An Introduction to Singular

Yang Zhang University of Science and Technology of China

Sep 9, 2021

This is an abbreviated version of

the lecture notes

http://staff.ustc.edu.cn/~yzhphy/teaching/summer2021/CAG.pdf

mini courses taught in

Sagex 2021 winter school HangZhou Amplitude Summer School As theoretical physicists, we frequently met computation with polynomials, rational functions and matrices with polynomials, rational functions ...

- Feynman integral reduction
- Differential equation for Feynman integrals
- Solve Bethe-Ansatz equation
- Find the minima of a super-potential ...

It is not surprising that in many cases, the polynomial/rational function computation is the most time and RAM consuming step

in many cases, the polynomial/rational function part is the longest component of an analytic result

The key to polynomial/rational function problems

is computational algebraic geometry

originated in 1970s thrive from 2000s

Bruno Buchberger, Frank-Olaf Schreyer, Jean-Charles Faugère David Eisenbud, Michael Stillman, Daniel Grayson, Wolfram Decker ...

Overview

Basic commutative algebra and algebraic geometry

Software

Mathematica, Maple Singular, Macaulay2, Bertini

Reference

Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, *David A. Cox, Donal O'Shea, and John Little*

Using algebraic geometry, *David A. Cox*, *Donal O'Shea*, *and John Little*

A Singular Introduction to Commutative Algebra, G. Pfister and Gert-Martin Greuel

Algebraic geometry, *Robin Hartshorne Principles of Algebraic geometry, Phillip Griffiths and Joe Harris*

Lecture Notes on Multi-loop Integral Reduction and Applied Algebraic Geometry *YZ*, *arXiv:* 1612.02249

ĸ₽ĔŶŨŔĊĊĸŔĿĸŢĔŶŨŔŔĬŴĿĿĿĿĿĹŶŨŔŔĬŴĿĿĿĸŢĔŶŨŔŔĬŴĿĿĔŶŨŔĸĬĿŔŶŨŔŔĬŴĿĔŶŨŔŔĬŴĿĿĔŶŨŔŔĬŴĿĿĔŶŨŔĬŔ

Concept: Polynomial ring and ideal

Polynomial ring
$$R = \mathbb{F}[x_1, \dots, x_n]$$

field, $\mathbb{C}, \mathbb{Q}, \mathbb{Z}/p, \mathbb{Q}[c_1, \dots c_m], \dots$

An ideal *I* in the polynomial ring $R = \mathbb{F}[z_1, \dots, z_n]$ is a linear subspace of *R* such that, For $\forall f \in I$ and $\forall h \in R$, $hf \in I$.

The ideal in the polynomial ring generated by a polynomial set *S* is the collection of all such polynomials,

$$\sum_i h_i f_i, \quad h_i \in R, \quad f_i \in S.$$

This ideal is denoted as $\langle S \rangle$.

Concept: Monomial Ordering

Let *M* be the set of all monomials in the ring $R = \mathbb{F}[x_1, \dots, x_n]$. A monomial order \prec of *R* is an ordering on *M* such that,

- 1. \prec is a total ordering.
- 2. \prec respects monomial products, i.e., if $u \prec v$ then for any $w \in M$, $uw \prec vw$.
- 3. $1 \prec u$, if $u \in M$ and u is not constant.

We use the convention $z_n \prec z_{n-1} \prec \ldots \prec z_1$ for all monomial orders. Given $g_1 = z_1^{\alpha_1} \ldots z_n^{\alpha_n}$ and $g_2 = z_1^{\beta_1} \ldots z_n^{\beta_n}$,

- Lexicographic order (*lex*). First compare α_1 and β_1 . If $\alpha_1 < \beta_1$, then $g_1 \prec g_2$. If $\alpha_1 = \alpha_2$, we compare α_2 and β_2 . Repeat this process the tie is broken.
- Degree lexicographic order (grlex). First compare the total degrees. If $\sum_{i=1}^{n} \alpha_i < \sum_{i=1}^{n} \beta_i$, then $g_1 \prec g_2$. If total degrees are equal, we compare $(\alpha_1, \beta_1), (\alpha_2, \beta_2)$... until the tie is broken.
- Degree reversed lexicographic order (*grevlex*). First compare the total degrees. If $\sum_{i=1}^{n} \alpha_i < \sum_{i=1}^{n} \beta_i$, then $g_1 \prec g_2$. If total degrees are equal, we compare α_n and β_n . If $\alpha_n < \beta_n$, then $g_1 \succ g_2$ (reversed!). If $\alpha_n = \beta_n$, then we further compare $(\alpha_{n-1}, \beta_{n-1}), (\alpha_{n-2}, \beta_{n-2})$... until the tie is broken, and use the reversed result.
- <u>Block order</u>. We separate the variables into *k* blocks, say,

 $\{z_1, z_2, \ldots z_n\} = \{z_1, \ldots z_{s_1}\} \cup \{z_{s_1+1}, \ldots z_{s_2}\} \ldots \cup \{z_{s_{k-1}+1}, \ldots z_n\}.$

Define the monomial order in each block. To compare g_1 and g_2 , first we compare the first block. If it is a tie, we compare the second block... until the tie is broken.

All monomials are sorted.

Concept: Polynomial division

```
Algorithm 2 Multivariate division algorithm
 1: Input: F, f_1 \dots f_k, \succ
 2: q_1 := \ldots := q_k = 0, r := 0
 3: while F \neq 0 do
                reduction status := 0
 4:
                for i = 1 to k do
 5:
                            if LT(f_i)|LT(F) then
 6:
                                        q_i := q_i + \frac{\mathrm{LT}(F)}{\mathrm{LT}(f_i)}
 7:
                                        F := F - \frac{\operatorname{LT}(F)}{\operatorname{LT}(f_i)} f_i
 8:
                                        reduction status := 1
 9:
                                        break
10:
                            end if
11:
                end for
12:
                if reduction status = 0 then
13:
                            r := r + \operatorname{LT}(F)
14:
                            F := F - LT(F)
15:
                end if
16:
17: end while
18: return q_1 ... q_k, r
```

Divide a polynomial over a set of polynomial

It seems that it can solve the ideal membership problem ... But it does not ...

Concept: Groebner basis

For an ideal I in $\mathbb{F}[x_1, \ldots, x_n]$ with a monomial order, a Groebner basis $G(I) = \{g_1, \ldots, g_m\}$ is a generating set for I such that for each $f \in I$, there always exists $g_i \in G(I)$ such that,

 $\mathrm{LT}(g_i)|\mathrm{LT}(f)$.

invented by B. Buchburger, in the namesake of his supervisor, W.Groebner

- Polynomial division over a Groebner basis, provide a unique remainder, independent of the polynomial order.
- If $f \in I$, then the remainder of f over the Groebner basis is zero. Ideal membership problem is solved.
- The remainder provides a canonical representation of $F[x_1, \ldots, x_n]/I$.
- With a fixed monomial order, the reduced Groebner basis is unique.

Ideal identification problem is solved.

Concept: Companion matrix

$$R/I = \operatorname{span}\{b_1, \ldots, b_k\}$$

We consider the linear representation of R/I,

$$[f \cdot b_i] = a_{ij}[b_j], \quad [f] \in R/I$$

• companion matrix

If $p \in \mathcal{Z}(I)$, then f(p) is an eigenvalue of the companion matrix $m_{[f]}$. On the other hand, any eigenvalue λ of m_f corresponds to some $p \in \mathcal{Z}(I)$ and $\lambda = f(p)$.

$$tr M_{[f]} = \sum_{p \in \mathcal{Z}(I)} f(p)$$

In physics, we frequently evaluate a function over a solution set , and then take the sum.

Cachazo-Yuan-He Equation Bethe Ansatz Equation

Concept: Modules

A module *M* over a ring $R = \mathbb{F}[x_1, \ldots, x_n]$ is an abelian group, such that

- $f(m_1 + m_2) = fm_1 + fm_2$, for $f \in R$ and $m_1, m_2 \in M$,
- $(f_1 + f_2)m = f_1m + f_2m$, for $f_1, f_2 \in R$ and $m \in M$,
- $(f_1f_2)m = f_1(f_2)m$, for $f_1, f_2 \in R$ and $m \in M$,

•
$$1m = m$$
, for $1 \in R$, $m \in M$.

Clearly, \mathbb{R}^m is a module. Any ideal of \mathbb{R} is a module. We mainly consider a sub-module of \mathbb{R}^m .

A module is an analogy of linear space, in algebraic geometry. The biggest difference is that for $m \in M$ and $f \in R$, $\frac{1}{f}m$ is not defined.

A basis of a module is a set $\{m_1, \ldots, m_k\}$ in M, such that m_1, \ldots, m_k generate M, and if

$$f_1m_1+\ldots+f_km_k=0, \quad f_i\in R$$

then $f_1 = \ldots = f_k = 0$.

In most cases, a module does not have a basis. If it has, then such a module is a *free module*. R^m is a free module.

Concept: Syzygy

Consider $\{m_1, \ldots, m_k\}$ in a module *M* over *R*. All tuples $\{f_1, \ldots, f_k\}$ such that

$$f_1m_1+\ldots+f_km_k=0,\quad f_i\in R$$

form the syzygy of $\{m_1, \ldots, m_k\}$. The syzygy is a sub-module of \mathbb{R}^k .

If *M* is a sub-module of \mathbb{R}^l , then each m_i can be written as a column vector with polynomial components. Define $A = \{m_1, \ldots, m_k\}$ as an $l \times k$ matrix, then the syzygy is,

 $\ker A \cap R^k$

Syzygy can be understood as solving homogenous equations with polynomial solutions.

Concept: Lift

Lift computation can be understood as an inhomogeneous version of syzygy computation

For $f_1, \ldots, f_k, g \in \mathbb{R}^l$, find a list of polynomials $\alpha_1, \ldots, \alpha_k$

 $\alpha_1 f_1 + \ldots + \alpha_n f_k = g$

One solution of the lift problem, can be computed from the Groebner basis.

All solutions of the lift problem can be obtained from one lift solution + syzygy Singular

Singular

https://www.singular.uni-kl.de

A computer algebra system for polynomial-related problems

Open source (easy to install in Mac/Linux)

has been used for

UT integral determination IBP reduction Spin chains N=4 Super-Yang-Mills

in physics

Warm-up: Interface to Singular in Mathematica

https://www3.risc.jku.at/research/combinat/software/Singular Interface written by M. Kauers and V. Levandovskyy

Get["~/packages/singular_m/Singular.m"]

Singular -- Interface to Mathematica Package by Manuel Kauers (mkauers@risc.uni-linz.ac.at) and Viktor Levandovskyy (levandov@risc.uni http://www.risc.uni-linz.ac.at/research/combinat/software/Singular/ - © RISC Linz - V 0.11 (2008-04-18)

1. Install Singular (it is difficult to install Singular on Windows)

2. Modify Singular.m to get the binary path to Singular correct

SingularStd:Compute Groebner basis in Singular with Buchberger algorithmSingularSlimgb:Compute Groebner basis in Singular with a better S-pair reduction strategySingularNF:Compute the remainder of a polynomial/module divisionSingularSyz:Compute the syzygySingularLift:Compute the lift

SingularSlimgb can also be used as a linear equation solver with parameters for mid-size problems

Warm-up: Groebner basis computation in Singular

```
Cyclic6={x + y + z + t + u + v,

x*y + y*z + z*t + t*u + u*v + v*x-c,

x*y*z + y*z*t + z*t*u + t*u*v + u*v*x + v*x*y,

x*y*z*t + y*z*t*u + z*t*u*v + t*u*v*x + u*v*x*y + v*x*y*z,

x*y*z*t*u + y*z*t*u*v + z*t*u*v*x + t*u*v*x*y + u*v*x*y*z + v*x*y*z*t,

x*y*z*t*u + y*z*t*u*v + z*t*u*v*x + t*u*v*x*y + u*v*x*y*z + v*x*y*z*t,
```

AbsoluteTiming[Gr1=SingularStd[Cyclic6, {x,y,z,t,u,v},MonomialOrder→DegreeReverseLexicographic];]

= {20.9969,N	\ull }
--------------	---------------

$AbsoluteTiming[Gr=GroebnerBasis[Cyclic6, \{x, y, z, t, u, v\}, MonomialOrder \rightarrow DegreeReverseLexicographic, CoefficientDomain \rightarrow RationalFunct]$

_{]=} {**184.908, Null**}

Warm-up: Lift, applications for Feynman integrals with uniformly transcendental weights

Consider the (D-dim) residues at the points ξ_{α} , $\alpha = 1, ..., n$.

$$\sum_{i} \operatorname{Res}_{\xi_{\alpha}}(I_{i})c_{i} = b_{i}$$

SingularLift[NormalizedResidueMatrix, {denFactor {1, 0, 0, -1, 0, 0, 0, 0}}, {s12, s23, s34, s45, s15}] // Factor

 $\{\{0, 4 \ s12 \ s23 \ (s12 - 2 \ s45), 4 \ s12 \ s34 \ s45, 4 \ s12 \ s15 \ (s12 - s45), 0, 0, -4 \ s12 \ s15, -4 \ s12 \ (s12 - s45), -4 \ s12 \ (s23 + s45), -4 \ s12 \ (s12 - s34)\}\}$

Solved in seconds with Singular interface, all UT in this sector obtained

"*All master integrals for three-jet production at NNLO*", PhysRevLett. 123 (2019), no. 4 041603 Chicherin, Gehrmann, Henn, Wasser, YZ, Zoia

Singular programing

Singular language has a C-like syntax

Run a Singular code as a script

Easy to parallelise

A first example

reduce the "tail" during show the progress the Groebner basis computation Ring definition option(redSB); option(redTail); option(prot); //ring r=0,(s0,s1,s2),dp; ring r=0,(s0,s1,s2),(dp(2),dp(1)); //ring r=42013,(s0,s1,s2),dp; ideal I=18*(s0 - s2 - 3*s1*s2 + 2*s2^3), 384*(-3 + 3*s1 - s2^2)*(-s0 + s2 + 3*s1*s2 - 2*s2^3), 64*(s0 - s2 - 3*s1*s2 + 3)*(27*s0 + 6*s2 - 15*s1*s2 + 4*s2^3), -160*s0 + 2304*s0^3 + 672*s0*s1 + 768*s0*s1^2 - 1280*s0*s1^3 + s2 - 256*s0^2*s2 -2*s0^2*s1*s2 - 2304*s0*s1*s2^2 + 5376*s0*s1^2*s2^2 + 3840*s0^2*s2^3 + 768*s0*s2^4 - 3328*s0*s1*s2^4 + 512*s0*s2^6, -13 + 102 4*s0^2 - 144*s1 + 5888*s0^2*s1 + 672*s1^2 + 768*s1^3 - 1280*s1^4 + 1280*s0*s1*s2 - 11264*s0*s1^2*s2 - 3328*s0^2*s2^2 - 2304* s1^2*s2^2 + 5376*s1^3*s2^2 - 768*s0*s2^3 + 6656*s0*s1*s2^3 + 768*s1*s2^4 - 3328*s1^2*s2^4 - 512*s0*s2^5 + 512*s1*s2^6, 16*(- $192*s1*s2^3 + 512*s1^2*s2^3 + 272*s0*s2^4 + 48*s2^5 - 240*s1*s2^5 + 32*s2^7);$ ideal gb=std(I); 🗲 write(":w gb_6_3.txt",string(gb)); //write("ssi:w gb_6_3.ssi",gb); exit; Groebner basis computation Output file: .ssi is the Singular format (fast)

.txt is readable by other softwares (Maple, Mathematica)

C-like features

Library for matrix

```
LIB "matrix.lib";
option(redSB);
option(redTail);
option(prot);
ring r=0,(s0,s1,s2),(dp(2),dp(1));
poly varprod=s0*s1*s2;
proc coeflist(poly p, poly varp, ideal mlist) // Find the coefficient of monomial list "mlist" in p
        int i,j;
        list clist;
                                                                                                                                 A simple
        matrix matrixA=coef(p,varp);
        for(i=1;i<=size(mlist);i++)</pre>
                                                                                                                                 function
                        clist[i]=0;
                                                                                                                                 to find the
                        for(j=1;j<=ncols(matrixA);j++)</pre>
                                 if(matrixA[1,j]==mlist[i])
                                                                                                                                 monomial
                                                clist[i]=matrixA[2,j];
                                                                                                                                 coefficient
        return(clist);
ideal I=18*(s0 - s2 - 3*s1*s2 + 2*s2^3), 384*(-3 + 3*s1 - s2^2)*(-s0 + s2 + 3*s1*s2 - 2*s2^3), 64*(s0 - s2 - 3*s1*s2 + 2*s2^
3)*(27*s0 + 6*s2 - 15*s1*s2 + 4*s2^3), -160*s0 + 2304*s0^3 + 672*s0*s1 + 768*s0*s1^2 - 1280*s0*s1^3 + s2 - 256*s0^2*s2 - 819
2*s0^2*s1*s2 - 2304*s0*s1*s2^2 + 5376*s0*s1^2*s2^2 + 3840*s0^2*s2^3 + 768*s0*s2^4 - 3328*s0*s<u>1*s2^4 + 512*s0*s2^6, -13 + 102</u>
4*s0^2 - 144*s1 + 5888*s0^2*s1 + 672*s1^2 + 768*s1^3 - 1280*s1^4 + 1280*s0*s1*s2 - 11264*s0*s1^2*s2 - 3328*s0^2*s2^2 - 2304*
s1^2*s2^2 + 5376*s1^3*s2^2 - 768*s0*s2^3 + 6656*s0*s1*s2^3 + 768*s1*s2^4 - 3328*s1^2*s2^4 - 512*s0*s2^5 + 512*s1*s2^6, 16*(-
14*s0 + 16*s0*s1 + 304*s0*s1^2 - 15*s2 + 320*s0^2*s2 + 42*s1*s2 + 144*s1^2*s2 - 272*s1^3*s2 + 32*s0*s2^2 - 864*s0*s1*s2^2 -
                                                                                                                                  "for" loop
192*s1*s2^3 + 512*s1^2*s2^3 + 272*s0*s2^4 + 48*s2^5 - 240*s1*s2^5 + 32*s2^7);
ideal gb=std(I);
                                                                                                                                 for finding
write(":w gb_6_3.txt",string(gb));
//write("ssi:w gb_6_3.ssi",gb);
                                                                                                                                  generators
int i;
for(i=1;i<=size(gb);i++)</pre>
                                                                                                                                 in s2 only
                if(variables(gb[i])==s2)
                        print(gb[i]);
print(coeflist(gb[1],varprod,s2^7));
exit;
```

With algebraic numbers

ring R=(0,r),(x,y,z),dp; minpoly=r^2+1; ideal I=x^2+y^2,z^2-x^3-i*x-r,z^2-x*y; ideal gb=std(I);

r is the imaginary unit

Several algebraic numbers ? Find the primitive generator

Heavy computation, progress

progress indicator

read an input file (an ideal)

option(redSB); option(redTail); option(prot); ring r=0,(s0,s1,s2,s3,s4),dp; execute("ideal I="+read("ideal_15_5.txt")+";"); ideal gb=std(I); write(":w gb_15_5.txt",string(gb)); exit;

number of unreduced S-paris

3 (85) s18(86) s(87) s(88) s(87) s(88) s(91) s(92) s(95) ss(96) - s(98) - s - s(99) s(101) s(104) s(107) s(110) - s(111) s(114) s(117) s(118) s(122) s(112) s(11 124)19-ss(125)--s(122)-s(123)s(125)s(127)s(131)s(133)s(134)s(137)s(140)--ss(143)-s(144)s(147)s(149)s(151)s(154)s(157)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(160)s(161)s(163)s(165)s(168)s(171)s(173)s(176)s(178)-s(179)---s(177)s(180)-s(182)--s(181)s(184)s(187)s(189)s(190)-s(191)s(194)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(198)s(1)s(199)s(202)s(205)s(207)s-s(209)s(212)--s(213)s(215)s(219)s(222)-s(224)s(226)s(229)s(232)--s(233)s(236)s(239)--s(240)-s20(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(242)-s(240)s(240)s(242)-s(240)s(240)s(242)-s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)s(240)----s(233)s(235)s(237)---s(234)----s(230)---ss(232)----s(231)-s(232)--s--s(231)s(234)s(237)---s(236)-s(239)-s(241)s(2 44)s(246)s(249)-----s(242)--s(243)-s(244)---s(247)s(250)s(252)-s(254)s(258)-s(259)-s(260)--s(262)s(265)s(268)s(271)-s(260)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s(261)s 272)-s(274)---ss(277)s(280)s(283)s(286)s(288)--s--s(289)-s(290)s(293)-s(295)s(298)s(301)-(300)---s-s(302)s(306)--s(307)-s(309)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(280)s(2 312)s(315)s(318)s(321)s(324)s(327)s(329)s(332)s(334)-s(336)s(339)s(342)s(345)s21(348)--s-ss(350)--s---s(349)-----s(341)s(321)s(321)s(321)s(322)s(322)s(322)s(332)s(334)-s(336)s(342)s(342)s(345)s(348)--s-ss(350)--s--s(349)-----s(341)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(32)s(3244)s(347)-s(349)s(351)--s-s----s(348)---s(350)s(352)-s-s(354)----s(349)s(351)s(354)s(357)-s(359)s(362)-s(363)-s(364)s(354)s(357)-s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357)s(357) 66)s(369)-----s(364)----s(361)s(364)-----s(364)--s(350)s(354)s(356)----s(354)s(357)-s(358)---s(361)s(363)-s(364)--s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-s(364)-10 s (412) - s (413) - s (414) s (417) s (420) s (423) s (425) s (427) s (430) - s (432) - s (433) s (436) s (439) s (442) - s (444) s (447) s (450) s (452) s (455) s (455 58)s(461)-s(463)s(465)s(468)s(471)s(474)s(476)-s(478)-s(480)s(483)s(485)s(488)s(491)s(494)s22(497)--s-s(498)-s(501)s(503) -s(482)-----s(476)---ss(479)s(482)s(485)s(488)-----s(482)-----s(482)-----s(475)--s(476)-s(477)--s(478)---(500)-----s(493)--s(494)----s(493)-s(495)----s(489)s(492)-s(494)---s(495)--ss(498) - - - - s(495)s(498) - - - - s(495) - s(497) - s(497) - s(502) - s(504)s(507)s(509) - s(511) - - s(512) - - - ss(515) - s(517) - s(519) - s(521)s(523)s(562)s(565)s(568)s(570)s(573)-s(575)s(578)-s(580)--s(581)----s(579)s(582)s(584)-s(586)s(589)s(591)s(594)s23(597)-----s(581)-s(583)----s(545)-s(566)--s(567)-----s(561)-----s(549)----s(548)----s(545)-s(547)s(550)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(552)-s(-s--s-s(554)s(557)s(560)s(563)-s(565)s(568)s(571)s(574)s(577)--s---s(574)-s(576)s(580)s(583)s(586)s(589)s(592)s(595)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(599)s(59

Finite-field methods

library for finite-field lift

LIB "modstd.lib"
option(redSB);
option(redTail);
option(prot);
ring r=0,(s0,s1,s2,s3,s4),dp;
execute("ideal I="+read("ideal_15_5.txt")+";");
ideal gb=modStd(I,0);
write(":w gb_15_5.txt",string(gb));
exit;

Use multiple prime numbers to compute Groebner basis Automatically parallelized

 $0 \mbox{ means to get the result with high probability}$

1 means to check the result over Q definitively

to eliminate the first entry

option(redSB); option(redTail); option(prot); ring r=0,(x,y,z),(dp,c); vector v1=x*gen(1) +y*gen(3); vector v2=y*gen(1)+gen(3); vector v3=(y^2-1)*gen(2)+z*gen(3); vector v4=z*gen(1)+(y+1)*gen(3); vector v5=x*gen(1)+z*gen(2); module M=v1,v2,v3,v4,v5; syz(M);

Compute the syzygy of the five vectors

Find three syzygy generators (not two)

{3}std:1(4)s(3)s(2)ss2(3)s(2)sss3s(3)s(2)4-ss5s

(S:12)-----

product criterion:0 chain criterion:2

[1]=xy*gen(2)-y2*gen(1)+y2*gen(4)-yz*gen(2)+x*gen(2)-x*gen(4)-y*gen(1)+z*gen(1)

[2]=xy2*gen(1)-xy2*gen(4)-xy2*gen(5)+y3*gen(1)-y3*gen(4)-y3*gen(5)+y2z*gen(2)+y2z*gen(5)-xz2*gen(2)+yz2*gen(1)-yz2*gen(4)+z3*gen(2)+yz2*gen(2

n(2)+xy*gen(4)+y2*gen(4)+xz*gen(3)-yz*gen(1)-yz*gen(2)+yz*gen(3)-z2*gen(3)-x*gen(1)+x*gen(5)-y*gen(1)+y*gen(5)+z*gen(1)-z*gen(5) _[3]=y4*gen(1)-y4*gen(4)-y4*gen(5)+y3z*gen(2)+y3*gen(1)-y3*gen(5)-y2z*gen(1)+y2z*gen(3)+y2z*gen(5)-yz2*gen(4)+z3*gen(2)-y2*gen(1))+y2*gen(4)+y2*gen(5)-yz*gen(2)+yz*gen(3)-z2*gen(3)-y*gen(1)+y*gen(5)+z*gen(1)-z*gen(5)

Here "gen(i)" means the i-th original vector

Lift A new vector option(redSB); option(redTail); option(prot); ring r=0,(x,y,z),(dp,c); vector v1=x*gen(1) +y*gen(3); vector v2=y*gen(1)+gen(3); vector $v3=(y^2-1)*gen(2)+z*gen(3);$ vector v4=z*gen(1)+(y+1)*gen(3);vector v5=x*gen(1)+z*gen(2); module M=v1,v2,v3,v4,v5; vector $v=z^2*gen(2)+z^2*gen(3)-z*gen(3);$ lift(M,v); Try to express the new vector as the linear combination of these vector with polynomial coefficients. [1,1]=y2-z-1[2,1]=yz-z[3,1]=z[4,1] = -y2 + y[5,1] = -y2 + z + 1

five polynomial coefficients.

Vielen Dank und Auf Wiedersehen