Light-ray OPE in QCD

陈豪

浙江大学

[2011.02492, 2104.00009]

合作者: lan Moult, 朱华星

圈积分相空间积分学习组 2021-10-14

Collider Physics

- Experimentally viable
- Easy to calculate
- Have clean theoretical understanding

Event Shapes

 e^+e^- annihilation

pencil-like distribution

Runicevent 4093; 1000. Date 500527 Time. 20716 Chr.(II+ 39 Surp. 73.3) Ecbl (II+ 25 Sure. 32.6) Hobit (II+ 20 Sure. 32.6)

VS

(more) spherical distribution

Example: Thrust

[Farhi, 1977]

$$T = \max_{\vec{n}} \frac{\sum_{i} |\vec{n} \cdot \vec{p_i}|}{Q}$$

pencil-like $T\sim 1$

spherical $T \sim 1/2$

Energy-energy correlator

[Basham, Brown, Ellis and Love, 1978]

introduced energy-energy correlation

$$\frac{d\Sigma}{dz} = \sum_{i,j} \int d\sigma \frac{E_i E_j}{Q^2} \delta \left(z - \frac{1 - \cos \theta_{ij}}{2} \right)$$

which characterizes the correlation of two energy detectors at spatial infinity (celestial sphere).

Energy Correlation on the celestial sphere

Familiar concept in statistical mechanics!

Probability Distribution

differential cross section

 $d\sigma$

Boltzmann factor $-\beta H$

Weighting Factor

eigenvalues of energy

eigenvalues of spin

Spin Correlation on the plane (2D Ising)

Energy Flow Operator $\mathcal{E}(\vec{n})$

"Perturbative" vs "Non-perturbative"

A calorimeter only detects particles flowing along direction \vec{n} , and weight with its

energy E, e.g.

$$\int \frac{d^3p}{(2\pi)^3 2E_{\vec{p}}} E_{\vec{p}} a_{\vec{p}}^{\dagger} a_{\vec{p}} \delta^{(2)}(\vec{n} - \hat{p})$$

The radiation power passing the detector (located at $R\vec{n}$) at time t is

$$n^i T_i^0(t, R\vec{n})R^2d\Omega$$

[Korchemsky, Sterman, 1999; Hofman, Maldacena, 2008; Bauer, Fleming, Lee, Sterman, 2008; ...]

- ullet Integrate t to get the total received energy
- Detector is effectively located at infinity

$$\mathcal{E}(\vec{n}) = \lim_{R \to \infty} R^2 \int_0^\infty dt \, n_i T^{0i}(t, R\vec{n})$$

Energy Flow Operator

• For free theory, we can use mode expansion [see, e.g. Bauer, Fleming, Lee and Sterman, 2008]

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \; \vec{n}_i T^{0i}(t, r\vec{n}) \qquad \qquad \frac{\text{Free scalar}}{T_{0i} = \partial_t \phi \partial_i \phi} \qquad \int \frac{d^3p}{(2\pi)^3 2E_{\vec{p}}} E_{\vec{p}} \, a_{\vec{p}}^\dagger \, a_{\vec{p}} \, \delta^{(2)}(\vec{n} - \hat{p})$$

so they are equivalent when acting on asymptotic Fock state.

 The energy flow operator is a non-local operator defined on a light-ray located at future null infinity

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ \vec{n}_i T^{0i}(t, r\vec{n})$$

Equivalent form in lightcone coordinate

$$\mathcal{E}(\vec{n}) = \frac{1}{4} \lim_{x^+ \to \infty} \left(\frac{x^+}{2}\right)^2 \int_{-\infty}^{\infty} dx^- \,\bar{n}_{\mu_1} \bar{n}_{\mu_2} T^{\mu_1 \mu_2} \left(\frac{x^+}{2} n^{\mu} + \frac{x^-}{2} \bar{n}^{\mu}\right)$$

This is an example of light-ray operators.

Energy Correlators

Energy correlators are correlation function of multiple energy flow operators inside

some <u>non-vacuum</u> states

$$\langle \Psi' | \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots | \Psi \rangle$$

 $\langle\Psi'|\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)\dots|\Psi
angle$ Looks like a correlation function in a fictitious 2D field theory on S^2

e.g. created by local operators

[momentum space]

$$\langle O'(-q)|\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)...|O(q)\rangle$$

Source with total momentum q = (Q,0,0,0)

[coordinate space]

$$\langle \Omega | O'(x) \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) \dots O(0) | \Omega \rangle$$

Wightman function, not time-ordered function

Light-ray operators lie in the future of all local sources

Schwinger-Keldysh contour

Positions of local operators O, O'

Light-ray Operators

light transform of local operators

Energy flow operator
$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^{\infty} dt \, \vec{n}_i T^{0i}(t, r\vec{n})$$

Energy radiation fall with inverse square law, r^2 compensates this effect to be non-vanishing.

More general light-ray operators

$$\mathbb{O}(\vec{n}) = \lim_{r \to \infty} r^{\underbrace{\text{twist}}} \int_0^\infty dt \ O^{\mu_1 \dots \mu_J}(t, r\vec{n}) \bar{n}_{\mu_1} \dots \bar{n}_{\mu_J}$$

Lesson from CFT:
$$O(x,z) = O^{\mu_1\mu_2...\mu_n}(x)z_{\mu_1}z_{\mu_2}\dots z_{\mu_n}$$

$$\langle O(0,z_1)O(x,z_2)\rangle = \frac{(z_1\cdot z_2 - 2\frac{z_1\cdot xz_2\cdot x}{x^2})^J}{(x^2)^\Delta}$$

$$\xrightarrow{(x^+\to +\infty)} \sim (x^+)^{J-\Delta}$$
 send x to null infinity

Light-ray Operators

light transform of local operators

Energy flow operator
$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ \vec{n}_i T^{0i}(t, r\vec{n})$$

Energy radiation fall with inverse square law, r^2 compensates this effect to be non-vanishing.

More general light-ray operators

$$\mathbb{O}(\vec{n}) = \lim_{r \to \infty} r^{\underbrace{\mathsf{twist}}} \int_0^\infty dt \ O^{\mu_1 \dots \mu_J}(t, r\vec{n}) \bar{n}_{\mu_1} \dots \bar{n}_{\mu_J}$$

In other contexts of physics, light-ray operators are not necessarily at null infinity—they can live on any light-ray.

$$\mathbf{L}[\mathcal{O}](\mathbf{x},n) = \int_{-\infty}^{\infty} d\alpha (-\alpha)^{-\Delta-J} \mathcal{O}\left(x-\frac{n}{\alpha},n\right)$$
 starting point

[Kravchuk, Simmons-Duffin, 2018]

Light-ray Operators

In CFT, different configurations are related by conformal transformation.

[Hofman and Maldecena, 2008; Kravchuk, Simmons-Duffin, 2018]

In embedding space formalism, they correspond to different gauge fixing.

[see Kologlu, Kravchuk, Simmons-Duffin and Zhiboedov, 2019]

AdS/CFT Correspondence

CFT —— AdS

strong coupling

stress tensor insertion

 $T^{\mu \nu}$

energy flow operator $\,\mathcal{E}\,$

energy correlators

weak coupling

metric perturbation

 $n_{\mu
u}$

gravitational shockwave

propagation through shockwaves

shockwave (flat space version)

$$h_{--} \propto \delta(y^{-}) \frac{1}{|\vec{y}_{\perp}|^{d-4}}$$

localized on the null plane

Spacetime Symmetry

Little group that fixes a light-ray in future null infinity consists of

translations, collinear boost, transverse rotations, dilatation

Poincare group part

• Dimension = J-1

$$\mathbb{O}(\vec{n}) = \lim_{r \to \infty} r^{\Delta - J} \int_0^\infty dt O^{\mu_1 \dots \mu_J}(t, r\vec{n}) \bar{n}_{\mu_1} \dots \bar{n}_{\mu_J}$$

$$-(\Delta - J) \quad -1 \qquad +\Delta$$

• Collinear Spin = $1 - \Delta$ Boost quantum number

$$\lim_{\bar{n}\cdot x\to\infty} (\bar{n}\cdot x)^{\Delta-J} \int_{-\infty}^{\infty} d(n\cdot x) \ O^{\mu_1\dots\mu_J}(x) \bar{n}_{\mu_1}\dots \bar{n}_{\mu_J}$$

Boost along
$$\vec{n}$$
 $n^{\mu} \to \lambda n^{\mu}, \quad \bar{n}^{\mu} \to \lambda^{-1} \bar{n}^{\mu}$
$$\mathbb{O}(\vec{n}) \to \lambda^{1-\Delta} \mathbb{O}(\vec{n}) \xrightarrow{\vec{n} \to n^{\mu}}$$

$$\mathbb{O}(\lambda n^{\mu}) = \lambda^{1-\Delta} \mathbb{O}(n^{\mu})$$

- Transverse Spin = transverse spin of the local operator
- Momentum = 0 (invariant under translations)

homogeneous

Short distance scaling behavior is determined by local Operator Product Expansion (OPE).

liquid helium critical behavior

Small angle behavior is controlled by the OPE of these light-ray operators.

"local OPE on the celestial sphere"

[Komiske, Moult, Thaler, Zhu, in preparation]

Symmetry and Power Counting

Expansion parameter θ is dimensionless, the <u>dimensions</u> simply add up. (of light-ray operators)

Recall that the dimension of a light-ray operator is $J-1\,$

J is the collinear spin of the local operator

$$\mathbb{O}_1\mathbb{O}_2\supset\mathbb{O}$$
 $(J_1-1)+(J_2-1)=J-1$ (Exact in CFT)

Example: in \mathcal{EE} OPE, $J_1 = J_2 = 1 \Rightarrow J = 3$

different from local OPE: J=3 operator is absent in the TT OPE

Symmetry and Power Counting

Lorentz group is equivalent to the conformal group on the celestial sphere.

Angle θ plays the role of length on the celestial sphere

 \rightarrow power counting on θ is related to celestial dimension (boost quantum number)

twist
$$au_i \equiv \dim \Delta_i - \mathrm{spin} \; (J_i = 3)$$

Light-ray OPE
$$\mathcal{E}(\vec{n}_1)$$
 $\mathcal{E}(\vec{n}_2)\sim\sum_i c_i$ $\theta^{ au_i-4}\mathbb{O}_i(\vec{n}_2)$ [Hofman, Maldacena, 2008]

collinear spin

$$(1-4) + (1-4) =$$

$$\frac{(\tau_i - 4)}{(\tau_i - 4)} + (1 - \Delta_i)$$

Small angle scaling is dominated by the leading twist operators.

Light-ray OPE in CFT is rigorous and convergent. [Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 2019] [Chang, Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 2020]

In QCD, things are less understood, but the leading power contribution is. [HC, Moult, Zhu, 2020]

Polchinski: There is a lot of QCD data, can you see this (scaling behavior) there?

Maldacena: People do not do this. I haven't figured out why they don't. I think they just haven't thought about this. I was talking to people who did this calculation of two-point function at LEP, computing alpha_s and so on, and they focused mostly on the large angles. But they didn't study the small angles. And I asked him whether they had a good reason for not studying the small angles and they said well we didn't know the resummation formula, didn't study it.

EEC with CMS Open Data

[Komiske, Moult, Thaler, Zhu, in preparation]

Packaged in "MIT Open Data", provided by Jesse Thaler and Patrick Komiske Nice scaling behavior in perturbative regime

Application in QCD

Leading Twist Operators in QCD

$$\lim_{r \to \infty} r^2 \int_0^\infty dt \qquad \qquad \vec{\bigcirc} [J](\vec{n}) =$$

$$\mathcal{O}_{\tilde{g}}^{[J]} = -\frac{1}{2^J} F_a^{\mu+} (iD^+)^{J-2} F_a^{\nu+} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu}$$
 helicity \pm

Mode Expansion

$$\mathbb{O}_{q}^{[J]}(\vec{n}) = \sum_{s} \int \frac{d^{3}p}{(2\pi)^{3}2E} \delta^{(2)}(\hat{p} - \vec{n}) E^{J-1}(b_{\vec{p},s}^{\dagger}b_{\vec{p},s} + d_{\vec{p},s}^{\dagger}d_{\vec{p},s})
\mathbb{O}_{g}^{[J]}(\vec{n}) = \sum_{\lambda,c} \int \frac{d^{3}p}{(2\pi)^{3}2E} \delta^{(2)}(\hat{p} - \vec{n}) E^{J-1} a_{\vec{p},\lambda,c}^{\dagger} a_{\vec{p},\lambda,c}
\mathbb{O}_{\tilde{g},\lambda}^{[J]}(\vec{n}) = -\sum_{s} \int \frac{d^{3}p}{(2\pi)^{3}2E} \delta^{(2)}(\hat{p} - \vec{n}) E^{J-1} a_{\vec{p},\lambda,c}^{\dagger} a_{\vec{p},\lambda,c} a_{\vec{p},-\lambda,c}$$

$\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)$ OPE

in quark state

$$= \int \frac{E_1^2 dE_1}{(2\pi)^3 2E_1} \frac{E_2^2 dE_2}{(2\pi)^3 2E_2} E_1 E_2 e^{-i(p_1 + p_2) \cdot x}$$

Wilson coefficient

$$-\frac{1}{2\pi}\frac{2}{\theta^2}\underbrace{\left[\left(\gamma_{qq}(2)-\gamma_{qq}(3)\right)+\left(\gamma_{gq}(2)-\gamma_{gq}(3)\right)\right]}_{\text{related to twist-2 Anom. Dim.}} \left\langle \Omega|\psi(x)\;\mathbb{O}_q^{[3]}(\vec{n}_2)\bar{\psi}(0)|\Omega\rangle \right]$$

Confirms the general analysis: (1) spin-3 operator, (2) correct scaling behavior

$\mathcal{E}(\vec{n}_1)\mathcal{E}(\vec{n}_2)$ OPE

in gluon state

$$\langle \Omega | A_b^{\nu}(x) \mathcal{E}(\vec{n}_1) \mathcal{E}(\vec{n}_2) A_a^{\mu}(0) | \Omega \rangle$$

$$= \int \frac{E_1^2 dE_1}{(2\pi)^3 2E_1} \frac{E_2^2 dE_2}{(2\pi)^3 2E_2} E_1 E_2 e^{-i(p_1 + p_2) \cdot x}$$

$$-\frac{1}{2\pi} \frac{2}{\theta^2} \left[c_g \langle \Omega | A_b^{\nu}(x) \, \mathbb{O}_g^{[3]} \, A_a^{\mu}(0) | \Omega \rangle \right]$$

$$+ c_{\tilde{g}} \Big(e^{2i\phi} \langle \Omega | A_b^{\nu}(x) \, \mathbb{O}_{\tilde{g},-}^{[3]} \, A_a^{\mu}(0) | \Omega \rangle + e^{-2i\phi} \, \langle \Omega | A_b^{\nu}(x) \, \mathbb{O}_{\tilde{g},+}^{[3]} \, A_a^{\mu}(0) | \Omega \rangle \Big) \Big]$$

Wilson coefficients

unpolarized
$$c_g = (\gamma_{gg}(2) - \gamma_{gg}(3)) + 2n_f \left(\gamma_{qg}(2) - \gamma_{qg}(3)\right)$$

polarized
$$c_{\tilde{g}} = (\gamma_{g\tilde{g}}(2) - \gamma_{g\tilde{g}}(3)) + 2n_f \left(\gamma_{q\tilde{g}}(2) - \gamma_{q\tilde{g}}(3)\right)$$

$$\vec{\mathbb{O}}^{[J]}(\vec{n}_1)\mathcal{E}(\vec{n}_2)$$
 OPE

Introduce the Wilson coefficient matrix

$$\widehat{C}_{\phi}(J) = \begin{pmatrix} \gamma_{qq}(J) & 2n_{f}\gamma_{qg}(J) & 2n_{f}\gamma_{q\tilde{g}}(J)e^{-2i\phi}/2 & 2n_{f}\gamma_{q\tilde{g}}(J)e^{2i\phi}/2 \\ \gamma_{gq}(J) & \gamma_{gg}(J) & \gamma_{g\tilde{g}}(J)e^{-2i\phi}/2 & \gamma_{g\tilde{g}}(J)e^{2i\phi}/2 \\ \gamma_{\tilde{g}q}(J)e^{2i\phi} & \gamma_{\tilde{g}g}(J)e^{2i\phi} & \gamma_{\tilde{g}\tilde{g}}(J) & \gamma_{\tilde{g}\tilde{g}}(J) & \gamma_{\tilde{g}\tilde{g}}(J)e^{4i\phi} \\ \gamma_{\tilde{g}q}(J)e^{-2i\phi} & \gamma_{\tilde{g}g}(J)e^{-2i\phi} & \gamma_{\tilde{g}\tilde{g},\pm}(J)e^{-4i\phi} & \gamma_{\tilde{g}\tilde{g}}(J) \end{pmatrix}$$

OPE leading contribution

$$\vec{\mathbb{O}}^{[J]}(\hat{n}_1)\mathcal{E}(\hat{n}_2) = -\frac{1}{2\pi} \frac{2}{\theta^2} \left[\hat{C}_{\phi}(J) - \hat{C}_{\phi}(J+1) \right] \vec{\mathbb{O}}^{[J+1]}(\hat{n}_1) + \text{higher twist}$$

Energy flow operator corresponds to J=2, and doesn't distinguish quark and gluon.

$$\mathcal{E} \sim \mathbb{O}_q^{[2]} + \mathbb{O}_g^{[2]}$$

$$\mathcal{E}\mathcal{E} \text{ OPE } \qquad \mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2) = -\frac{1}{2\pi} \frac{2}{\theta^2} \vec{\mathcal{J}} \left[\hat{C}_{\phi}(2) - \hat{C}_{\phi}(3) \right] \vec{\mathbb{O}}^{[3]}(\hat{n}_1) + \text{higher twist}$$

$$\vec{\mathcal{J}} = (1, 1, 0, 0)$$

3-point Energy Correlator

in the collinear limit

Kinematics

In the collinear limit, EEEC configuration can be approximated by a triangle.

[HC, Luo, Moult, Yang, Zhang, Zhu, 2019]

measurement

Moduli space of triangle shape

Parameterized in terms of

- (1) the longest side x_L [Size]
- (2) a complex number z [Shape]

Definition

$$\frac{1}{\sigma_{\rm tot}} \frac{d^3 \Sigma_i}{dx_1 dx_2 dx_3} = \sum_{a,b,c} \int d\Phi_c^{(3)} P_{abc}^{(i)} \mathcal{M}_{\rm EEEC}$$

$$1 \to 3 \text{ splitting probability}$$

 x_1, x_2, x_3 length² of each side ~ angle²

Squeezed Limit

Squeezed limit physically corresponds to bringing two detectors very close.

$$\operatorname{Sq}_{q}^{(0)}(\phi) = C_{F} n_{f} T_{F} \left(\frac{39 - 20 \cos(2\phi)}{225} \right) + C_{F} C_{A} \left(\frac{273 + 10 \cos(2\phi)}{225} \right) + C_{F}^{2} \frac{16}{5}$$

$$\operatorname{Sq}_{g}^{(0)}(\phi) = C_{A} n_{f} T_{F} \left(\frac{126 - 20 \cos(2\phi)}{225} \right) + C_{A}^{2} \left(\frac{882 + 10 \cos(2\phi)}{225} \right) + C_{F} n_{f} T_{F} \frac{3}{5}$$

Squeezed limit encodes spin correlation information and the Leading Power resummation is done. [HC, Moult, Zhu, 2020]

When collinear spin correlation is included in the PanScales family of parton showers, our resummed result provides validation of shower results.

[Karlberg, Salam, Scyboz, Verheyen, 2021]

Interference Effect

Contributing Operator

$$F_a^{\mu+}(iD^+)F_a^{\nu+}\epsilon_{\lambda,\mu}\epsilon_{\lambda,\nu}$$
 twist-2, transverse spin-2 gluonic operator

Squeezed Limit

from light-ray OPE

This correctly reproduces the previous fixed order squeezed limit results.

Hierarchy $\theta_L \gg \theta_S$

fixed order result needs to be resummed!

unpolarized jet
$$\left\langle \mathbb{O}_{\tilde{g},\pm}^{[J]} \right\rangle = 0$$
 quark jet $\left\langle \vec{\mathbb{O}}^{[4]}(\vec{n}_1) \right\rangle = (1,0,0,0)$ gluon jet $\left\langle \vec{\mathbb{O}}^{[4]}(\vec{n}_1) \right\rangle = (0,1,0,0)$

RG evolution

transverse spin-0

$$\mathcal{O}_q^{[J]} = \frac{1}{2^J} \bar{\psi} \gamma^+ (iD^+)^{J-1} \psi$$

$$\mathcal{O}_g^{[J]} = -\frac{1}{2^J} F_a^{\mu +} (iD^+)^{J-2} F_a^{\mu +}$$

transverse spin-2

$$\mathcal{O}_{\tilde{g},ij}^{[J]} = -\frac{1}{2^J} F_a^{(i+} (iD^+)^{J-2} F_a^{j)+} \\ \left[\mathcal{O}_{\tilde{g},\lambda}^{[J]} = -\frac{1}{2^J} F_a^{\mu+} (iD^+)^{J-2} F_a^{\nu+} \epsilon_{\lambda,\mu} \epsilon_{\lambda,\nu} \right]$$

RG equation:

$$\frac{d}{d \ln \mu^2} \vec{\mathcal{O}}^{[J]} = -\widehat{\gamma}(J) \cdot \vec{\mathcal{O}}^{[J]}$$

CANNOT MIX

$$\widehat{\gamma}(J) = \begin{pmatrix} \gamma_{qq}(J) & 2n_f \gamma_{qg}(J) & 0 \\ \gamma_{gq}(J) & \gamma_{gg}(J) & 0 \\ 0 & 0 & \gamma_{\tilde{g}\tilde{g}}(J) \mathbf{1} \end{pmatrix}$$

LL Results for Squeezed Limit

$$\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2)\mathcal{E}(\hat{n}_3)$$

$$= \frac{1}{(2\pi)^2} \frac{2}{\theta_S^2} \frac{2}{\theta_L^2} \vec{\mathcal{J}} \left[\widehat{C}_{\phi_S}(2) - \widehat{C}_{\phi_S}(3) \right] \left[\frac{\alpha_s(\theta_L Q)}{\alpha_s(\theta_S Q)} \right]^{\frac{\widehat{\gamma}(3)}{\beta_0}} \left[\widehat{C}_{\phi_L}(3) - \widehat{C}_{\phi_L}(4) \right] \left[\frac{\alpha_s(Q)}{\alpha_s(\theta_L Q)} \right]^{\frac{\widehat{\gamma}(4)}{\beta_0}} \vec{\mathbb{O}}^{[4]}(\hat{n}_1)$$

More Structures...

higher power expansion

For simplicity, tagging final state quarks

 $\cos 5\phi$

Squeezed limit: $z_1 \cdot z_2 \rightarrow 0$

Expanding the full result:

highest transverse spin series

[HC, Moult, Sandor, Zhu, forthcoming]

LP

NLP

$$g(u,v) \equiv g(z,ar{z}) \propto -z^3 ar{z} + \frac{39}{10} z^2 ar{z}^2 - z ar{z}^3$$
 $-z^4 ar{z} + \frac{39}{20} z^3 ar{z}^2 + \frac{39}{20} z^2 ar{z}^3 - z ar{z}^4$

$$-z^{4}\bar{z} + \frac{3}{20}z^{3}\bar{z}^{2} + \frac{3}{20}z^{2}\bar{z}^{3} - z\bar{z}^{4}$$

$$-z^{3}\bar{z} \,_{2}F_{1}\left(3,2,6,z\right)$$

$$6 \,_{5} \,_{229} \,_{4} \,_{2} \,_{23} \,_{211} \,_{23} \,_{23} \,_{229} \,_{24} \,_{34} \,_{6} \,_{5}$$

$$\frac{-6}{7}z^{5}\bar{z} + \frac{229}{140}z^{4}\bar{z}^{2} - \frac{211}{140}z^{3}\bar{z}^{3} + \frac{229}{140}z^{2}\bar{z}^{4} - \frac{6}{7}z\bar{z}^{5}$$
 NNLP

Block Structure

Conformal Symmetry on the Celestial Sphere

$$+\frac{207}{140}z^{5}\bar{z}^{2} \quad -\frac{233}{140}z^{4}\bar{z}^{3} \qquad -\frac{233}{140}z^{3}\bar{z}^{4} \qquad +\frac{207}{140}z^{2}\bar{z}^{5} \qquad -\frac{5}{7}z\bar{z}^{6} \quad \text{NNNLP}$$

• • •

Summary

- Light-ray operators play an important role in collider physics.
- Light-ray OPE, organized as twist expansion, governs the small angle scaling behavior.
- As an application in QCD, light-ray OPE correctly predicts the perturbative 3-point energy correlator in the squeezed limit and nicely organizes the RG.

Thanks!