A brief introduction to ?

Introduction

How to run?

- Setup the environment
- Create a workspace
- Scan the parameter of interest (POI)
- Draw and analysis

Setup the environment

setupATLAS
d ~/private/Statistics/build
asetup --restore
cd ../run
source ../build/x86_64-centos7-gcc8-opt/setup.sh

Create a workspace

- Use this command to create a workspace in the run directory
- mainCombiner config.ini output.root
- The workspace you get is output.root

[zhan@lxplus706 ~]\$ mainCombiner inputs_HZZOffShell_Run2_050820/config_OffShell_Run2_woSyst_ 050820_BINS_noSysCutoff_SRw12binsCRA_ChangeInBgYieldsAndNoLUMI.ini test_floating_muZZ.root

- This workspace contains everything
- So you need to scan the parameter that you are interested in

*But what is in the config.ini?

Scan the POI

- Use this command to scan the POI:
- scan_poi output. root scan.root combined mu asimovData mu:100:0:5

[zhan@lxplus706 ~]\$ scan_poi test_fixed_muzz.root test_fixed_muzz_scaning.root combined mu asimovData mu:100:0:5

• Then you get a scan.root

*But we need more explanations about scan_poi.

Draw and Analysis

- Use plot_scan_multiple.py to draw and analysis
- python plot_scan_multiple.py scan1.root,scan2.root,scan3.root:"name1","name2","name3" POI "name of the X-axis title"

[zhan@lxplus706 ~]\$ python plot_scan_multiple.py ~/private/Statistics/run/offshellanalysis/Statistics/ConfigFiles/myH OSfloating/test_floating_muzz_scaning.root,~/private/Statistics/run/offshellanalysis/Statistics/ConfigFiles/myHOSfixi ng/test_fixed_muzz_scaning.root:"floating muZZ","fixing muZZ" mu "#mu_{off-shell}"

• This python program also analysis for you

file_namesList ['/afs/cern.ch/user/z/zhan/private/Statistics/run/offshellanalysis/Statistics/ConfigFiles/myHOSfloatin
g/outputs_HZZOffShell_Run2_050820/mu_qqZZ_scan_test_combined.root']
physics has 102 entries
Low: 0.975 1.31069
Hi: 1.024 1.18208
Best mu_qqZZ: 1 +0.014 -0.015
Info in <TCanvas::Print>: png file /afs/cern.ch/user/z/zhan/private/Statistics/run/offshellanalysis/Statistics/Config
Files/myHOSfloating/outputs_HZZOffShell_Run2_050820/mu_qqZZ_scan_test_combined.root

• You can change some drawing settings in plot_scan_multiple.py

But what is in the config.ini?

- [main]
- [cuts]
- [observables]
- [coefficients]
- Config section[<categoryA>,<categoryB>]
- [asimov: asimovData]

[main]

- The [main] section defines general input information, including where mainCombiner can find your input data or MC, configuration options, and your list of nuisance parameters.
- Example

[main]

data = /path/to/my/data_13TeV.root mc = /path/to/my/mc/listofrootfiles/list.txt fileDir = /path/to/all/my/inputs/ NPlist = nuisance.txt categories = ggF_2e2mu_13TeV,ggF_2mu2e_13TeV,ggF_4e_13TeV,ggF_4mu_13TeV mcsets = ggF,qqZZ,ZJets SysCutoff = all:0.01, shape:0.01

• Two fields, categories and mcsets, are mandatory.

[cuts]

[cuts]																				
Incl_bi	in1_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_1< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event</td><td>_type==2)</td><td>&& (</td><td>-5.5<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-5.0))</td></m<></td></m4l_1<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event	_type==2)	&& (-5.5 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-5.0))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-5.0))
Incl_bi	in2_2mu2e	_Binning2	13TeV	=	(<mark>220</mark> <m4l_1< td=""><td>fsr</td><td>&& m41_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3</td><td>event</td><td>type==2)</td><td>&& (</td><td>- <mark>5 . 0</mark><m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-4.5))</td></m<></td></m4l_1<>	fsr	&& m41_	fsr<2000	હહ	(event_type==3	event	type==2)	&& (- <mark>5 . 0</mark> <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-4.5))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-4.5))
Incl_bi	in3_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_1< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3</td><td>event</td><td>type==2)</td><td>&& (</td><td>-4.5<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-4.0))</td></m<></td></m4l_1<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event	type==2)	&& (-4.5 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-4.0))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-4.0))
Incl_bi	in4_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_1< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event_</td><td>_type==2)</td><td>&& (</td><td>-4.0<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-3.5))</td></m<></td></m4l_1<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event_	_type==2)	&& (-4.0 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-3.5))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-3.5))
Incl_bi	in5_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_1< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event</td><td>_type==2)</td><td>&& (</td><td>-3.5<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-3.0))</td></m<></td></m4l_1<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event	_type==2)	&& (-3.5 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-3.0))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-3.0))
Incl_bi	in6_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_f< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event</td><td>_type==2)</td><td>&& (</td><td>-<u>3.0</u><m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-2.5))</td></m<></td></m4l_f<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event	_type==2)	&& (- <u>3.0</u> <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-2.5))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-2.5))
Incl_bi	in7_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_f< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event</td><td>_type==2)</td><td>&& (</td><td>-2.5<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-2.0))</td></m<></td></m4l_f<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event	_type==2)	&& (-2.5 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-2.0))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-2.0))
Incl_bi	in8_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_f< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event</td><td>_type==2)</td><td>&& (</td><td>-2.0<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-1.5))</td></m<></td></m4l_f<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event	_type==2)	&& (-2.0 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-1.5))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	-1.5))
Incl_bi	in9_2mu2e	_Binning2	_13TeV	=	(<mark>220</mark> <m4l_f< td=""><td>fsr</td><td>&& m4l_</td><td>fsr<2000</td><td>હહ</td><td>(event_type==3 </td><td> event_</td><td>_type==2)</td><td>&& (</td><td>-1.5<m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-<mark>1.0</mark>))</td></m<></td></m4l_f<>	fsr	&& m4l_	fsr<2000	હહ	(event_type==3	event_	_type==2)	&& (-1.5 <m< td=""><td>CFM_MEL</td><td>A_ggZZ</td><td>&& MC</td><td>FM_MEL#</td><td>_ggZZ<</td><td>-<mark>1.0</mark>))</td></m<>	CFM_MEL	A_ggZZ	&& MC	FM_MEL#	_ggZZ<	- <mark>1.0</mark>))
Incl_bi	in10_2mu2	e_Binning	2_13Te\	/ =	(<mark>220</mark> <m4l< td=""><td>_fsr</td><td>&& m4l</td><td>_fsr<200</td><td>0 &&</td><td>a (event_type==3</td><td> event</td><td>t_type==<mark>2</mark>)</td><td>હહ</td><td>(-<mark>1.</mark>0<</td><td>MCFM_ME</td><td>LA_ggZZ</td><td>. && M</td><td>CFM_MEI</td><td>_A_ggZZ</td><td><-0.5))</td></m4l<>	_fsr	&& m4l	_fsr<200	0 &&	a (event_type==3	event	t_type== <mark>2</mark>)	હહ	(- <mark>1.</mark> 0<	MCFM_ME	LA_ggZZ	. && M	CFM_MEI	_A_ggZZ	<-0.5))
Incl_bi	in11_2mu2	e_Binning	2_13Te\	/ =	(220 <m4l< td=""><td>_fsr</td><td>&& m4l</td><td>_fsr<200</td><td>0 &&</td><td><pre>a (event_type==3</pre></td><td> event</td><td>t_type==<mark>2</mark>)</td><td>હહ</td><td>(-0.5<</td><td>MCFM_ME</td><td>LA_ggZZ</td><td>. && M</td><td>CFM_MEI</td><td>_A_ggZZ</td><td><0.0))</td></m4l<>	_fsr	&& m4l	_fsr<200	0 &&	<pre>a (event_type==3</pre>	event	t_type== <mark>2</mark>)	હહ	(-0.5<	MCFM_ME	LA_ggZZ	. && M	CFM_MEI	_A_ggZZ	<0.0))
Incl bi	in12 2mu2	e Binning	2 13Te\	/ =	(<mark>220</mark> <m4l< td=""><td>fsr</td><td>&& m4l</td><td>fsr<200</td><td>6 66</td><td>(event type==3</td><td> event</td><td>t_type==2)</td><td>6.6</td><td>(0.0<m< td=""><td>CFM MEL</td><td>A ggZZ</td><td>&& MC</td><td>FM MEL/</td><td>\ ggZZ<</td><td>0.5))</td></m<></td></m4l<>	fsr	&& m4l	fsr<200	6 66	(event type==3	event	t_type==2)	6.6	(0.0 <m< td=""><td>CFM MEL</td><td>A ggZZ</td><td>&& MC</td><td>FM MEL/</td><td>\ ggZZ<</td><td>0.5))</td></m<>	CFM MEL	A ggZZ	&& MC	FM MEL/	\ ggZZ<	0.5))

[observables]

[observables]
<pre>Incl_bin1_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin2_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin3_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin4_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin5_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin6_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin7_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin8_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin9_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin10_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin11_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>
<pre>Incl_bin12_2mu2e_Binning2_13TeV = MCFM_MELA_ggZZ:MEM,1,-5.5,0.5</pre>

[coefficients]

- Each source you provided under mcsets will have a pdf for each category you specified under categories, normalized according to some coefficient. The value and structure of the coefficient will be specified in the [coefficients] section.
- Each source accepts up to four arguments:
- poi factors sys global

[coefficients]

[coefficients]

```
qqZZ = poi:mu_qqZZ ; factors:n_qqZZ,bgyields_139fb.txt ; sys:norm_onlyShape_qqZZ.txt
ggS = factors:n_ggS,bgyields.txt ; sys:norm_NormShape_Both_ggS.txt ; poi:mu*munnlo[1.7]-sqrt(mu5[5.]*mu)*munnlo[1.7]
  global:ATLAS LUMI(139./0.97/1.03)
ggB = factors:n ggB,bgyields.txt ; sys:norm NormShape Both ggB.txt ; poi:munnlo[1.7]-sqrt(mu/mu5[5.])*munnlo[1.7] ;
global:ATLAS_LUMI(139./0.97/1.03)
ggSBI5 = factors:n_ggSBI5,bgyields.txt ; sys:norm_NormShape_Both_ggSBI5.txt ; poi:sqrt(mu/mu5[5.])*munnlo[1.7] ; glo
bal:ATLAS_LUMI(139./0.97/1.03)
ggSNLOS = factors:n ggSNLOS,bgyields.txt ; sys:norm NormShape Both ggSNLOS.txt ; poi:mu ; global:ATLAS LUMI(139./0.9
7/1.03)
ggSNLOI = factors:n ggSNLOI,bgyields.txt ; sys:norm NormShape Both ggSNLOI.txt ; poi:kc1[-1.0]*sqrt(mu) ; global:ATL
AS LUMI(139./0.97/1.03)
ggBNLOB = factors:n ggBNLOB,bgyields.txt ; sys:norm NormShape Both ggBNLOB.txt ; global:ATLAS LUMI(139./0.97/1.03)
gqBNLOI = factors:n gqBNLOI,bgyields.txt ; sys:norm NormShape Both gqBNLOI.txt ; poi:kc1[-1.0]*sqrt(mu) ; global:ATL
AS LUMI(139./0.97/1.03)
ggSBINLOI = factors:n ggSBINLOI,bgyields.txt ; sys:norm NormShape_Both_ggSBINLOI.txt ; poi:sqrt(mu) ; global:ATLAS_L
UMI(139./0.97/1.03)
```

[coefficients]

- poi stands for parameter of interest, are usually free parameters and the same for each category.
- factors usually contains, but not limited to, nominal normalization for the source, which often has different values for each category.
- global provides an additional handle to add a factor that is the same for each category, but not free.
- sys provides the terms that account for systematic uncertainties that affect the overall normalization.

[Incl bin1 2mu2e Binning2 13TeV, Incl bin2 2mu2e Binning2 13TeV, Incl bin3 2mu2e Binning2 13TeV, Incl bin4 2mu2e Binning 2_13TeV,Incl_bin5_2mu2e_Binning2_13TeV,Incl_bin6_2mu2e_Binning2_13TeV,Incl_bin7_2mu2e_Binning2_13TeV,Incl_bin8_2mu2e_ Binning2_13TeV,Incl_bin9_2mu2e_Binning2_13TeV,Incl_bin10_2mu2e_Binning2_13TeV,Incl_bin11_2mu2e_Binning2_13TeV,Incl_bi n12 2mu2e Binning2 13TeV,Incl bin1 4e Binning2 13TeV,Incl bin2 4e Binning2 13TeV,Incl bin3 4e Binning2 13TeV,Incl bin 4 4e Binning2 13TeV,Incl bin5 4e Binning2 13TeV,Incl bin6 4e Binning2 13TeV,Incl bin7 4e Binning2 13TeV,Incl bin8 4e Binning2_13TeV,Incl_bin9_4e_Binning2_13TeV,Incl_bin10_4e_Binning2_13TeV,Incl_bin11_4e_Binning2_13TeV,Incl_bin12_4e_Bi nning2_13TeV,Incl_bin1_4mu_Binning2_13TeV,Incl_bin2_4mu_Binning2_13TeV,Incl_bin3_4mu_Binning2_13TeV,Incl_bin4_4mu_Bin ning2_13TeV,Incl_bin5_4mu_Binning2_13TeV,Incl_bin6_4mu_Binning2_13TeV,Incl_bin7_4mu_Binning2_13TeV,Incl_bin8_4mu_Binn ing2 13TeV,Incl bin9 4mu Binning2 13TeV,Incl bin10 4mu Binning2 13TeV,Incl bin11 4mu Binning2 13TeV,Incl bin12 4mu Bi nning2 13TeV,Incl bin1 CRA 13TeV,Incl bin2 CRA 13TeV,Incl bin3 CRA 13TeV,Incl bin4 CRA 13TeV] ggS = SampleCount : ATLAS Signal ggS ggB = SampleCount : ATLAS Bkg ggB ggSBI5 = SampleCount : ATLAS Signal ggSBI5 qqZZ = SampleCount : ATLAS Bkg qqZZ ggSNLOS = SampleCount : ATLAS Signal ggSNLOS ggSNLOI = SampleCount : ATLAS Signal ggSNLOI

ggBNLOB = SampleCount : ATLAS_Bkg_ggBNLOB
ggBNLOI = SampleCount : ATLAS_Bkg_ggBNLOI
ggSBINLOI = SampleCount : ATLAS_Signal ggSBINLOI

VBFB = SampleCount : ATLAS_Bkg_VBFB VBFSBI = SampleCount : ATLAS_Bkg_VBFSBI VBFSBI5 = SampleCount : ATLAS_Signal_VBFSBI5

[Asimov: asimovData]

[asimov: asimovData] mu = 1.0

But we need more explanations about scan_poi.

- scan_poi output. root scan.root combined mu asimovData mu:100:0:5
- combined –name of the workspace
- mu -- the poi that you want to scan
- asimovData -dataname
- mu:100:0:5 –the scan range

Example

	Strength value
$\mu_{ m qqzz}$	$1^{+0.014}_{-0.015}$
$\mu_{ m ggF}$ fixing	$1^{+0.94}_{-1.17}$
$\mu_{ m ggF}$ floating	$1^{+0.97}_{-1.17}$

Next step

- Next step we shall write our own config file
- And use this tool to do some other analysis
- Maybe at that time I will understand more about this

Thank you!