An Introduction to Singular

Yang Zhang
University of Science and Technology of China

This is an abbreviated version of

the lecture notes

http://staff.ustc.edu.cn/~yzhphy/teaching/summer2021/CAG.pdf

> mini courses taught in

Sagex 2021 winter school
HangZhou Amplitude Summer School

As theoretical physicists, we frequently met computation with polynomials, rational functions and matrices with polynomials, rational functions ...

- Feynman integral reduction
- Differential equation for Feynman integrals
- Solve Bethe-Ansatz equation
- Find the minima of a super-potential ...

It is not surprising that
in many cases, the polynomial/rational function computation is the most time and RAM consuming step
in many cases, the polynomial/rational function part is the longest component of an analytic result

The key to polynomial/rational function problems
is computational algebraic geometry

originated in 1970s
thrive from 2000s
Bruno Buchberger, Frank-Olaf Schreyer, Jean-Charles Faugère
David Eisenbud, Michael Stillman, Daniel Grayson, Wolfram Decker ...

> Basic commutative algebra and algebraic geometry

Mathematica, Maple
Singular, Macaulay2, Bertini

Reference

Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Dasid A. Cox, Donal O'Shea, and John Little

Using algebraic geometry, David A. Cox, Donal O'Shea, and John Little

A Singular Introduction to Commutative Algebra, G. Pfister and Gert-Martin Greuel

Algebraic geometry, Robin Hartshorne
Principles of Algebraic geometry, Phillip Griffiths and Joe Harris

Lecture Notes on Multi-loop Integral Reduction and Applied Algebraic Geometry YZ, arXiv: 1612.02249

Concept: Polynomial ring and ideal

Polynomial ring $\quad R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$

field, $\mathbb{C}, \mathbb{Q}, \mathbb{Z} / p, \mathbb{Q}\left[c_{1}, \ldots c_{m}\right], \ldots$
An ideal I in the polynomial ring $R=\mathbb{F}\left[z_{1}, \ldots z_{n}\right]$ is a linear subspace of R such that, For $\forall f \in I$ and $\forall h \in R, h f \in I$.

The ideal in the polynomial ring generated by a polynomial set S is the collection of all such polynomials,

$$
\sum_{i} h_{i} f_{i}, \quad h_{i} \in R, \quad f_{i} \in S
$$

This ideal is denoted as $\langle S\rangle$.

Concept: Monomial Ordering

Let M be the set of all monomials in the ring $R=\mathbb{F}\left[x_{1}, \ldots x_{n}\right]$. A monomial order \prec of R is an ordering on M such that,

1. \prec is a total ordering.
2. \prec respects monomial products, i.e., if $u \prec v$ then for any $w \in M$, $u w \prec v w$.
3. $1 \prec u$, if $u \in M$ and u is not constant.

> We use the convention $z_{n} \prec z_{n-1} \prec \ldots \prec z_{1}$ for all monomial orders. Given $g_{1}=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}$ and $g_{2}=z_{1}^{\beta_{1}} \ldots z_{n}^{\beta_{n}}$,

- Lexicographic order (lex). First compare α_{1} and β_{1}. If $\alpha_{1}<\beta_{1}$, then $g_{1} \prec g_{2}$. If $\alpha_{1}=\alpha_{2}$, we compare α_{2} and β_{2}. Repeat this process the tie is broken.
- Degree lexicographic order (grlex). First compare the total degrees. If $\sum_{i=1}^{n} \alpha_{i}<\sum_{i=1}^{n} \beta_{i}$, then $g_{1} \prec g_{2}$. If total degrees are equal, we compare $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right) \ldots$ until the tie is broken.

All monomials are sorted.

- Degree reversed lexicographic order (grevlex). First compare the total degrees. If $\sum_{i=1}^{n} \alpha_{i}<\sum_{i=1}^{n} \beta_{i}$, then $g_{1} \prec g_{2}$. If total degrees are equal, we compare α_{n} and β_{n}. If $\alpha_{n}<\beta_{n}$, then $g_{1} \succ g_{2}$ (reversed!). If $\alpha_{n}=\beta_{n}$, then we further compare $\left(\alpha_{n-1}, \beta_{n-1}\right),\left(\alpha_{n-2}, \beta_{n-2}\right) \ldots$ until the tie is broken, and use the reversed result.
- Block order. We separate the variables into k blocks, say,

$$
\left\{z_{1}, z_{2}, \ldots z_{n}\right\}=\left\{z_{1}, \ldots z_{s_{1}}\right\} \cup\left\{z_{s_{1}+1}, \ldots z_{s_{2}}\right\} \ldots \cup\left\{z_{s_{k-1}+1}, \ldots z_{n}\right\}
$$

Define the monomial order in each block. To compare g_{1} and g_{2}, first we compare the first block. If it is a tie, we compare the second block... until the tie is broken.

Concept: Polynomial division

```
Algorithm 2 Multivariate division algorithm
    Input: \(F, f_{1} \ldots f_{k}, \succ\)
    \(q_{1}:=\ldots:=q_{k}=0, r:=0\)
    while \(F \neq 0\) do
        reductionstatus \(:=0\)
        for \(i=1\) to \(k\) do
                        if \(\operatorname{LT}\left(f_{i}\right)\lfloor\mathrm{LT}(F)\) then
                                \(q_{i}:=q_{i}+\frac{\mathrm{LT}(F)}{\mathrm{LT}\left(f_{i}\right)}\)
                        \(F:=F-\frac{\operatorname{LT}(F)}{\operatorname{LT}\left(f_{i}\right)} f_{i}\)
                        reductionstatus \(:=1\)
                        break
                            end if
            end for
            if reductionstatus \(=0\) then
                \(r:=r+\operatorname{LT}(F)\)
                    \(F:=F-\mathrm{LT}(F)\)
                end if
    end while
    return \(q_{1} \ldots q_{k}, r\)
```

Divide a polynomial over a set of polynomial

It seems that it can solve the ideal membership problem ... But it does not ...

Concept: Groebner basis

For an ideal I in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with a monomial order, a Groebner basis $G(I)=\left\{g_{1}, \ldots g_{m}\right\}$ is a generating set for I such that for each $f \in I$, there always exists $g_{i} \in G(I)$ such that,

$$
\operatorname{LT}\left(g_{i}\right) \mid \operatorname{LT}(f) .
$$

invented by B. Buchburger, in the namesake of his supervisor, W.Groebner

- Polynomial division over a Groebner basis, provide a unique remainder, independent of the polynomial order.
- If $f \in I$, then the remainder of f over the Groebner basis is zero.
- The remainder provides a canonical representation of $F\left[x_{1}, \ldots, x_{n}\right] / I$.
- With a fixed monomial order, the reduced Groebner basis is unique.

Ideal identification problem is solved.

Concept: Companion matrix

$$
R / I=\operatorname{span}\left\{b_{1}, \ldots b_{k}\right\}
$$

We consider the linear representation of R / I,

$$
\left[f \cdot b_{i}\right]=a_{i j}\left[b_{j}\right], \quad[f] \in R / I
$$

If $p \in \mathcal{Z}(I)$, then $f(p)$ is an eigenvalue of the companion matrix $m_{[f]}$. On the other hand, any eigenvalue λ of m_{f} corresponds to some $p \in \mathcal{Z}(I)$ and $\lambda=f(p)$.

$$
\operatorname{tr} M_{[f]}=\sum_{p \in \mathcal{Z}(I)} f(p)
$$

In physics, we frequently evaluate a function over a solution set , and then take the sum.

Cachazo-Yuan-He Equation
Bethe Ansatz Equation

Concept: Modules

A module M over a ring $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is an abelian group, such that

- $f\left(m_{1}+m_{2}\right)=f m_{1}+f m_{2}$, for $f \in R$ and $m_{1}, m_{2} \in M$,
- $\left(f_{1}+f_{2}\right) m=f_{1} m+f_{2} m$, for $f_{1}, f_{2} \in R$ and $m \in M$,
- $\left(f_{1} f_{2}\right) m=f_{1}\left(f_{2}\right) m$, for $f_{1}, f_{2} \in R$ and $m \in M$,
- $1 m=m$, for $1 \in R, m \in M$.

Clearly, R^{m} is a module. Any ideal of R is a module. We mainly consider a sub-module of R^{m}.

A module is an analogy of linear space, in algebraic geometry. The biggest difference is that for $m \in M$ and $f \in R, \frac{1}{y} m$ is not defined.

A basis of a module is a set $\left\{m_{1}, \ldots, m_{k}\right\}$ in M, such that m_{1}, \ldots, m_{k} generate M, and if

$$
f_{1} m_{1}+\ldots+f_{k} m_{k}=0, \quad f_{i} \in R
$$

then $f_{1}=\ldots=f_{k}=0$.
In most cases, a module does not have a basis. If it has, then such a module is a free module. R^{m} is a free module.

Concept: Syzygy

Consider $\left\{m_{1}, \ldots, m_{k}\right\}$ in a module M over R. All tuples $\left\{f_{1}, \ldots f_{k}\right\}$ such that

$$
f_{1} m_{1}+\ldots+f_{k} m_{k}=0, \quad f_{i} \in R
$$

form the syzygy of $\left\{m_{1}, \ldots, m_{k}\right\}$. The syzygy is a sub-module of R^{k}.
If M is a sub-module of R^{l}, then each m_{i} can be written as a column vector with polynomial components. Define $A=\left\{m_{1}, \ldots, m_{k}\right\}$ as an $l \times k$ matrix, then the syzygy is,

$$
\operatorname{ker} A \cap R^{k}
$$

Syzygy can be understood as solving homogenous equations with polynomial solutions.

Concept: Lift

> Lift computation can be understood as an inhomogeneous version of syzygy computation

For $f_{1}, \ldots f_{k}, g \in R^{l}$, find a list of polynomials $\alpha_{1}, \ldots, \alpha_{k}$

$$
\alpha_{1} f_{1}+\ldots+\alpha_{n} f_{k}=g
$$

One solution of the lift problem, can be computed from the Groebner basis.
All solutions of the lift problem
can be obtained from one lift solution + syzygy

Singular

Singular

A computer algebra system for polynomial-related problems

Open source (easy to install in Mac/Linux)
has been used for

UT integral determination
IBP reduction
Spin chains
in physics
$\mathrm{N}=4$ Super-Yang-Mills

Warm-up: Interface to Singular in Mathematica

https://www3.risc.jku.at/research/combinat/software/Singular
Interface written by M. Kauers and V. Levandovskyy

```
Get["~/packages/singular_m/Singular.m"]
```

Singular -- Interface to Mathematica Package by Manuel Kauers (mkauers@risc.uni-linz.ac.at) and Viktor Levandovskyy (levandov@risc.uni http://www.risc.uni-linz.ac.at/research/combinat/software/Singular/ - © RISC Linz - V 0.11 (2008-04-18)

1. Install Singular (it is difficult to install Singular on Windows)
2. Modify Singular.m to get the binary path to Singular correct

SingularStd: Compute Groebner basis in Singular with Buchberger algorithm
SingularSlimgb: Compute Groebner basis in Singular with a better S-pair reduction strategy
SingularNF:
Compute the remainder of a polynomial/module division
SingularSyz: Compute the syzygy
SingularLift: Compute the lift

SingularSlimgb can also be used as a linear equation solver with parameters for mid-size problems

Warm-up: Groebner basis computation in Singular

```
Cyclic6={x + y + z + t + u + v,
x*y + y*z + z*t + t*u + u*v + v*x-c,
x*y*z + y*z*t + z*t*u + t*u*v + u*v*x + v*x*y,
x*y*z*t + y*z*t*u + z*t*u*v + t*u*v*x + u*v*x*y + v*x*y*z,
x*y*z*t*u + y*z*t*u*v + z*t*u*v*x + t*u*v*x*y + u*v*x*y*z + v*x*y*z*t,
x*y*z*t*u*v - d};
```

AbsoluteTiming [Gr1=SingularStd[Cyclic6, \{x,y,z,t,u,v\},MonomialOrder \rightarrow DegreeReverseLexicographic];]

```
20.9969,Null}
```

AbsoluteTiming [Gr=GroebnerBasis[Cyclic6, $\{x, y, z, t, u, v\}$, MonomialOrder \rightarrow DegreeReverseLexicographic, CoefficientDomain \rightarrow RationalFunct

```
[184.908,Null}
```


Warm-up: Lift, applications for Feynman integrals with uniformly transcendental weights

Consider the (\mathbf{D}-dim) residues at the points $\xi_{\alpha}, \alpha=1, \ldots n$.

Singularlift [NormalizedResidueMatrix, $\{$ denFactor $\{1,0,0,-1,0,0,0,0\}\},\{s 12, s 23, s 34, s 45, s 15\}] / /$ Factor
$\{\{0,4 \mathrm{~s} 12 \mathrm{~s} 23(\mathrm{~s} 12-2 \mathrm{~s} 45), 4 \mathrm{~s} 12 \mathrm{~s} 34 \mathrm{~s} 45,4 \mathrm{~s} 12 \mathrm{~s} 15(\mathrm{~s} 12-\mathrm{s} 45), 0,0,-4 \mathrm{~s} 12 \mathrm{~s} 15,-4 \mathrm{~s} 12(\mathrm{~s} 12-\mathrm{s} 45),-4 \mathrm{~s} 12(\mathrm{~s} 23+\mathrm{s} 45),-4 \mathrm{~s} 12(\mathrm{~s} 12-\mathrm{s} 34)\}\}$

Solved in seconds with Singular interface,
all UT in this sector obtained

"All master integrals for three-jet production at NNLO", PhysRevLett. 123 (2019), no. 4041603
Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia

Singular programing

Singular language has a C-like syntax

Run a Singular code as a script

Easy to parallelise

A first example

reduce the "tail" during
show the progress

Ring definition

option(redSB)

option(redTail) ;
option(prot);
//ring r=0, (s0,s1,s2),dp;
ring $\mathrm{r}=0,(\mathrm{~s} 0, \mathrm{~s} 1, \mathrm{~s} 2),(\mathrm{dp}(2), \mathrm{dp}(1))$;
//ring r=42013,(s0,s1,s2),dp;
ideal $\mathrm{I}=18 *\left(\mathrm{~s} 0-\mathrm{s} 2-3 * \mathrm{~s} 1 * \mathrm{~s} 2+2 * \mathrm{~s} 2^{\wedge} 3\right), 384 *\left(-3+3 * s 1-\mathrm{s} 2^{\wedge} 2\right) *\left(-\mathrm{s} 0+\mathrm{s} 2+3 * \mathrm{~s} 1 * \mathrm{~s} 2-2 * \mathrm{~s} 2^{\wedge} 3\right), 64 *(\mathrm{~s} 0-\mathrm{s} 2-3 * \mathrm{~s} 1 * \mathrm{~s} 2+2 * \mathrm{~s} 2 \wedge$

```
3)*(27*s0 + 6*s2 - 15*s1*s2 + 4*s2^3), -160*s0 + 2304*s0^3 + 672*s0*s1 + 768*s0*s1^2 - 1280*s0*s1^3 + s2 - 256*s0^2*s2 - 819
```

$2 * s 0^{\wedge} 2 * s 1 * s 2-2304 * s 0 * s 1 * s 2^{\wedge} 2+5376 * s 0 * s 1^{\wedge} 2 * s 2^{\wedge} 2+3840 * s 0^{\wedge} 2 * s 2^{\wedge} 3+768 * s 0 * s 2^{\wedge} 4-3328 * s 0 * s 1 * s 2^{\wedge} 4+512 * s 0 * s 2^{\wedge} 6,-13+102$
$4 * \mathrm{~s} 0^{\wedge} 2-144 * s 1+5888 * \mathrm{~s} 0^{\wedge} 2 * \mathrm{~s} 1+672 * \mathrm{~s} 1 \wedge 2+768 * \mathrm{~s} 1^{\wedge} 3-1280 * \mathrm{~s} 1^{\wedge} 4+1280 * \mathrm{~s} 0 * \mathrm{~s} 1 * \mathrm{~s} 2-11264 * \mathrm{~s} 0 * \mathrm{~s} 1 \wedge 2 * \mathrm{~s} 2-3328 * \mathrm{~s} 0^{\wedge} 2 * \mathrm{~s} 2 \wedge 2-2304 *$
s1^2*s2^2 + 5376*s1^3*s2^2-768*s0*s2^3 + 6656*s0*s1*s2^3 + 768*s1*s2^4-3328*s1^2*s2^4-512*s0*s2^5 + 512*s1*s2^6, 16*(-
$14 * s 0+16 * s 0 * s 1+304 * s 0 * s 1^{\wedge} 2-15 * s 2+320 * s 0^{\wedge} 2 * s 2+42 * s 1 * s 2+144 * s 1^{\wedge} 2 * s 2-272 * s 1^{\wedge} 3 * s 2+32 * s 0 * s 2^{\wedge} 2-864 * s 0 * s 1 * s 2^{\wedge} 2-$
$192 * \mathrm{~s} 1 * \mathrm{~s} 2^{\wedge} 3+512 * \mathrm{~s} 1^{\wedge} 2 * \mathrm{~s} 2^{\wedge} 3+272 * \mathrm{~s} 0 * \mathrm{~s} 2^{\wedge} 4+48 * \mathrm{~s} 2^{\wedge} 5-240 * \mathrm{~s} 1 * \mathrm{~s} 2^{\wedge} 5+32 * \mathrm{~s} 2^{\wedge} 7$) ;
ideal gb=std(I);
write(":w gb_6_3.txt", stringígh));
//write("ssi:w gb_6_3.ssi",gb);
exit;

Output file: .ssi is the Singular format (fast)
.txt is readable by other softwares (Maple, Mathematica)

C-like features

```
LIB "matrix.lib";
option(redSB);
option(redTail);
option(prot)
ring r=0,(s0,s1,s2),(dp(2),dp(1));
poly varprod=s0*s1*s2;
|proc coeflist(poly p, poly varp, ideal mlist) // Find the coefficient of monomial list "mlist" in p
{
int i,j;
list clist;
matrix matrixA=coef(p,varp);
for(i=1;i<=size(mlist);i++)
    {
        clist[i]=0;
                for(j=1;j<=ncols(matrixA);j++)
                        {
                            if(matrixA[1,j]==mlist[i])
                            clist[i]=matrixA[2,j];
                            }
    }
        return(clist);
}
ideal I=18*(s0 - s2 - 3*s1*s2 + 2*s2^3), 384*(-3 + 3*s1 - s2^2)*(-s0 + s2 + 3*s1*s2 - 2*s2^3), 64*(s0 - s2 - 3*s1*s2 + 2*s2^
3)*(27*s0 + 6*s2 - 15*s1*s2 + 4*s2^3), -160*s0 + 2304*s0^3 + 672*s0*s1 + 768*s0*s1^2 - 1280*s0*s1^3 + s2 - 256*s0^2*s2 - 819
2*s0^2*s1*s2 - 2304*s0*s1*s2^2 + 5376*s0*s1^2*s2^2 + 3840*s0^2*s 2^3 + 768*s0*s2^4 - 3328*s0*s1*s2^4 + 512*s0*s2^6, -13 + 102
4*s0^2 - 144*s1 + 5888*s0^2*s1 + 672*s1^2 + 768*s1^3 - 1280*s1^4 + 1280*s0*s1*s2 - 11264*s0*s1^2*s2 - 3328*s0^2*s2^2 - 2304*
s1^2*s\mp@subsup{2}{}{\wedge}2 + 5376*s1^3*s2^2 - 768*s0*s2^3 + 6656*s0*s1*s2^3 + 768*s1*s2^4 - 3328*s1^2*s2^4 - 512*s0*s2^5 + 512*s1*s2^6, 16*(-
14*s0 + 16*s0*s1 + 304*s0*s1^2 - 15*s2 + 320*s0^2*s2 + 42*s1*s2 + 144*s1^2*s2 - 272*s1^3*s2 + 32*s0*s2^2 - 864*s0*s1*s2^2 -
192*s1*s2^3 + 512*s1^2*s2^3 + 272*s0*s2^4 + 48*s2^5 - 240*s1*s2^5 + 32*s\mp@subsup{2}{}{\wedge}7)
ideal gb=std(I);
write(":w gb_6_3.txt",string(gb));
//write("ssi:w gb_6_3.ssi",gb);
int i;
for(i=1;i<=size(gb);i++)
    {
if(variables(gb[i])==s2)
{
print(gb[i]);
}
}
print(coeflist(gb[1],varprod, s2^7));
exit;
```


With algebraic numbers

r is the imaginary unit

Several algebraic numbers? Find the primitive generator

$$
\begin{aligned}
& a=\sqrt{2}, b=\sqrt{3} \\
& \text { Here } r \text { means } \sqrt{2}+\sqrt{3}, \text { the primitive element }
\end{aligned}
$$

Heavy computation, progress

progress indicator

read an input file (an ideal)

option(redSB);
option(redTail); option(prot);
ring r=0,(s0, s1,s2,s3,s4),dp;
execute("ideal I="+read("ideal_15_5.txt")+";");
ideal gb=std(I);
write(":w gb_15_5.txt", string(gb));
exit;

number of unreduced S-paris

$[1048575: 3] 6(14) s 8(13)-9--12-s 13(8) s 14 s(9)-s(8) s(10)-s s(12) s 15(15) s(16) s(17) s(20) s(22) s 16(25)-s--s(24) s(25)-s(27) s(30) s(31) s(35$
 $3) \mathrm{s}(85) \mathrm{s} 18(86) \mathrm{s}(87) \mathrm{s}(88) \mathrm{s}(87) \mathrm{s}(88) \mathrm{s}(91) \mathrm{s}(92) \mathrm{s}(95) \mathrm{ss}(96)-\mathrm{s}(98)--\mathrm{s}-\mathrm{s}(99) \mathrm{s}(101) \mathrm{s}(104) \mathrm{s}(107) \mathrm{s}(110)--\mathrm{s}(111) \mathrm{s}(114) \mathrm{s}(117) \mathrm{s}(118) \mathrm{s}(122) \mathrm{s}$ $124) 19-s s(125)---s(122)--s(123) s(125) s(127) s(131) s(133) s(134) s(137) s(140)---s s(143)--s(144) s(147) s(149) s(151) s(154) s(157) s(160) s$
)s(199)s(202)s(205)s(207)s-s(209)s(212)--s(213)s(215)s(219)s(222)-s(224)s(226)s(229)s(232)--s(233)s(236)s(239)--s(240)-s20(242) $-s(233) s(235) s(237)---s(234)------s(230)---s s(232)---s(231)-s(232)--s--s---s(231) s(234) s(237)---s(236)-s(239)-s(241) s(2$ $44) \mathrm{s}(246) \mathrm{s}(249)-------s(242)--s(243)-s(244)----s s(247) s(250) s(252)-s(254) s(258)--s(259)-s(260)---s-s(262) s(265) s(268) s(271)-s$ $272)-s(274)---s s(277) s(280) s(283) s(286) s(288)--s--s(289)-s(290) s(293)-s(295) s(298) s(301)-(300)---s-s(302) s(306)--s(307)-s(309) s($ $312) \mathrm{s}(315) \mathrm{s}(318) \mathrm{s}(321) \mathrm{s}(324) \mathrm{s}(327) \mathrm{s}(329) \mathrm{s}(332) \mathrm{s}(334)-\mathrm{s}(336) \mathrm{s}(339) \mathrm{s}(342) \mathrm{s}(345) \mathrm{s} 21(348)--\mathrm{s}-\mathrm{ss}(350)--\mathrm{s}---\mathrm{s}(349)---------\mathrm{s}(341) \mathrm{s}(3$ $44) \mathrm{s}(347)-\mathrm{s}(349) \mathrm{s}(351)--\mathrm{s}--\mathrm{s}------\mathrm{s}(348)----\mathrm{ss}(350) \mathrm{s}(352)--\mathrm{s}-\mathrm{ss}(354)-----\mathrm{s}(349) \mathrm{s}(351) \mathrm{s}(354) \mathrm{s}(357)-\mathrm{s}(359) \mathrm{s}(362)-\mathrm{s}(363)-\mathrm{s}(364) \mathrm{s}(3$ 66) $\mathrm{s}(369)-------s(364)------s(361) s(364)---------------s(350) s(354) s(356)-----s(354) s(357)-s(358)---s s(361) s(363)--s(364)--s(3$ $65) \mathrm{s}(368) \mathrm{s}(372) \mathrm{s}(375) \mathrm{s}(377) \mathrm{s}(380) \mathrm{s}(383) \mathrm{s}(386) \mathrm{s}(388) \mathrm{s}(391)---\mathrm{s}-\mathrm{s}(392) \mathrm{s}(395) \mathrm{s}(398) \mathrm{s}(401) \mathrm{s}(403) \mathrm{s}(406) \mathrm{s}(409)----\mathrm{s}(408) \mathrm{s}(411)----\mathrm{s}(4$ $10) \mathrm{s}(412)--\mathrm{s}(413)--\mathrm{s}(414) \mathrm{s}(417) \mathrm{s}(420) \mathrm{s}(423) \mathrm{s}(425) \mathrm{s}(427) \mathrm{s}(430)-\mathrm{s}(432)--\mathrm{s}(433) \mathrm{s}(436) \mathrm{s}(439) \mathrm{s}(442)-\mathrm{s}(444) \mathrm{s}(447) \mathrm{s}(450) \mathrm{s}(452) \mathrm{s}(455) \mathrm{s}(4$ $58) \mathrm{s}(461)-\mathrm{s}(463) \mathrm{s}(465) \mathrm{s}(468) \mathrm{s}(471) \mathrm{s}(474) \mathrm{s}(476)-\mathrm{s}(478)-\mathrm{s}(480) \mathrm{s}(483) \mathrm{s}(485) \mathrm{s}(488) \mathrm{s}(491) \mathrm{s}(494) \mathrm{s} 22(497)---\mathrm{s}-\mathrm{s}(498)--\mathrm{ss}(501) \mathrm{s}(503)---($

)s $(510) \mathrm{s}(513) \mathrm{s}(515)-----s(513)------------(500)---------s(493)--s(494)----s(493)-s(495)--------s(489) s(492)-s(494)---s(495)-$ $-\mathrm{ss}(498)-----\mathrm{s}(495) \mathrm{s}(498)-----\mathrm{s}(495)-\mathrm{s}(497)-\mathrm{s}(499) \mathrm{s}(502)-\mathrm{s}(504) \mathrm{s}(507) \mathrm{s}(509)-\mathrm{s}(511)--\mathrm{s}(512)---\mathrm{ss}(515)-\mathrm{s}(517)-\mathrm{s}(519)-\mathrm{s}(521) \mathrm{s}(523$ $\mathrm{s}(525) \mathrm{s}(528) \mathrm{s}(531)-\mathrm{s}(533)-\mathrm{s}(535)-\mathrm{s}(537) \mathrm{s}(540) \mathrm{s}(543) \mathrm{s}(546)----\mathrm{s}(544) \mathrm{s}(546)----\mathrm{s}(545)--\mathrm{s}(546)---\mathrm{s}--\mathrm{s}(547) \mathrm{s}(550) \mathrm{s}(553) \mathrm{s}(556) \mathrm{s}(559$ $\mathrm{s}(562) \mathrm{s}(565) \mathrm{s}(568) \mathrm{s}(570) \mathrm{s}(573)-\mathrm{s}(575) \mathrm{s}(578)-\mathrm{s}(580)--\mathrm{s}(581)----\mathrm{s}(579) \mathrm{s}(582) \mathrm{s}(584)-\mathrm{s}(586) \mathrm{s}(589) \mathrm{s}(591) \mathrm{s}(594) \mathrm{s} 23(597)-$
 $--s---s-s(554) s(557) s(560) s(563)-s(565) s(568) s(571) s(574) s(577)--s-----s(574)-s(576) s(580) s(583) s(586) s(589) s(592) s(595) s(599) s($

Finite-field methods

```
```

LIB "modstd.lib"

```
```

LIB "modstd.lib"
option(redSB);
option(redSB);
option(redTail);
option(redTail);
option(prot);
option(prot);
ring r=0,(s0,s1,s2,s3,s4),dp;
ring r=0,(s0,s1,s2,s3,s4),dp;
execute("ideal I="+read("ideal_15_5.txt")+";");
execute("ideal I="+read("ideal_15_5.txt")+";");
ideal gb=modStd(I,0);
ideal gb=modStd(I,0);
write(":w gb_15_5.txt",string(gb));
write(":w gb_15_5.txt",string(gb));
exit;

```
```

exit;

```
```

library for finite-field lift

Use multiple prime numbers to compute Groebner basis
Automatically parallelized
0 means to get the result with high probability
1 means to check the result over Q definitively

Module

position over term
first entry first
position over term
last entry first
option(redSB);
option(redTail);
option(prot);
ring $r=0,(x, y, z),(c, d p)$;
//ring $r=0,(x, y, z),(c, d p)$;
//ring $r=0,(x, y, z),(d p, c)$;
//ring r=0, $(x, y, z),(d p, C)$;
vector v1=x*gen(1) +x*gen(2);
vector v2=y*gen(1)+gen(3);
vector $\mathrm{v} 3=\left(x^{\wedge} 2-\mathrm{y}\right) * \operatorname{gen}(2)+\mathrm{z} * \operatorname{gen}(3)$;
module M=v1,v2,v3;
std(M);


```
1(2)ss2ss3s4s
(S:5)
product criterion:0 chain criterion:1
[1]=[0,0,x3+xyz-xy]
_[2]=[0,y2,-x2-yz]
_[3]=[0,xy,-x]
_[4]=[0,x2-y,z]
_[5]=[y,0,1]
[6]=[x,x]
```


Syzygy

```
option(redSB);
option(redTail);
option(prot);
ring r=0,(x,y,z),(dp,c);
vector v1=x*gen(1) +y*gen(3);
vector v2=y*gen(1)+gen(3);
vector v3=(y^2-1)*gen(2)+z*gen(3);
vector v4=z*gen(1)+(y+1)*gen(3);
vector v5=x*gen(1)+z*gen(2);
module M=v1,v2,v3,v4,v5;
syz(M);
```


\{3\}std:1(4)s(3)s(2)ss2(3)s(2)sss3s(3)s(2)4-ss5s
 (S:12)
 product criterion:0 chain criterion:2

[1]=xy*gen(2)-y2*gen(1) $+\mathrm{y} 2 * \operatorname{gen}(4)-y z * \operatorname{gen}(2)+x * \operatorname{gen}(2)-x * \operatorname{gen}(4)-y * \operatorname{gen}(1)+z * \operatorname{gen}(1)$
[2] $=x y 2 * \operatorname{gen}(1)-x y 2 * \operatorname{gen}(4)-x y 2 * \operatorname{gen}(5)+y 3 * \operatorname{gen}(1)-y 3 * \operatorname{gen}(4)-y 3 * \operatorname{gen}(5)+y 2 z * \operatorname{gen}(2)+y 2 z * \operatorname{gen}(5)-x z 2 * \operatorname{gen}(2)+y z 2 * \operatorname{gen}(1)-y z 2 * \operatorname{gen}(4)+z 3 * \operatorname{ge}$ $\mathrm{n}(2)+x y * \operatorname{gen}(4)+y 2 * \operatorname{gen}(4)+x z * \operatorname{gen}(3)-y z * \operatorname{gen}(1)-y z * \operatorname{gen}(2)+y z * \operatorname{gen}(3)-z 2 * \operatorname{gen}(3)-x * \operatorname{gen}(1)+x * \operatorname{gen}(5)-y * \operatorname{gen}(1)+y * \operatorname{gen}(5)+z * \operatorname{gen}(1)-z * \operatorname{gen}(5)$ _ 3$]=y 4 * \operatorname{gen}(1)-y 4 * \operatorname{gen}(4)-y 4 * \operatorname{gen}(5)+y 3 z * \operatorname{gen}(2)+y 3 * \operatorname{gen}(1)-y 3 * \operatorname{gen}(5)-y 2 z * \operatorname{gen}(1)+y 2 z * \operatorname{gen}(3)+y 2 z * \operatorname{gen}(5)-y z 2 * \operatorname{gen}(4)+z 3 * \operatorname{gen}(2)-y 2 * \operatorname{gen}(1$) $+\mathrm{y} 2 * \operatorname{gen}(4)+\mathrm{y} 2 * \operatorname{gen}(5)-\mathrm{yz} * \operatorname{gen}(2)+\mathrm{yz} * \operatorname{gen}(3)-\mathrm{z} 2 * \operatorname{gen}(3)-\mathrm{y} * \operatorname{gen}(1)+\mathrm{y} * \operatorname{gen}(5)+\mathrm{z} * \operatorname{gen}(1)-\mathrm{z} * \operatorname{gen}(5)$

Here "gen(i)" means the i-th original vector

Lift

option(redSB);
option(redTail);
option(prot);
ring r=0,(x,y,z),(dp,c);
vector v1=x*gen(1) +y*gen(3);
vector v2=y*gen(1)+gen(3);
vector v3=(\mp@subsup{y}{}{\wedge}2-1)*gen(2)+z*gen(3);
vector v4=z*gen(1)+(y+1)*gen(3);
vector v5=x*gen(1)+z*gen(2);
module M=v1,v2,v3,v4,v5;
vector v=\mp@subsup{z}{}{\wedge}2*\operatorname{gen}(2)+\mp@subsup{z}{}{\wedge}2*\operatorname{gen}(3)-z*\operatorname{gen}(3);
lift(M,v);

```

```

Try to express the new vector as the linear combination of these vector with polynomial coefficients.

```
```

[1,1]=y2-z-1
[[2,1]=yz-z
[[3,1]=z
[4,1]=-y2+y
_[5,1]=-y2+z+1

```

\section*{five polynomial coefficients.}

\title{
Vielen Dank und Auf Wiedersehen
}```

