Weekly Report Zhan Li

	Strength Value
$\mu_{ m qqZZ}$	$1^{+1.36}_{-1.16}$

This figure has a lot of problems, so it does not have any useful information.

- VBF Sample used:
 - mc16_13TeV.500372.MGPy8EG_A14_NNPDF23LO_VBFH125_sbi_4I_m4I130.root
 - mc16_13TeV.500374.MGPy8EG_A14_NNPDF23LO_VBFH125_sbi5_4I_m4I130.root
 - mc16_13TeV.500375.MGPy8EG_A14_NNPDF23LO_VBFH125_sbi10_4I_m4I130.root
 - mc16_13TeV.500373.MGPy8EG_A14_NNPDF23LO_VBFH125_bkg_4l_m4l100.root

- categories:
- VBF_4mu_13TeV, VBF_4e_13TeV, VBF_2e2mu_TeV, VBF_4l_13TeV
- mcsets:
- qqZZ, VBFSBI, VBFSBI5, VBFSBI10, VBFBKG, ggHSIG, ggHSBI
- cut:
- 220<m4l_fsr<2000

• coefficients

```
qqZZ = factors:n_qqZZ,bkgyields.txt ; sys:norm_NormShape_Both_qqZZ.txt ; global:ATLAS_LUMI(139./0.97/1.03)
ggHSIG = factors:n_ggHSIG,bkgyields.txt; poi:mu*munnlo[1.7] - sqrt(mu5[5.]*mu)*munnlo[1.7] ; global:ATLAS_LUMI(139./0.97/1.03)
ggHSBI = factors:n_ggHSBI,bkgyields.txt ; poi:sqrt(mu/mu5[5.])*munnlo[1.7] ; global:ATLAS_LUMI(139./0.97/1.03)
VBFBKG = factors:n_VBFBKG,bkgyields.txt ; poi:((sqrt(mu)-1)*(sqrt(mu)-sqrt(mu5[5.])))/sqrt(mu5[5.]) ; global:ATLAS_L
UMI(139./0.97/1.03)
VBFSBI = factors:n_VBFSBI,bkgyields.txt ; poi:(mu5[5.]*sqrt(mu)-sqrt(mu5[5.])*mu)/(mu5[5.]-sqrt(mu5[5.])) ; global:ATLAS_LUMI(139./0.97/1.03)
VBFSBI5 = factors:n_VBFSBI5,bkgyields.txt ; poi:(mu-sqrt(mu))/(mu5[5.]-sqrt(mu5[5.])) ; global:ATLAS_LUMI(139./0.97/1.03)
VBFSBI10 = factors:n_VBFSBI10,bkgyields.txt ; poi:(mu-sqrt(mu))/(mu5[5.]-sqrt(mu5[5.])) ; global:ATLAS_LUMI(139./0.97/1.03)
```

Why with problems and next

- for the poi, at first I don't know how to deal with the VBF parametrisation when concerned with VBFSBI10
- and next, I will try another way

Why with problems

• The poi of SBI and SBI5

poi of SBI:
$$\frac{(5\sqrt{\mu}-\sqrt{5}\mu)}{5-\sqrt{5}}$$

poi of SBI5: $\frac{\mu-\sqrt{\mu}}{5-\sqrt{5}}$

Parametrisation

What is the signal and the bkg?

- off-shell Higgs boson signal cannot be treated independently from the bkg as negative interference effects appear
 - SBI = Signal + Interference + Background
 - SBI5 = 5.Signal + $\sqrt{5}$.Interference + Background

1.Approach: currently used

- Signal: implicitly defined from SBI and SBI5 MC samples (2 eq and 2 unkn (S, I))
- bkg: VBS processes with TGCs and QGCs
- This approach was used in the previous round of the analysis.
- problem: bkg sample misses on-shell Higgs produced in VBF u-channel

2. Approach: more precise

- signal: implicitly defined from SBI, SBI5, SBI10 MC samples (3 eq and 3 unkn (S, B, I))
- bkg: implicitly defined from SBI, SBI5, SBI10 MC samples
- This approach can be done in the full RunII analysis (?)

Martina Javurkova (UMass)	HZZ off-shell MC production	H4I Weekly meeting 26/10/2019 3
---------------------------	-----------------------------	---------------------------------

Parametrisation

About VBF parametrisation

Parametrisation in the VBF production

Parametrisation (1st approach)

•
$$MC_{pp \to (H^*jj \to)ZZjj}(\mu_{off-shell}) = \mu_{off-shell} \cdot MC_{pp \to H^*jj \to ZZjj}^{SM} + \sqrt{\mu_{off-shell}} \cdot MC_{pp \to ZZjj}^{Interference} + MC_{pp \to ZZjj}^{Cont.bkg}$$

• Where signal and interference are implicitly defined:

$$\begin{cases} MC_{pp \to (H^* jj \to)ZZjj}^{SM} = MC_{pp \to H^* jj \to ZZjj}^{SM} + MC_{pp \to ZZjj}^{Interference} + MC_{pp \to ZZjjj}^{Cont.bkg} \equiv SBI \\ MC_{pp \to (H^* jj \to)ZZjj}^{\kappa_{V}^{4}=5} = 5 \cdot MC_{pp \to H^* jj \to ZZjj}^{SM} + \sqrt{5} \cdot MC_{pp \to ZZjj}^{Interference} + MC_{pp \to ZZjjj}^{Cont.bkg} \equiv SBI5 \\ \Rightarrow MC_{pp \to (H^* jj \to)ZZjj}(\mu_{off-shell}) = \frac{\mu_{off-shell} - \sqrt{\mu_{off-shell}}}{5 - \sqrt{5}} \cdot SBI5 + \frac{5 \cdot \sqrt{\mu_{off-shell}} - \sqrt{5} \cdot \mu_{off-shell}}{5 - \sqrt{5}} \cdot SBI + \frac{(\sqrt{\mu_{off-shell}} - 1) \cdot (\sqrt{\mu_{off-shell}} - \sqrt{5})}{\sqrt{5}} MC_{pp \to ZZjj}^{Cont.bkg} \end{cases}$$

• the parametrization when concerned with VBFSBI10

UMassAmherst

Parametrization

$$\begin{bmatrix} VBF_{SBI10} \\ VBF_{SBI5} \\ VBF_{SBI1} \end{bmatrix} = \begin{bmatrix} 10 & \sqrt{10} & 1 \\ 5 & \sqrt{5} & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} VBF_{sig} \\ VBF_{int} \\ VBF_{bkg} \end{bmatrix} \Rightarrow \begin{bmatrix} VBF_{sig} \\ VBF_{int} \\ VBF_{bkg} \end{bmatrix} = \begin{bmatrix} 10 & \sqrt{10} & 1 \\ 5 & \sqrt{5} & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \cdot \begin{bmatrix} VBF_{SBI10} \\ VBF_{SBI5} \\ VBF_{SBI1} \end{bmatrix}$$

$$\begin{bmatrix} VBF_{sig} \\ VBF_{int} \\ VBF_{bkg} \end{bmatrix} = \frac{1}{9\sqrt{5} - 5 - 4\sqrt{10}} \begin{bmatrix} \sqrt{5} - 1 & 1 - \sqrt{10} & \sqrt{10} - \sqrt{5} \\ -4 & 9 & -5 \\ 5 - \sqrt{5} & \sqrt{10} - 10 & 10\sqrt{5} - 5\sqrt{10} \end{bmatrix} \cdot \begin{bmatrix} VBF_{SBI10} \\ VBF_{SBI1} \\ VBF_{SBI1} \end{bmatrix}$$

• Next, I will use the second way, which means using SBI, SBI5 and SBI10. For BKG I will use SBI and SBI5

CEPC side

Use an indirect way to measure the top quark mass more precisely

A simple result

- change the mass of top mass
- just a simple test
- agreed with others' result

Fig. 4 Top pair production cross section from theory calculations, with the luminosity spectrum (LS) of CLIC at 350 GeV and ISR as well as for all effects combined

doi 10.1140/epjc/s10052-013-2530-7

Fig. 7 Background-subtracted simulated cross section measurements with the ILC luminosity spectrum for 10 fb⁻¹ per data point, together with the cross section for the generator mass of 174 GeV as well as for a shift in mass of ± 200 MeV

