Bursts before Burst:

A Comparative Study on FRB 200428-associated X-ray Burst and other FRB-absent X-ray Bursts from SGR J1935+2154

Yu-Han Yang Nanjing University 2020/11/1

Arxiv: 2009.10342

Team: **YYH**, Bin-Bin Zhang, Lin Lin, Bing Zhang, Guo-Qiang Zhang, Yi-Si Yang, Zuo-Lin Tu, Jin-Hang Zou, Hao-Yang Ye, Fa-Yin Wang, and Zi-Gao Dai

SGR J1935+2154

Magnetar nature (Israel et al. 2016)

- \circ P = 3.24 s
- $\circ \dot{P} = 1.43 \times 10^{11} \, s \, s^{-1}$
- \circ B ~ 2.2 \times 10¹⁴ G

Distance

- A bright expanding dust-scattering X-ray ring observed by the XRT: ~ (2 – 7) kpc (Mereghetti et al. 2020).
- \circ Its associated SNR G57.2+0.8: 6.6 \pm 0.7 kpc (Zhou et al. 2020).
- \circ By analyzing the contributions of the dispersion measure: 9.0 \pm 2.5 kpc (Zhong et al. 2020).

SGR J1935+2154

800

Freduency (MHz) 600 500

400

FRB 200428

CHIME (CHIME/FRB Collaboration et al. 2020)

Time - 2020-04-28 14:34:33.048 UTC (ms)

STARE2 (Bochenek et al. 2020)

FRB 200428-associated XRB

SGR J1935+2154

FAST observations

 No pulsed radio emission during a bursting phase (Lin et al. 2020c).

ID	Burst time	Flux (erg cm ⁻² s ⁻¹)	Fluence (erg cm
1	00:19:44.192	$1.22^{+0.18}_{-0.16} \times 10^{-6}$	$7.93^{+1.20}_{-1.05} \times 10^{-8}$
2	00:23:04.728	$3.26^{+0.73}_{-0.67} \times 10^{-7}$	$7.10^{+1.58}_{-1.47} \times 10^{-8}$
3	00:24:30.296	$2.37^{+0.05}_{-0.05} \times 10^{-5}$	$3.01^{+0.06}_{-0.07} \times 10^{-6}$
4	00:25:43.945	$1.99^{+0.70}_{-0.62} \times 10^{-7}$	$5.26^{+1.84}_{-1.64} \times 10^{-8}$
5	00:37:36.153	$2.73^{+0.58}_{-0.55} \times 10^{-7}$	$6.78^{+1.43}_{-1.35} \times 10^{-8}$
6	00:39:39.513	$8.96^{+1.09}_{-1.04} \times 10^{-7}$	$1.89^{+0.23}_{-0.22} \times 10^{-7}$
7	00:40:33.072	$1.20^{+0.11}_{-0.11} \times 10^{-6}$	$3.57^{+0.32}_{-0.33} \times 10^{-7}$
8	00:41:32.136	$4.69^{+0.16}_{-0.17} \times 10^{-6}$	$1.15^{+0.04}_{-0.04} \times 10^{-6}$
9	00:43:25.169	$2.23^{+0.14}_{-0.13} \times 10^{-6}$	$5.51^{+0.35}_{-0.33} \times 10^{-7}$
10	00:44:08.202	$3.93^{+0.08}_{-0.07} \times 10^{-5}$	$6.68^{+0.13}_{-0.13} \times 10^{-6}$
11	00:45:31.097	$8.44^{+1.32}_{-1.16} \times 10^{-7}$	$7.43^{+1.16}_{-1.02} \times 10^{-8}$
12	00:46:00.009	$7.83^{+0.66}_{-0.67} \times 10^{-7}$	$4.52^{+0.38}_{-0.39} \times 10^{-7}$
13	00:46:06.408	$4.11^{+0.64}_{-0.61} \times 10^{-7}$	$7.89^{+1.23}_{-1.17} \times 10^{-8}$
14	00:46:20.176	$2.32^{+0.06}_{-0.05} \times 10^{-5}$	$4.18^{+0.10}_{-0.09} \times 10^{-6}$
15	00:46:23.504	$3.17^{+0.46}_{-0.43} \times 10^{-7}$	$2.32^{+0.33}_{-0.31} \times 10^{-7}$
16	00:46:43.208	$9.81^{+0.75}_{-0.69} \times 10^{-7}$	$3.21^{+0.24}_{-0.23} \times 10^{-7}$
17	00:47:24.961	$1.66^{+0.43}_{-0.34} \times 10^{-7}$	$6.23^{+1.61}_{-1.29} \times 10^{-8}$
18	00:47:57.528	$1.16^{+0.12}_{-0.11} \times 10^{-6}$	$1.08^{+0.11}_{-0.10} \times 10^{-7}$
19	00:48:44.824	$3.96^{+0.46}_{-0.42} \times 10^{-7}$	$1.38^{+0.16}_{-0.15} \times 10^{-7}$
20	00:48:49.272	$3.05^{+0.17}_{-0.16} \times 10^{-6}$	$7.32^{+0.40}_{-0.38} \times 10^{-7}$
21	00:49:00.273	$7.80^{+1.14}_{-1.03} \times 10^{-7}$	$8.11^{+1.18}_{-1.07} \times 10^{-8}$
22	00:49:01.121	$8.36^{+0.96}_{-0.92} \times 10^{-7}$	$1.32^{+0.15}_{-0.14} \times 10^{-7}$
23	00:49:06.472	$9.66^{+4.00}_{-3.73} \times 10^{-8}$	$6.98^{+2.89}_{-2.69} \times 10^{-8}$
24	00:49:16.592	$1.78^{+0.16}_{-0.15} \times 10^{-7}$	$4.17^{+1.28}_{-1.24} \times 10^{-3}$
25	00:49:22.392	$7.72^{+1.10}_{-1.05} \times 10^{-7}$	$4.55^{+0.65}_{-0.62} \times 10^{-8}$
26	00:49:27.280	$3.58^{+1.32}_{-1.08} \times 10^{-7}$	$2.11^{+0.78}_{-0.64} \times 10^{-8}$
27	00:49:46.680	$3.87^{+0.39}_{-0.36} \times 10^{-7}$	$2.63^{+0.26}_{-0.24} \times 10^{-7}$
28	00:50:01.248	$7.83^{+0.66}_{-0.61} \times 10^{-7}$	$3.13^{+0.26}_{-0.25} \times 10^{-7}$
29	00:50:21.969	$1.32^{+0.55}_{-0.46} \times 10^{-7}$	$1.85^{+0.76}_{-0.65} \times 10^{-8}$

HOW SPECIAL IS THE FRB-ASSOCIATED BURST?

- Temporal analysis
- (Time-integrated, time-resolved) spectral analysis
- Event Rates

A burst is defined that within its starting

time (Tbb,1) and ending time (Tbb,2), all

blocks are continuously above the

Bursts Identification

background.

 \rightarrow 34 bursts

10

11

12

13

14

15

16

17

18

19

20

21

24

26

27

28

29

30

31

32

33

Burst time (UTC 2020-04-28)

00:19:44.192

00:23:04.728

00:24:30.296

00:25:43.945

00:37:36.153

00:39:39.513

00:40:33.072

00:41:32.136

00:43:25.169

00:44:08.202

00:44:09.302

00:45:31.097

00:46:00.009

00:46:00.609

00:46:06.408

00:46:20.176

00:46:23.504

00:46:43.208

00:47:24.961

00:47:57.528

00:48:44.824

00:48:49.272

00:49:00.273

00:49:01.121

00:49:01.936

00:49:06.472

00:49:16.592

00:49:22.392

00:49:27.280

00:49:46.142

00:49:46.680

00:50:01.012

00:50:01.358

00:50:21.969

 $T_{\rm bb}$ (s)

0.138

0.028

0.252

0.054

0.108

0.244

0.228

0.390

0.374

0.340

0.156

0.042

0.312

0.220

0.040

0.854

0.842

0.226

0.206

0.104

0.538

0.302

0.154

0.186

0.306

0.026

0.312

0.124

0.090

0.046

0.368

0.080

0.156

0.022

 T_{90} (s) $0.080^{+0.016}_{-0.017}$

 $0.030^{+0.004}_{-0.004}$

 $0.208^{+0.021}_{-0.019}$

 $0.152^{+0.024}_{-0.014}$

 $0.084^{+0.005}_{-0.014}$

 $0.382^{+0.020}_{-0.024}$

 $0.120^{+0.030}_{-0.017}$

 $0.151^{+0.010}_{-0.006}$

 $0.181^{+0.045}_{-0.043}$

 $0.234^{+0.003}_{-0.004}$

 $0.078^{+0.013}_{-0.006}$

MTV (s)

0.020

0.028

0.004

0.054

0.008

0.098

0.008

0.016

0.008

0.002

0.004

0.004

0.012

0.012

0.010

0.002

0.122

0.010

0.172

0.038

0.048

0.006

0.154

0.186

0.088

0.026

0.012

0.060

0.034

0.046

0.074

0.012

0.012

0.022

Temporal Analysis

• Light curves:

Temporal Analysis

- Durations & Waiting times:
 - The distributions are Gaussian shapes in the logarithmic scale. The Tbb (T90) distribution peaks at 0.175 (0.118) s. The waiting time is peaking at 1.24 s.

Temporal Analysis

- Durations & Waiting times:
 - The distributions are Gaussian shapes in the logarithmic scale. The Tbb (T90) distribution peaks at 0.175 (0.118) s. The waiting time is peaking at 1.24 s.
 - Ocorrelations:

Temporal Analysis

- MTV:
 - The distributions is a Gaussian shape with a peak value ~ a few of ten milliseconds.

		вв			BB+BI	3			PL			CPL				BB+PL			Fluence
ID	kT (keV)	BIC	$\frac{\text{PGSTAT}}{\text{dof}}$	${ m kT}_1$ $({ m keV})$	kT_2 (keV)	BIC	$\frac{\text{PGSTAT}}{\text{dof}}$	α	BIC	$\frac{\mathrm{PGSTAT}}{\mathrm{dof}}$	alpha	${ m E_{ m p}} \ ({ m keV})$	BIC	$\frac{PGSTAT}{dof}$	α	kT (keV)	BIC	$\frac{\text{PGSTAT}}{\text{dof}}$	$\begin{pmatrix} 10^{-8} \\ \text{erg cm} - \end{pmatrix}$
1	$6.41^{+0.51}_{-0.70}$	124.6	114.5/152					$-2.63^{+0.12}_{-0.13}$	139.1	129.1/152	$-0.43^{+0.77}_{-0.55}$	$22.46^{+2.89}_{-3.43}$	122.8	107.7/151					$11.42^{+2.0}_{-1.5}$ $3.01^{+0.6}_{-0.6}$
2	$5.20_{-0.61}^{+0.96}$		43.4/153					$-2.79_{-0.30}^{+0.13}$	63.2	53.1/153	$1.26^{+1.74}$	$20.35^{+3.19}_{-3.52}$	58.5	43.4/152					
3				$6.09_{-0.46}^{+0.46}$	$10.57^{+0.57}_{-0.47}$	182.8	162.7/151				$0.71^{+0.10}$	32.94+0.24	179.7	164.6/152					348.79 ⁺⁶ .
4	$3.63_{-0.67}^{+3.87}$	86.7	76.6/153					$-3.27^{+0.53}_{-1.27}$	88.1	78.0/153	$0.86^{+2.75}_{-1.64}$	$13.27^{+10.89}_{-3.27}$	91.7	76.6/152					1.29+0.
5	$6.68^{+0.91}_{-1.27}$	91.9	81.9/152					$-2.84^{+0.17}_{-0.27}$	96.2	86.1/152	$-0.84^{+1.30}_{-0.40}$	$20.59_{-4.91}^{+6.29}$	92.2	77.1/151					5.00+1.5
6	$4.83^{+0.53}_{-0.30}$	145.6	135.6/152	$3.61^{+0.42}_{-0.39}$	$10.51^{+2.18}_{-1.62}$		106.4/150	$-2.66^{+0.09}_{-0.11}$	133.5	123.4/152	$-1.40^{+0.49}_{-0.24}$	$14.18 ^{+4.46}_{-3.60}$	123.3	108.2/151	$-2.79_{-0.34}^{+0.18}$	$6.38_{-0.95}^{+2.02}$	132.0	111.8/150	20.94+2
7	$\begin{array}{c} -0.30 \\ +0.26 \\ -0.24 \end{array}$	164.2	154.1/152	$\begin{array}{c} -0.39 \\ +0.45 \\ -0.21 \end{array}$	$11.58^{+2.12}_{-1.19}$	132.3	112.1/150				$ \begin{array}{r} -0.24 \\ -0.42 + 0.28 \\ -0.31 \end{array} $	$23.47^{+1.22}_{-1.48}$	136.3	121.2/151	$-2.41^{+0.20}_{-0.18}$	$6.36^{+0.49}_{-0.45}$	146.4	126.3/150	35.88^{+2}_{-2}
8				$4.78^{+0.32}_{-0.17}$	$11.04^{+0.91}_{-0.42}$	141.5	121.4/150				$-0.32^{+0.14}_{-0.12}$	$26.87_{-0.65}^{-1.48}$	138.7	123.5/151	$-2.57^{+0.07}_{-0.10}$	$7.69_{-0.17}^{+0.22}$	159.8	139.7/150	138.49_{-4}^{-2}
9				$4.57_{-0.22}^{-0.17}$	$10.17_{-1.04}^{-0.42}$	159.3	139.2/150				$-0.02^{+0.28}_{-0.23}$	$21.93^{+0.80}_{-0.86}$	163.9	148.8/151	$-2.59_{-0.24}^{+0.18}$	$5.92^{+0.39}_{-0.16}$	178.3	158.1/150	63.51_{-3}^{-3}
.0				$7.22_{-0.28}^{+0.28}$	$13.96^{+0.40}_{-0.43}$	306.2	286.1/150				$0.40^{+0.06}_{-0.05}$	$\begin{array}{c} -0.86 \\ +0.26 \\ -0.25 \end{array}$	308.8	293.8/149					723.51^{+1}_{-1}
.1	$7.32_{-0.19}^{+0.17}$	163.9	153.8/152	$4.53^{+0.54}_{-0.57}$	$9.84^{+1.03}_{-0.87}$	134.3	114.1/150	•••			$-0.08^{f{+0.26}}_{f{-0.20}}$	$27.12_{-0.99}^{+0.93}$	129.2	114.1/151	$^{-2.92^{\tiny{+0.17}}_{\tiny{-0.29}}}$	$7.87_{-0.26}^{+0.25}$	143.0	122.9/150	51.07+2
12	-0.54	87.1	77.1/153					$-2.58^{+0.11}_{-0.16}$	113.6	103.5/153	$0.66^{+0.92}_{-0.71}$	$24.53 + 2.10 \\ -2.40$	91.5	76.3/152					6.41^{+0}_{-0}
13	$5.95^{+0.39}_{-0.34}$	137.1	127.0/152	$4.17^{+1.09}_{-0.33}$	$9.88^{+9.90}_{-1.06}$		109.2/150	$-2.46^{+0.07}_{-0.08}$	151.7	141.6/152	$-0.59_{-0.42}^{+0.45}$	$22.13_{-2.25}^{+1.73}$	124.5	109.3/151	$^{-2.42 \substack{+0.16 \\ -0.43}}$	$6.15_{-0.42}^{+0.93}$	129.7	109.6/150	23.54^{+2}_{-2}
14	$\begin{array}{c} -0.34 \\ 6.33 + 0.27 \\ -0.28 \end{array}$	133.4	123.3/152	$\begin{array}{c} -0.33 \\ 4.76 \begin{array}{c} +0.44 \\ -0.45 \end{array}$	$11.31_{-1.73}^{+1.99}$	119.4	99.2/150				$-0.25_{-0.32}^{+0.38}$	$23.95_{-1.44}^{+1.28}$	117.6	102.5/151					23.54_{-2}^{+2} 29.30_{-2}^{+2}
15	$6.07_{-0.79}^{+0.68}$	82.2	72.2/152					$-2.72^{+0.17}_{-0.21}$	89.2	79.1/152	$-0.42^{+1.30}_{-0.54}$	$21.02_{-3.97}^{+3.87}$	83.8	68.7/151					4.34^{+0}_{-0}
16				$6.42^{+0.34}_{-0.23}$	$13.53^{+0.54}_{-0.36}$		179.9/151				$0.19_{-0.06}^{+0.07}$	$38.83^{+0.34}_{-0.35}$	197.4	182.2/152					478.40
17	$4.72_{-0.22}^{+0.31}$	119.1	109.0/153	$4.18_{-0.14}^{+0.49}$	$12.44^{+5.07}_{-2.73}$	119.2	99.0/151	$^{-2.57^{\tiny{+0.08}}_{\tiny{-0.08}}}$	142.9	132.8/153	$^{-0.27^{\tiny{+0.86}}_{\tiny{-0.48}}}$	$18.36^{+1.22}_{-1.83}$	118.7	103.5/152					28.56^{+3}_{-3} 34.03^{+2}_{-2}
18	$6.37^{+0.20}_{-0.23}$	157.4	147.3/153	$4.82^{+0.77}_{-0.28}$	$10.27^{+4.58}_{-1.27}$	149.4	129.2/151				$0.14^{+0.36}_{-0.34}$	$23.99_{-0.99}^{+1.16}$	146.5	131.4/152	$-2.52^{+0.21}_{-0.60}$	$6.58_{-0.36}^{+0.32}$	153.4	133.2/151	34.03^{+2}_{-2} 6.20^{+1}_{-1}
9	$5.48^{+0.87}_{-0.55}$	101.4	91.3/153					$-2.57^{+0.14}_{-0.21}$	109.5	99.4/153	$-0.32^{+1.45}_{-0.73}$	$21.24^{+3.39}_{-4.00}$	104.1	89.0/152					6.20^{+1}_{-1}
0	$5.58^{+0.37}_{-0.33}$	101.8	91.8/152					$-2.63^{+0.08}_{-0.11}$	147.1	137.0/152	$0.56^{+0.82}_{-0.59}$	$21.63^{+1.13}_{-1.80}$	105.0	89.9/151					11.87^{+1}_{-1}
21	$5.37_{-0.31}^{+0.45}$	125.5	115.4/153	$4.65^{+0.55}_{-0.25}$	$17.67^{+8.40}_{-4.20}$		100.5/151	$-2.43^{f +0.08}_{f -0.09}$	124.7	114.6/153	$-0.95^{+0.63}_{-0.45}$	$19.79_{-3.34}^{+2.65}$	117.4	102.2/152	$^{\bf -2.23^{\textstyle +0.24}_{\textstyle -0.34}}$	$5.34_{-0.41}^{+1.07}$	117.2	97.1/151	23.82^{+4}_{-3}
22				$5.13^{+0.31}_{-0.18}$	$15.15^{+0.84}_{-0.83}$	160.3	140.2/150				-0.45 $-0.77^{+0.13}_{-0.14}$	$32.17^{+1.04}_{-1.29}$	168.5	153.4/151					81.81 ⁺⁴ ₋₃
23	$4.68_{-0.50}^{+1.62}$	87.7	77.6/152					$^{-2.62 \substack{+0.17 \\ -0.30}}$	86.8	76.8/152	$-1.24^{+1.48}_{-0.23}$	$17.46^{+7.53}_{-3.82}$	87.6	72.5/151					5.88^{+1}_{-1}
24	$4.17^{+0.44}_{-0.29}$	145.8	135.7/152	$3.41_{-0.30}^{+0.73}$	$10.44^{+5.45}_{-2.35}$	146.3	126.1/150	$-2.66^{+0.13}_{-0.17}$	141.6	131.5/152	$-1.62^{+1.06}_{-0.05}$	$9.64^{+7.69}_{-0.65}$	142.1	127.0/151					12.17^{+1}_{-1}
25	5.55 + 0.89 -0.53	98.1	88.0/153					$-2.40^{+0.12}_{-0.16}$	97.8	87.8/153	$-1.11^{+0.77}_{-0.42}$	$23.14_{-5.47}^{+4.65}$	95.8	80.6/152	$-2.37^{+0.22}_{-0.88}$	$^{6.47^{\color{red}+2.76}_{-1.30}}$	102.3	82.1/151	10.54^{+2}_{-2}
26	$4.33^{+0.89}_{-0.63}$	41.9	31.8/152					$-3.14^{+0.26}_{-0.52}$	46.1	36.0/152	$0.56^{+2.21}_{-1.27}$	15.55 + 3.74 -3.60	46.7	31.6/151					1.67^{+0}_{-0}
27	$5.42^{+0.22}_{-0.18}$	149.8		$4.73_{-0.17}^{+0.25}$	$^{15.51 + 2.59}_{-2.33}$	124.5	104.4/150				$-0.16^{+0.37}_{-0.32}$	$20.78^{+0.89}_{-1.10}$	134.8	119.6/151	$\substack{-2.23 + 0.24 \\ -0.17}$	$\substack{5.28 + 0.27 \\ -0.25}$	130.1	109.9/150	41.24+3
28	$4.26^{+0.39}_{-0.30}$	97.3	87.2/152					$-2.80^{+0.14}_{-0.19}$	120.8	110.7/152	 ±1.00								6.28+0.
29	$6.02_{-0.91}^{+0.93}$	99.5	89.4/152					$-2.76^{+0.21}_{-0.35}$	102.9	92.8/152	$-0.70^{+1.90}_{-0.44}$	$19.00^{+6.74}_{-3.56}$	102.2	87.1/151					3.56+0.
30	$3.19_{-0.45}^{+0.83}$	71.6	61.5/152					$-3.29_{-0.81}^{+0.34}$	71.8	61.7/152	$-0.52^{+3.21}_{-0.56}$	$9.34^{+5.95}_{-1.10}$	76.3	61.2/151					1.59+0.
31	$4.60^{+0.31}_{-0.24}$	155.6	145.5/152	$4.28_{-0.25}^{+0.29}$	$19.17_{-4.30}^{+4.85}$	149.1	129.0/150	$-2.60^{+0.08}_{-0.10}$		143.3/152	$-1.41^{+0.78}_{-0.20}$	$13.36^{+4.20}_{-2.62}$	147.6	132.5/151	$^{\bf -2.56^{+0.26}_{-0.30}}$	$4.97_{-0.55}^{+0.98}$	148.2	128.1/150	21.62^{+2}_{-3}
32	$5.65^{+0.49}_{-0.42}$	91.7	81.7/152					$-2.56^{+0.12}_{-0.14}$	125.4	115.4/152	$2.31^{+1.02}_{-1.18}$	$\begin{array}{c} -2.62 \\ +2.05 \\ -1.38 \\ +0.03 \end{array}$	96.6	81.5/151					$6.59_{-0}^{+0.5}$
33	$5.63_{-0.23}^{+0.22}$		91.0/152	$4.82_{-0.41}^{+0.84}$	$9.46_{\color{red}-2.86}^{\color{red}+8.42}$	102.6	82.5/150				$0.46^{f +0.52}_{f -0.34}$	$21.64_{-0.99}^{-1.36}$	99.8	84.7/151					26.51 ⁺¹
34	$4.10_{-0.63}^{+1.21}$	55.2	45.2/152					$-2.83^{+0.30}_{-0.76}$	58.7	48.7/152									1.34+0.

- Flux, fluence & energy:
 - Oistributions:

- CPL:
 - Parameter distributions:

- CPL:
 - Parameter distributions
 - Ocorrelations with flux/fluence:

- CPL:
 - Parameter distributions
 - Correlations with flux/fluence
 - $\circ E_p$ - E_{iso} :

- BB+BB:
 - o Parameter distributions and their correlation:

Time-Resolved Spectral Fitting

- CPL:
 - OCPL parameters and flux/counts evolution for 3 bright SGRs:

Time-Resolved Spectral Fitting

• CPL:

- CPL parameters and flux/counts evolution for 3 bright SGRs
- Parameter distributions and correlations:

HOW SPECIAL IS THE FRB-ASSOCIATED BURST?

Not so special except for its soft alpha and high Ep

Properties	FRB-associated burst	Our sample	Special?				
Duration	0.53 s (longer than 97% of the bursts in our sample)	Gaussian distribution peaks at 0.18 s.	٧				
Light curve profile	Multiple spikes, multiple episodes, and a large flux	Some bursts (namely, #1, #9, #11, etc.) exhibit similar features with FRB-associated burst.	×				
Spectral properties	α = −1.56±0.06, Ep = 36.9±6.2 keV →non-thermal	$\alpha \sim -0.37$, Ep ~ 22.4 \rightarrow thermal-like	V				
Energy	Flux $\approx 6 \times 10^{-7}$ erg cm ⁻² s ⁻¹ , fluence $\approx 7 \times 10^{-7}$ erg cm ⁻²	Flux $\sim 8 \times 10^{-7}$ erg cm ⁻² s ⁻¹ , fluence $\sim 1.5 \times 10^{-7}$ erg cm ⁻²	×				
Spectra-Energy correlation	Off-track the correlations	A tight correlation between Ep and flux (fluence) with a slope of 0.20 ± 0.02 (0.14 ± 0.02).	٧				
Time-resolved properties and correlation	Similar with time-integrated properties and correlation						

HOW SPECIAL IS THE FRB-ASSOCIATED BURST?

Physical explanation:

- Beaming effect
- Narrow spectra of FRB emission with most outside the GHz band
- The uniqueness of FRB-associated X-ray burst

Future complete samples of FRB-associated and FRB-absent X-ray bursts from Galactic magnetars are needed to determine whether the FRB-associated bursts are truly atypical.

SGR BURST RATE AND COMPARISON WITH THE FRB BURST RATE

Cumulative energy distribution of SGR 1935 bursts and FRB 121102:

Energy-dependent event rate densities of magnetar XRBs and FRBs:

SUMMARY

- We systematically analyzed the FRB-absent bursts of SGR J1935+2154 just hours before the FRB 200428 event.
- The FRB-associated X-ray burst observed by HXMT only distinguishes itself in terms of its non-thermal α and spectral peak energy, but is otherwise consistent with the burst population.
- We compared the cumulative energy distribution of our burst sample with that of the FRB burst sample of FRB 121102.
- The event rate density of FRBs is lower than the event rate density of magnetar bursts by a factor of \sim 150, suggesting that only a small fraction of magnetar bursts can produce FRBs.

Thanks!

BACKUP

