4ℓ +MET: Analysis update

Abdualazem Fadol

November 2, 2020

- \Box Study the effect of fixing/floating the *ZZ*^{*} normalisation factor.
- $\hfill\square$ The only systematic considered are those of the signal mass points.
- Building two workspaces one with setting the normalisation to be free, and fixing it on the other.

- □ Then compare the signal strength and the upper limit @95 CLs in the two cases.
- \Box The fit is performed on background only Asimov data ($\mu_{RSH} = 0$).

Upper limits on the cross-section

Mass point = m _R , m _H [GeV]	Strength	Strength value	$\sigma_{RSH} \times BR(H \rightarrow ZZ \rightarrow 4\ell)^{+10,+20}_{-1\sigma,-2\sigma}$ [fb] @95 CLs
	μ _{ZZ} .	0.99+0.0410	
390, 220	µRSH fixed	0.00500.000	0.115+0.12,+0.240
	µasu float	0.0049+0.0501	0.119-0.005-0.064
	µ22*	0.99-0.09	
450, 220	µRSH fixed	0.0031+0.0324 -0.1531	0.067+0.101,+0.141
	µ _{RSH} float	0.0027+0.0328 -0.1427	0.069-0.049-0.027
	µ22*	0.99-0.09	
800, 220	µRSH fixed	0.0018+0.0277	0.051+0.037,-0.028
	µ _{RSH} float	0.0021+0.0274 -0.2421	0.052-0.028,-0.038
	μ 22 .	0.99-0.009	
1500, 220	µRSH fixed	0.00163+0.0554	0.047-0.0340.025
	µ _{RSH} float	0.00162+0.0554	0.048+0.02,+0.103

NPs correlation matrix

Abdualazem | 4 ℓ+MET: Analysis update

Thank you!

Additional slides

	Event Selection
QUADRUPLET	- Require at least one quadruplet of leptons consisting of two pairs of same-flavour
SELECTION	opposite-charge leptons fulfilling the following requirements:
	- $p_{\rm T}$ thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV
	- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruplet
	- Leading di-lepton mass requirement: $50 < m_{12} < 106 \text{ GeV}$
	- Sub-leading di-lepton mass requirement: $m_{\text{threshold}} < m_{34} < 115 \text{ GeV}$
	- $\Delta R(\ell, \ell') > 0.10$ for all leptons in the quadruplet
	- Remove quadruplet if alternative same-flavour opposite-charge
	di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$
	- Keep all quadruplets passing the above selection
ISOLATION	- Contribution from the other leptons of the quadruplet is subtracted
	- FixedCutPFlowLoose WP for all leptons
IMPACT	- Apply impact parameter significance cut to all leptons of the quadruplet
PARAMETER	- For electrons: $d_0/\sigma_{d_0} < 5$
SIGNIFICANCE	- For muons: $d_0/\sigma_{d_0} < 3$
Best	- If more than one quadruplet has been selected, choose the quadruplet
QUADRUPLET	with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$
VERTEX	- Require a common vertex for the leptons:
SELECTION	- $\chi^2/\text{ndof} < 5$ for 4μ and < 9 for others decay channels

High- $E_{\rm T}^{\rm miss}$, $N_{\rm jets}^{\rm Central}$

High- $E_{\rm T}^{\rm miss}$, $N_{\rm jets}^{\rm Central}$

High- $E_{\rm T}^{\rm miss}$, $N_{\rm jets}^{\rm Central}$

Signal parametrisation for RSH model $_{\rm High-\it E_{T}^{miss}, \it N_{\rm iets}^{\rm Central}}$

m_e (GeV)

m_e, [GeV]

High- $E_{\rm T}^{\rm miss}$, $N_{\rm jets}^{\rm Central}$

High- $E_{\rm T}^{\rm miss}$, $N_{\rm iets}^{\rm Central}$:Summary of $\chi^2/{\rm ndof}$ values for all signal mass points

Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$
390, 220	0.98	470, 300	1.21	600, 400	1.34	760, 400	1.46
450, 220	1.58	570, 400	1.08	700, 500	1.86	860, 500	1.40
800, 220	1.29	770, 600	1.14	800, 600	1.69	960, 600	1.13
1500, 220	1.90	970, 800	1.43	1000, 800	1.75	1160, 800	1.78
450, 250	1.35	430, 250	1.28	1200, 1000	2.00	1360, 1000	2.18
1500, 250	1.73	480, 300	0.80	460, 250	1.85	910, 250	1.43
800, 300	1.48	580, 400	0.99	510, 300	1.09	960, 300	1.95
800, 500	1.57	680, 500	1.12	610, 400	2.04	1060, 400	1.32
1500, 1000	1.75	780, 600	1.75	710, 500	1.48	1160, 500	1.73
410, 220	1.33	980, 800	1.77	810, 600	1.31	1260, 600	0.98
430, 220	1.37	1180, 1000	1.82	1010, 800	1.42	1460, 800	1.88
580, 220	1.71	440, 250	1.10	1210, 1000	1.86	1660, 1000	1.56
880, 220	1.15	490, 300	1.21	510, 250	1.10	1410, 250	1.54
1380, 220	1.40	590, 400	2.26	560, 300	1.49	1460, 300	1.60
670, 500	1.06	690, 500	1.29	660, 400	1.56	1560, 400	2.64
610, 250	1.51	790, 600	1.76	760, 500	1.85	1660, 500	2.00
660, 300	1.58	990, 800	1.98	860, 600	1.33	1760, 600	1.78
1170, 1000	0.85	1190, 1000	1.44	1060, 800	1.58	1960, 800	1.98
-	-	500, 300	1.72	1260, 1000	1.72	2160, 1000	1.88

18

ž

Z

Signal parametrisation for RSH model $_{\text{Low-}\textit{E}_{T}^{miss},\textit{N}_{iets}^{Central}}$

23

Abdualazem | 4 ℓ+MET: Analysis update

Low- $E_{\rm T}^{\rm miss}$, $\dot{N}_{\rm iets}^{\rm Central}$: Summary of $\chi^2/{\rm ndof}$ values for all signal mass points

Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$
390, 220	1.23	470, 300	1.42	600, 400	1.33	760, 400	1.44
450, 220	1.63	570, 400	1.69	700, 500	1.88	860, 500	1.47
800, 220	1.30	770, 600	1.35	800, 600	1.59	960, 600	1.14
1500, 220	1.89	970, 800	2.14	1000, 800	1.85	1160, 800	1.78
450, 250	1.40	430, 250	1.49	1200, 1000	2.26	1360, 1000	2.28
1500, 250	1.72	480, 300	0.97	460, 250	1.85	910, 250	1.45
800, 300	1.50	580, 400	1.13	510, 300	1.09	960, 300	1.95
800, 500	1.60	680, 500	1.31	610, 400	2.03	1060, 400	1.30
1500, 1000	1.83	780, 600	1.75	710, 500	1.53	1160, 500	1.76
410, 220	1.57	980, 800	2.26	810, 600	1.37	1260, 600	0.96
430, 220	1.36	1180, 1000	2.05	1010, 800	1.45	1460, 800	1.93
580, 220	1.73	440, 250	1.32	1210, 1000	2.25	1660, 1000	1.53
880, 220	1.15	490, 300	1.05	510, 250	1.15	1410, 250	1.50
1380, 220	1.41	590, 400	2.44	560, 300	1.45	1460, 300	1.59
670, 500	1.18	690, 500	1.44	660, 400	1.59	1560, 400	2.63
610, 250	1.51	790, 600	1.87	760, 500	1.86	1660, 500	1.98
660, 300	1.58	990, 800	2.12	860, 600	1.36	1760, 600	1.79
1170, 1000	1.05	1190, 1000	1.76	1060, 800	1.66	1960, 800	1.99
-	-	500, 300	1.86	1260, 1000	1.82	2160, 1000	1.89

27

m_e (GeVI

¢MC 7it

m_e, (GeV

m_e (GeV)

4100

Abdualazem | 4 ℓ+MET: Analysis update

High- $E_{\rm T}^{\rm miss}$, $N_{\rm iets}^{\rm Central} \ge$ 1:Summary of $\chi^2/{\rm ndof}$ values for all signal mass points

34

Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$
390, 220	1.26	470, 300	1.31	600, 400	1.29	760, 400	1.70
450, 220	1.92	570, 400	0.54	700, 500	1.82	860, 500	3.07
800, 220	2.13	770, 600	0.83	800, 600	1.59	960, 600	2.63
1500, 220	2.64	970, 800	1.14	1000, 800	3.01	1160, 800	3.76
450, 250	1.41	430, 250	1.06	1200, 1000	1.62	1360, 1000	8.05
1500, 250	3.23	480, 300	1.79	460, 250	1.15	910, 250	7.68
800, 300	2.09	580, 400	0.76	510, 300	1.84	960, 300	1.67
800, 500	2.65	680, 500	1.60	610, 400	1.14	1060, 400	2.08
1500, 1000	5.79	780, 600	1.29	710, 500	2.10	1160, 500	3.69
410, 220	1.51	980, 800	1.10	810, 600	1.81	1260, 600	8.69
430, 220	1.28	1180, 1000	1.45	1010, 800	1.62	1460, 800	2.50
580, 220	1.40	440, 250	1.01	1210, 1000	1.68	1660, 1000	7.62
880, 220	1.87	490, 300	1.17	510, 250	1.30	1410, 250	2.78
1380, 220	3.27	590, 400	2.13	560, 300	4.74	1460, 300	2.92
670, 500	0.90	690, 500	1.32	660, 400	1.12	1560, 400	4.57
610, 250	2.15	790, 600	1.79	760, 500	1.95	1660, 500	4.47
660, 300	2.73	990, 800	1.84	860, 600	2.83	1760, 600	4.28
1170, 1000	0.91	1190, 1000	1.62	1060, 800	3.02	1960, 800	2.50
-	-	500, 300	1.20	1260, 1000	3.63	2160, 1000	3.95

m_e (GeVI

$\begin{array}{l} \text{Signal parametrisation for RSH model} \\ {\scriptstyle \mathsf{Low-}{\mathcal{E}_{\mathrm{T}}^{\mathrm{miss}}}, {\mathcal{N}_{\mathrm{jets}}^{\mathrm{Central}} \geq 1} \end{array}$

m_e, [GeV]

39

Abdualazem | 4 ℓ+MET: Analysis update

42

Abdualazem | 4ℓ+MET: Analysis update

Low- $E_{\rm T}^{\rm miss}$, $\dot{N}_{\rm iets}^{\rm Central} \ge 1$: Summary of $\chi^2/{\rm ndof}$ values for all signal mass points

Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$	Mass point = (m_X, m_H) [GeV]	$\chi^2/ndof$
390, 220	2.72	470, 300	5.20	600, 400	2.62	760, 400	2.11
450, 220	2.89	570, 400	2.52	700, 500	4.11	860, 500	4.04
800, 220	3.13	770, 600	11.89	800, 600	2.96	960, 600	18.24
1500, 220	3.81	970, 800	8.10	1000, 800	6.69	1160, 800	4.39
450, 250	3.50	430, 250	6.72	1200, 1000	6.21	1360, 1000	42.13
1500, 250	4.11	480, 300	2.49	460, 250	2.24	910, 250	13.08
800, 300	2.93	580, 400	2.21	510, 300	2.08	960, 300	14.94
800, 500	3.95	680, 500	2.82	610, 400	2.29	1060, 400	2.79
1500, 1000	7.87	780, 600	2.93	710, 500	3.17	1160, 500	4.50
410, 220	2.47	980, 800	6.51	810, 600	13.04	1260, 600	12.18
430, 220	1.67	1180, 1000	4.85	1010, 800	2.73	1460, 800	3.46
580, 220	2.27	440, 250	3.90	1210, 1000	4.85	1660, 1000	10.40
880, 220	2.43	490, 300	27.01	510, 250	2.17	1410, 250	180.50
1380, 220	3.86	590, 400	5.04	560, 300	7.89	1460, 300	3.83
670, 500	3.37	690, 500	3.55	660, 400	2.16	1560, 400	6.35
610, 250	2.86	790, 600	4.21	760, 500	3.63	1660, 500	5.38
660, 300	3.45	990, 800	8.57	860, 600	4.04	1760, 600	5.24
1170, 1000	4.62	1190, 1000	4.76	1060, 800	3.94	1960, 800	3.60
-	-	500, 300	7.37	1260, 1000	5.59	2160, 1000	5.56

Additional slides

Nuisance parameters

	Normalisation	Shape
	Electr	rons
A CON	EL_EFF_ID_CorrUncertaintyNP[0-15] EL_EFF_ID_SIMPLIFIED_UncorrUncertaintyNP[0-17] EL_EFF_Iso_TOTAL_INPCOR_PLUS_UNCOR EL_EFF_Reco_TOTAL_INPCOR_PLUS_UNCOR	EG_RESOLUTION_ALL EG_SCALE_ALLCORR EG_SCALE_EXSCINTILATOR EG_SCALE_EASCINTILATOR EG_SCALE_LARCALIB_EXTRA2015PRE EG_SCALE_LARTEMPERATURE_EXTRA2015PRE EG_SCALE_LARTEMPERATURE_EXTRA2016PRE
	Muo	ns
	MUON, EFF, ISO, STAT MUON, EFF, ISO, STAT MUON, EFF, RECO, STAT, LOWPT MUON, EFF, RECO, STAT, LOWPT MUON, EFF, RECO, SYS, LOWPT MUON, EFF, TTVA, STAT MUON, EFF, TTVA, STAT	MUON_ID MUON_MS MUON_SAGITTA_RESBIAS MUON_SAGITTA_RHO MUON_SCALE
/	Jet	8
1		JET_BALES_Response JET_Betchev8/_BetaTum JET_Betchev8/_BetaTum JET_Betchev8/_BetaTum JET_Betartex8/JETUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTU
	Missing transv	erse energy
		MET_SoftTirk_ResoPara MET_SoftTirk_ResoPerp MET_SoftTirk_Scale
	Oth	er
	HOEW_QCD_syst HOEW_syst HOQCD_scale_syst PRW_DATASF	

Additional slides

