Syzygy for Feynman integral reduction

Yang Zhang

University of Science and Technology of China

Recall from the talks in the fall of 2020

Integration-by-parts (IBP)

$$
\int \frac{d^{D} l_{1}}{i \pi^{D / 2}} \ldots \int \frac{d^{D} l_{L}}{i \pi^{D / 2}} \frac{\partial}{\partial l_{i}^{\mu}} \frac{v_{i}^{\mu}}{D_{1}^{\alpha_{1}} \ldots D_{k}^{\alpha_{k}}}=0 \quad \text { Chetyrkin,Tkachos (1981) }
$$

IBP relations are usually solved by the Laporta algorithm (Gaussian Elimination) Frequently, it contains too many integrals which are not targets or masters. Thus the Gaussian Elimination deals with a huge matrix. step for a scattering amplitude computation.

To make integral reduction easier and POSSIBLE

```
truncated IBP system
```

> New type of integral relations

Syzygy, module intersection

Auxiliary mass flow
Liu, Ma Phys. Res. $D 99$ (2019), no 7071501
Guan, Liu, Ma, Chin. Phys. C $44(2020)$ 9, 093106

Intersection theory
Mastrolia, Mizera JHEP 02 (2019) 139
Frellessig, Gasparotto, Laporta, Mandal, Mastrolia, Mizera JHEP 05 (2019) 153 Frellesvig, Gasparotto, Mandal, Mastrolia, Mattiazzi, Mizera PRL. 123.201602

Syzygy for IBP reduction based on works

D. Kosower's group
R. Lee (Budker Institute of Nuclear Physics)

Outline

1. Syzygy
2. Module intersection
3. Examples

1. Syzygy

"бú $\downarrow \gamma 0 \varsigma "$ Greek word, originally means
a roughly straight-line configuration of three or more celestial bodies
"合冲"

Syzygy for IBP reduction

In traditional Laporta algorithm, the vectors are choose arbitrarily ... By the derivates, there would be a lot of propagators with high power

Suppose that we want to forbid the increase of the propagator index α_{i}, we can require that,

$$
\left(\sum_{j=1}^{L} v_{j}^{\mu} \frac{\partial}{\partial l_{j}^{\mu}} D_{i}\right)+g_{i} D_{i}=0 \quad \text { Syzygy equation }
$$

where both v_{j}^{μ} and g_{i} contain polynomials in loop momenta.
dramatically reduces the number of IBP relations speeds the IBP reduction by several order of magnitude

Gluza, Kajda, Kosower,
PhysRevD. 83.045012

Syzygy to IBP, a first example

$$
\begin{gathered}
D_{1}=l^{2}, \quad D_{2}=\left(l-p_{1}\right)^{2}, \quad D_{3}=\left(l-p_{1}-p_{2}\right)^{2}, \quad D_{4}=\left(l+p_{4}\right)^{2} \\
p_{1}^{2}=p_{2}^{2}=p_{3}^{2}=p_{4}^{2}=0, \quad p_{1} \cdot p_{2}=s / 2, \quad p_{1} \cdot p_{4}=t / 2
\end{gathered}
$$

Syzygy to IBP, a first example

$$
\begin{aligned}
& \nu^{\mu}=a_{1} p_{1}^{\mu}+a_{2} p_{2}^{\mu}+a_{3} p_{4}^{\mu}+a_{4} l^{\mu} \\
& v^{\mu} \frac{\partial D_{i}}{\partial l^{\mu}}-b_{i} D_{i}=0, \quad i=1,2,3 \\
& A y=0
\end{aligned}
$$

$$
\begin{aligned}
& y=\left(a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}\right)^{\mathbf{T}}
\end{aligned}
$$

The free variables are $\left(l \cdot p_{1}\right),\left(l \cdot p_{2}\right),\left(l \cdot p_{4}\right), l^{2}$.
Of course, it looks like a homogenous linear equation,
However, we require the solution has no pole in the free variables

Roughly speaking,
a syzygy computation is to find solutions of a homogenous linear equation without poles in free variables

Syzygy to IBP, a first example

suppose that we already have the syzygy solutions ...

We get 6 syzygy generators for this case

$$
\begin{aligned}
& -\underline{2\left(l \cdot p_{2}\right) p_{1}^{\mu}+\left(2 l \cdot p_{1}-2 l^{2}\right) p_{2}^{\mu}+\left(4 l \cdot p_{2}-s\right) l_{1}^{\mu}}, \ldots \\
& 0=\int \frac{d^{D} l}{i \pi^{D / 2}} \frac{\partial}{\partial l^{\mu}}\left(v_{j}^{\mu} \frac{1}{D_{1}^{m_{1}} D_{2}^{m_{2}} D_{3}^{m_{3}} D_{4}^{m_{4}}}\right) \quad m_{1}, m_{2}, m_{3} \in \mathbb{Z}_{>0}, m_{4} \in \mathbb{Z}_{\leq 0} \\
& 0=G\left(m_{1}, m_{2}, m_{3}, m_{4}\right)\left(d s-2 m_{2} s-2 m_{3} s-m_{4} s\right)+\left(-2 d+2 m_{1}+2 m_{2}+2 m_{3}+2 m_{4}\right) G\left(m_{1}, m_{2}, m_{3}-1, m_{4}\right) \\
& +\left(2 d-2 m_{1}-2 m_{2}-2 m_{3}-2 m_{4}\right) G\left(m_{1}, m_{2}-1, m_{3}, m_{4}\right)+m_{4} s t G\left(m_{1}, m_{2}, m_{3}, m_{4}+1\right) \\
& -m_{4} S G\left(m_{1}, m_{2}-1, m_{3}, m_{4}+1\right)+m_{4}(-t) G\left(m_{1}-1, m_{2}, m_{3}, m_{4}+1\right)-m_{4} t G\left(m_{1}, m_{2}, m_{3}-1, m_{4}+1\right)
\end{aligned}
$$

Seeding, $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=(1,1,1,0)$

$$
0=(-6+2 d) G[1,0,1,0]+\underline{(6-2 d) G[1,1,0,0]}+(-4 s+d s) G[1,1,1,0]
$$

zero integral
no double propagator
A very simple IBP which reduces the triangle to bubble immediately

Syzygy, mathematical remarks

Modules

A module M over a ring $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is an abelian group, such that

- $f\left(m_{1}+m_{2}\right)=f m_{1}+f m_{2}$, for $f \in R$ and $m_{1}, m_{2} \in M$,
- $\left(f_{1}+f_{2}\right) m=f_{1} m+f_{2} m$, for $f_{1}, f_{2} \in R$ and $m \in M$,
- $\left(f_{1} f_{2}\right) m=f_{1}\left(f_{2}\right) m$, for $f_{1}, f_{2} \in R$ and $m \in M$,
- $1 m=m$, for $1 \in R, m \in M$.

Clearly, R^{m} is a module. Any ideal of R is a module. We mainly consider a sub-module of R^{m}.

A module is an analogy of linear space, in algebraic geometry. The biggest difference is that for $m \in M$ and $f \in R, \frac{1}{f} m$ is not defined.

A basis of a module is a set $\left\{m_{1}, \ldots, m_{k}\right\}$ in M, such that m_{1}, \ldots, m_{k} generate M, and if

$$
f_{1} m_{1}+\ldots+f_{k} m_{k}=0, \quad f_{i} \in R
$$

then $f_{1}=\ldots=f_{k}=0$.
In most cases, a module does not have a basis. If it has, then such a module is a free module. R^{m} is a free module.

Syzygy, mathematical

Consider $\left\{m_{1}, \ldots, m_{k}\right\}$ in a module M over R. All tuples $\left\{f_{1}, \ldots f_{k}\right\}$ such that

$$
f_{1} m_{1}+\ldots+f_{k} m_{k}=0, \quad f_{i} \in R
$$

form the syzygy of $\left\{m_{1}, \ldots, m_{k}\right\}$. The syzygy is a sub-module of R^{k}.
If M is a sub-module of R^{l}, then each m_{i} can be written as a column vector with polynomial components. Define $A=\left\{m_{1}, \ldots, m_{k}\right\}$ as an $l \times k$ matrix, then the syzygy is,

$$
\operatorname{ker} A \cap R^{k}
$$

Usually, the syzygy is not a free module. So the goal would be to compute a generator set instead of the basis.

Syzygy from Schreyer algorithm

The syzygy of elements of a module can computed from Schreyer algorithm

For $G=\left\{m_{1}, \ldots, m_{s}\right\}$ a Groebner basis with the ordering \succ. An S-pair can be reduced on the generators,

$$
\frac{m_{i j}}{\mathrm{LT}\left(m_{i}\right)} m_{i}-\frac{m_{i j}}{\mathrm{LT}\left(m_{j}\right)} m_{j}=\sum_{k=1}^{s} a_{i j, k} m_{k}
$$

where $m_{i j}=\operatorname{LCM}\left(\operatorname{LT}\left(m_{i}\right), \operatorname{LT}\left(m_{j}\right)\right)$. So we get a syzygy element,

$$
s_{i j}=\frac{m_{i j}}{\operatorname{LT}\left(m_{i}\right)} \mathbf{v}_{\mathbf{i}}-\frac{m_{i j}}{\operatorname{LT}\left(m_{j}\right)} \mathbf{v}_{\mathbf{j}}-\sum_{k=1}^{s} a_{i j, k} \mathbf{v}_{\mathbf{k}}
$$

where $\mathbf{v}_{\mathbf{i}}$ is the i-th unit vector in R^{s}.

Such $s_{i j}$ generate the syzygy of $\left\{m_{1}, \ldots, m_{s}\right\}$.

Syzygy from Schreyer algorithm

For a set $f_{1}, \ldots f_{k}$ which is not a Groebner basis, the Groebner basis can be calculated as well.

$$
f_{i}=A_{i j} m_{j}, \quad m_{i}=B_{i j i} f_{j}
$$

Then the syzygy of $f_{1}, \ldots f_{k}$ is generated by, $s \times k$ matrix

$$
k \times s \text { matrix } \quad A s_{i j, 2} \quad I-A B
$$

Syzygy can be computed in Mathematica with the interface to Singular

Syzygy generators obtained from the Schreyer algorithm, is again a Groebner basis in a particular ordering
[Cox, Little, O’Shea] Using algebraic geometry 5.3

Syzygy can be computed via Singular program, or GKK's private package
(Schreyer algorithm fine tuned for multiple parameters.)

However, in practice, it is easier to alternatively use

Module intersection

2. Module intersection

Module intersection is similar to linear space intersection but over polynomials only ...
an computational algebraic geometry problem

Based on

Larsen, $\mathbf{Y Z}$
Phys.Rev.D 93 (2016) 4, 041701

Boehm, Schoenemann, Georgoudis
Larsen, YZ JHEP 1809 (2018) 024

Bendle, Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ JHEP 02 (2020) 079

Module Intersection

Larsen YZ
Phys.Rev.D 93 (2016) 4, 041701

IBP relations in Baikov representation

- Easily get IBPs without double propagators (or propagator-degree increase)
- Naturally adaptable with unitarity cuts
- Usually much faster than direct syzygy approaches

In parallel with the developments of numeric unitarity
Ita 2015, Abreu, Cordero, Dormans, Ita, Page, Sotnikov
JHEP 1811 (2018) 116, Phys.Rev.Lett. 122 (2019) no.8, 082002, JHEP 1905 (2019) 084

Natural way to construct integrand with IBPs without doubled propagators very efficient for constructing multi-loop integrand

IBP in Baikov representation

$$
\int \frac{d^{D} l_{1}}{i \pi^{D / 2}} \ldots \int \frac{d^{D} l_{L}}{i \pi^{D / 2}} \frac{1}{D_{1}^{\alpha_{1}} \ldots D_{k}^{\alpha_{k}}} \propto \int_{\Omega} d z_{1} \ldots d z_{k} \frac{F^{\frac{D-L-E-1}{2}}}{z_{1}^{\alpha_{1}} \ldots z_{k}^{\alpha_{k}}}
$$

Baikov

$$
0=\int_{\Omega} d z_{1} \ldots d z_{k} \sum_{i=1}^{k} \frac{\partial}{\partial z_{i}}\left(a_{i}(z) \frac{F^{\frac{D-L-E-1}{2}}}{z_{1}^{\alpha_{1}} \ldots z_{k}^{\alpha_{k}}}\right)
$$

No boundary term
easy to set some of z's to zero (unitary cut)

IBP in Baikov representation with constraints

Require

1. no shifted exponent:
$\sum_{j=1}^{k} a_{j}(z) \frac{\partial F}{\partial z_{j}}+\beta(z) F=0$
```
```

polynomials

```
polynomials
```

2. no propagator degree increase:

$$
a_{i}(z) \in\left\langle z_{i}\right\rangle, \quad 1 \leq i \leq m \quad \text { These }\left(a_{1}(z), \ldots a_{k}(z)\right) \text { form a modul } M_{2} \subset R^{k} \text {. }
$$

```

Both \(M_{1}\) and \(M_{2}\) are pretty simple ...

Larsen YZ
Phys.Res.D 93 (2016) 4, 041701
\(M_{1} \cap M_{2}\)

\section*{Determine the first module}
\[
\sum_{j=1}^{k} a_{j}(z) \frac{\partial F}{\partial z_{j}}+\beta(z) F=0 \quad \text { - syzygy for the }\left\{\frac{\partial F}{\partial z_{1}}, \ldots, \frac{\partial F}{\partial z_{k}}, F\right\} \quad \text { Roman Lee's trick }
\]

More Advanced
- Ann \(\left(F^{s}\right)\), annihilator of \(F^{s}\) in Weyl algebra. Bitoun, Bogner, Klausen, Panzer Lett.Math.Phys.
If \(F\) is a determinant matrix whose elements are free variables, this kind of syzygy module is simple.
\[
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
\]

\section*{equivalent to}
canonical IBP
in momentum space
Laplace expansion
\[
\sum_{j} a_{k, j} \frac{\partial(\operatorname{det} A)}{\partial a_{i, j}}-\delta_{k, i} \cdot \operatorname{det} A=0
\]

Get all first order annihilator, proved by Gulliksen-Negard and Jozefiak exact sequences
Boehm, Georgoudis, Larsen, Schulze, YZ 2017

\section*{Example, massless double box}

(Each row is a module generator)
\[
M_{2}=\left(\begin{array}{ccccccccc}
z_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & z_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & z_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & z_{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & z_{5} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & z_{6} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & z_{7} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\]
\[
M_{1}=\left(\begin{array}{ccccccccc}
z_{1}-z_{2} & z_{1}-z_{2} & -s+z_{1}-z_{2} & 0 & 0 & 0 & z_{1}-z_{2}-z_{6}+z_{9} & t+z_{1}-z_{2} \\
0 & 0 & 0 & s-z_{6}+z_{9} & -t-z_{6}+z_{9} & -z_{6}+z_{9} & z_{1}-z_{2}-z_{6}+z_{9} & 0 & -z_{6}+z_{9} \\
s+z_{2}-z_{3} & z_{2}-z_{3} & z_{2}-z_{3} & 0 & 0 & 0 & z_{2}-z_{3}+z_{4}-z_{9} & -t+z_{2}-z_{3} & 0 \\
0 & 0 & 0 & z_{4}-z_{9} & t+z_{4}-z_{9} & -s+z_{4}-z_{9} & z_{2}-z_{3}+z_{4}-z_{9} & 0 & z_{4}-z_{9} \\
-z_{1}+z_{8} & -t-z_{1}+z_{8} & s-z_{1}+z_{8} & 0 & 0 & 0 & -z_{1}-z_{5}+z_{6}+z_{8} & -z_{1}+z_{8} \\
0 & 0 & 0 & -s-z_{5}+z_{6} & -z_{5}+z_{6} & -z_{5}+z_{6} & -z_{1}-z_{5}+z_{6}+z_{8} & 0 & t-z_{5}+z_{6} \\
2 z_{1} & z_{1}+z_{2} & -s+z_{1}+z_{3} & 0 & 0 & 0 & z_{1}-z_{6}+z_{7} & z_{1}+z_{8} & 0 \\
0 & 0 & 0 & s-z_{3}-z_{6}+z_{7} & -z_{6}+z_{7}-z_{8} & -z_{1}-z_{6}+z_{7} & z_{1}-z_{6}+z_{7} & 0 & -z_{2}-z_{6}+z_{7} \\
-z_{1}-z_{6}+z_{7} & -z_{1}+z_{7}-z_{9} & s-z_{1}-z_{4}+z_{7} & 0 & 0 & 0 & 0 & -z_{1}+z_{6}+z_{7} & -z_{1}-z_{5}+z_{7} \\
0 & 0 & 0 & -s+z_{4}+z_{6} & z_{5}+z_{6} & 2 z_{6} & -z_{1}+z_{6}+z_{7} & 0 & z_{6}+z_{9}
\end{array}\right)
\]
\(M_{1} \cap M_{2}\) is computed within seconds, with Singular 4.1 's intersect

\section*{Module Intersection}

A better algorithm

Boehm, Schoenemann, Georgoudis
Larsen, YZ
JHEP 1809 (2018) 024
\[
\begin{aligned}
& M_{1}=\left\langle v_{1}, v_{2}, \ldots . v_{m}\right\rangle \text { each } v t \text {-dim row } \\
& M_{2}=\left\langle u_{1}, u_{2}, \ldots . u_{m}\right\rangle \text { each } k t \text {-dim row }
\end{aligned}
\]


Compute the Gröbner basis w.r.t. rows Position \(>\) Term
Find the Grobbner basis elements in \(H\)

\section*{Implements}
- Use unitarity cuts
- Use degree bound
- Localization trick

Treat parameters as variables, and compute in a block ordering [variables] > [parameters]
A famous trick in computational algebra

\section*{Workflow}


\section*{Example, massless double box with spanning cut}


\section*{Remove cuts overlap}
\[
\left(\begin{array}{c:c:cc:c}
1 & 12 & 0 & 0 & -124 \\
0 & 0 & 1 & 0 & 31 \\
0 & 0 & 0 & 1 & -5 \\
0 & - & -1 & -1
\end{array}\right)
\]

Set one non-pivot column (one master integral) to zero before reduction, does NOT change other non-pivot columns after reduction

Chawdhry, Lim, Mitov Phys. Rev. D 99, 076011 (2019) also implemented in Kira

If one master integral appears on two cuts, pick up one cut and set this integral to zero.

\section*{Can also be used for double propagator integrals}
\[
0=\int_{\Omega} d z_{1} \ldots d z_{4} \sum_{i=1}^{4} \frac{\partial}{\partial z_{i}}\left(a_{i}(z) \frac{F^{\frac{D-L-E-1}{2}}}{z_{1} z_{2} z_{3} \frac{2}{4}}\right)
\]
the fourth index must be less or equal 2
\[
(-5+d) G[1,0,1,2)+(5-d) G[1,1,1,1]-t G[1,1,1,2)=0
\]
targeted reduction for integrals with doubled (fourth-)propagator

\section*{3. Nontrivial Examples}

\section*{General applications of syzygy IBPs}

The Five-Loop Four-Point Integrand of \(N=8\) Supergravity as a Generalized Double Copy Bern, Carrasco, Chen, Johansson, Roiban, Zeng Phys. Rev.D 96, 126012 (2017)

Ingredients of the IBP methods used therein
- Syzygy
- Unitarity cuts
- Finite fields

\section*{Towards an industry-level row-reduction program}
- Row Reduction code written in Singular
- With numeric fitting, powered by the large-scale parallelization framework GPI-space
- large-scale interpolation
- Bonus: use partial fraction and UT property to simplify the analytic result


Analytic (symbol)
Abreu, Dixon, Herrman, Page, Zeng
"The two-loop five-point amplitude in N=4 sYM theory ", Phys.Rev.Lett. 122 (2019), no. 12121603

Analytic (function)

\section*{Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia}
"All master integrals for three-jet production at NNLO", Phys.Rev.Lett. 123 (2019), no. 4041603

\section*{Now module intersection is really fast}


5 Mandelstam variables, with a triple cut seconds to get the module intersection and truncated IBPs with our intersection algorithm

Degree-4

\section*{Row Reduction}
reduce all rank-4 numerato to master integrals
\begin{tabular}{c|c|c|c} 
Cut & \# relations & \# integrals & size \\
\hline\(\{1,5,7\}\) & 1134 & 1182 & 0.77 MB \\
\(\{1,5,8\}\) & 1141 & 1192 & 0.85 MB \\
\(\{1,6,8\}\) & 1203 & 1205 & 1.1 MB \\
\(\{2,4,8\}\) & 1245 & 1247 & 1.1 MB \\
\(\{2,5,7\}\) & 1164 & 1211 & 0.84 MB \\
\(\{2,6,7\}\) & 1147 & 1206 & 0.62 MB \\
\(\{2,6,8\}\) & 1126 & 1177 & 0.83 MB \\
\(\{3,4,7\}\) & 1172 & 1221 & 0.78 MB \\
\(\{3,4,8\}\) & 1180 & 1226 & 1.0 MB \\
\(\{3,6,7\}\) & 1115 & 1165 & 0.82 MB \\
\(\{1,3,4,5\}\) & 721 & 762 & 0.43 MB
\end{tabular}


Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ
\[
\text { JHEP } 02 \text { (2020) } 079
\]

\section*{Row Reduction}
reduce all rank-4 numerators analytically to master integrals
\begin{tabular}{c|c|c|c} 
Cut & \# relations & \# integrals & size \\
\hline\(\{1,5,7\}\) & 1134 & 1182 & 0.77 MB \\
\(\{1,5,8\}\) & 1141 & 1192 & 0.85 MB \\
\(\{1,6,8\}\) & 1203 & 1205 & 1.1 MB \\
\(\{2,4,8\}\) & 1245 & 1247 & 1.1 MB \\
\(\{2,5,7\}\) & 1164 & 1211 & 0.84 MB \\
\(\{2,6,7\}\) & 1147 & 1206 & 0.62 MB \\
\(\{2,6,8\}\) & 1126 & 1177 & 0.83 MB \\
\(\{3,4,7\}\) & 1172 & 1221 & 0.78 MB \\
\(\{3,4,8\}\) & 1180 & 1226 & 1.0 MB \\
\(\{3,6,7\}\) & 1115 & 1165 & 0.82 MB \\
\(\{1,3,4,5\}\) & 721 & 762 & 0.43 MB
\end{tabular}

Hardest cut: done within 12 hours, 384 cores GPI-space

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ

Degree-5

\section*{deg-5 Row Reduction}

The analytic IBP reduction for degree- 5
was firstly done by Kira 2.0
result 25 GB !!!


> Klappert, and Lange and Maierhofer, and Usovitsch arXiv: 2008.06494
with the block triangular IBPs provides by auxiliary mass flow method
Guan, Liu, Ma, Chin. Phys. C 44(2020) 9, 093106

Here we show how to do this computation with syzygy method (module intersection) and simplify the result

\section*{deg-5 Row Reduction}
module intersection
\begin{tabular}{c|c|c|c} 
Cut & \# relations & \# integrals & size \\
\hline\(\{1,5,7\}\) & 2723 & 2749 & 1.4 MB \\
\(\{1,5,8\}\) & 2753 & 2777 & 1.6 MB \\
\(\{1,6,8\}\) & 2817 & 2822 & 2.1 MB \\
\(\{2,4,8\}\) & 2918 & 2921 & 2.1 MB \\
\(\{2,5,7\}\) & 2796 & 2805 & 1.5 MB \\
\(\{2,6,7\}\) & 2769 & 2814 & 1.2 MB \\
\(\{2,6,8\}\) & 2801 & 2821 & 1.6 MB \\
\(\{3,4,7\}\) & 2742 & 2771 & 1.4 MB \\
\(\{3,4,8\}\) & 2824 & 2849 & 1.9 MB \\
\(\{3,6,7\}\) & 2662 & 2674 & 1.5 MB \\
\(\{1,3,4,5\}\) & 1600 & 1650 & 0.72 MB
\end{tabular}

IBP relations with small size and quite sparse
17.2 MB in total

\section*{deg-5 Row Reduction}

Row reduce to 108 UT integrals
numeric RREF + interpolation with GPI-space
the reduced IBP has the size
\(\sim 20 \mathrm{G}\),

\section*{Bonus}

Use our partial fraction package "pfd" UT integrals to simplify the analytic reduced IBP
\begin{tabular}{c|c|c|c} 
& \begin{tabular}{c} 
reduced \\
IBP size
\end{tabular} & after pfd & \begin{tabular}{c} 
Compression \\
Rate
\end{tabular} \\
\hline deg-4 & 700 MB & 20 MB & 35 \\
\hline deg-5 & 20 GB & 190 MB & 105 \\
\hline
\end{tabular}

Bendle, Boehm, Decker, Georgoudis, Pfreundt, Rahn, Wasser, YZ

JHEP 02 (2020) 079

Bendle, Boehm, Heymann Ma, Rahn, Wittmann, Wu, YZ
to appear

\section*{Summary}
- Module intersection + Large-scale parallelzation with GPI-space
- a powerful IBP algorithm
- Since we used Baikov cut form everywhere, some relation to Intersection Theory?
- efficient Lee-Pomeransky IBPs?

\section*{Advertisement}

If you have interesting IBP problems,
you may send them to yzhphy@ustc.edu.cn. Thanks!```

