VBF off-shell: the normalisation effect of qqZZ

Abdualazem Fadol

December 14, 2020

Introduction

 \Box Study the effect of μ_{qqZZ} normalisation factor of the qqZZ background.

- □ Signal region:
 - 220 < m_{4\ell} < 2000 GeV
 - $\Delta\eta_{jj} >$ 4.0 & $\textit{N}_{\rm jets} \ge$ 2 GeV

 $\hfill\square$ Adding only the normalisation systematic uncertainties for the samples.

	4μ	4 <i>e</i>	2µ2e	4ℓ
$qq \rightarrow ZZ^*$	18.92±0.35	9.90±0.24	25.58±0.53	54.41±0.68
VBFB	4.27±0.03	2.85±0.03	7.12±0.04	14.24±0.06
SBI	3.47±0.03	2.29±0.02	5.75±0.04	11.52±0.05
SBI5	4.57±0.03	3.11±0.03	7.67±0.04	15.36±0.06
SBI10	6.68±0.04	4.75±0.04	11.35±0.06	22.77±0.08

□ Also, the systematic uncertainty for the luminosity is added.

- \Box The signal POI, $\mu_{\text{off-shell}}$, is parametrised using SBI and SBI5 only.
- \Box Simultaneously fit the 4 μ , 4e, 2 μ 2e and 4 ℓ channels.
- □ The fit is performed on the Asimov data generated by setting POI to 1.0.

Profile likelihood scan

3

 \Box Floating the *qqZZ* normalisation improve the $\mu_{\text{off-shell}}$ by ~ 6%.

The μ_{off-shell} is improved by ~ 6% when floating the *qqZZ* normalisation.
However, it could be more than that when including all the systematic.
Also, there's a problem including the statistical uncertainties in the fit.
We need to fix that and then look at the MELA and CR.

