculation of MIs
• set up differential equations (DEs)

• asymptotic expansions

• singularities in DEs: 0, 1/2, 1

• estimate values of MIs in regions 0 ∼ 1

4
,
1

4
∼

3

4
,
3

4
∼ 1 respectively 

by the asymptotic expansions of MIs at 𝑧 = 0,1/2,1

• coefficients at high order are related with those at lower 
order

• calculate the boundary at 𝑧 → 1
• Sector analyzation

• Sector decomposition

Real Calculation

Henn, J. Phys. A48 (2015) 153001
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• Feynman Diagram

• Form of SDCs

In which

• Use naïve IBP reduction

• Obtain 66 MIs

Virtual Calculation
𝑆 = 1
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Calculations of MIs
• Calculate the asymptotic expansions at singularities

• Singularities in DEs: 0, 2( 2 − 1), 1

• 𝑧 = 2( 2 − 1) does not affect the radius of 
convergence

• Boundaries at 𝑧 → 1 are difficult to calculate

Virtual Calculation
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Calculations of MIs

• Use AMF method to calculate boundaries at 𝑧 = 𝑧0

• estimate values of MIs in regions 0 ∼ 1

4
,
1

4
∼

3

4
,
3

4
∼ 1

respectively by the asymptotic expansions of MIs at 

𝑧 = 0,1/2,1

Virtual Calculation
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After renormalization

• 530 orders --> 160-digit precision

Final results

𝑏0 =
11𝑁𝑐 − 2𝑛𝑓

6
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• Reverse unitarity relation transform phase-space 
integrals to pure loop integrals

• With IBP reduction, complex integrals can be 
reduced to linear combination of MIs

• Set up DEs w.r.t. kinematical invariants 

• Use AMF to calculate the boundary conditions

• Final results can be expressed by a piecewise 
function of the asymptotic expansions at 
singularities, which gives a high precision

• The method is systematic and efficient

• Its high-precision nature makes it possible to obtain 
analytical results with a proper ansatz

Summary
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