
Singly-heavy baryon spectrum

Xian-Hui Zhong (钟显辉)

Hunan Normal University

第二届LHCb前沿物理研讨会 2020年12月12-13日

Simple structure

Classification (flavor)

Charmed baryon

$\phi_{\bar{3}}^{c} = \begin{cases} \frac{1}{\sqrt{2}}(ud - du)c & \text{for } \Lambda_{c}^{+}, \\ \frac{1}{\sqrt{2}}(us - su)c & \text{for } \Xi_{c}^{+}, \\ \frac{1}{\sqrt{2}}(ds - sd)c & \text{for } \Xi_{c}^{0}; \end{cases} \qquad \phi_{\bar{3}}^{b} = \begin{cases} \frac{1}{\sqrt{2}}(ud - du)b & \text{for } \Lambda_{b}^{0}, \\ \frac{1}{\sqrt{2}}(us - su)b & \text{for } \Xi_{b}^{0}, \\ \frac{1}{\sqrt{2}}(ds - sd)b & \text{for } \Xi_{b}^{-}. \end{cases}$

Bottom baryon

$$\phi_{\bar{3}}^b = \begin{cases} \frac{1}{\sqrt{2}}(ud - du)b & \text{for } \Lambda_b^0, \\ \frac{1}{\sqrt{2}}(us - su)b & \text{for } \Xi_b^0, \\ \frac{1}{\sqrt{2}}(ds - sd)b & \text{for } \Xi_b^-. \end{cases}$$

$$\phi_{6}^{c} = \begin{cases} uuc & \text{for } \Sigma_{c}^{++}, \\ \frac{1}{\sqrt{2}}(ud + du)c & \text{for } \Sigma_{c}^{+}, \\ ddc & \text{for } \Sigma_{c}^{0}, \\ \frac{1}{\sqrt{2}}(us + su)c & \text{for } \Xi_{c}^{\prime+}, \\ \frac{1}{\sqrt{2}}(ds + sd)c & \text{for } \Xi_{c}^{\prime0}, \\ ssc & \text{for } \Omega_{c}^{0}; \end{cases} \qquad \phi_{6}^{b} = \begin{cases} uub & \text{for } \Sigma_{b}^{+}, \\ \frac{1}{\sqrt{2}}(ud + du)b & \text{for } \Sigma_{b}^{0}, \\ ddb & \text{for } \Sigma_{b}^{-}, \\ \frac{1}{\sqrt{2}}(us + su)b & \text{for } \Xi_{b}^{\prime0}, \\ \frac{1}{\sqrt{2}}(ds + sd)b & \text{for } \Xi_{b}^{\prime-}, \\ ssb & \text{for } \Omega_{b}^{-}. \end{cases}$$

$$\phi_{6}^{b} = \begin{cases} uub & \text{for } \Sigma_{b}^{+}, \\ \frac{1}{\sqrt{2}}(ud + du)b & \text{for } \Sigma_{b}^{0}, \\ ddb & \text{for } \Sigma_{b}^{-}, \\ \frac{1}{\sqrt{2}}(us + su)b & \text{for } \Xi_{b}^{\prime 0}, \\ \frac{1}{\sqrt{2}}(ds + sd)b & \text{for } \Xi_{b}^{\prime -}, \\ ssb & \text{for } \Omega_{b}^{-}. \end{cases}$$

Antisymmetric antitriplet

3_F states

Λ_c and Λ_b states

YX Yao, KL Wang, XH, PRD98,076015(2018)

TABLE I. Mass spectra of the singly heavy baryons of $\bar{\mathbf{3}}_F$ up to D wave from various quark models [21,22,27,33] compared with the data from the RPP [24].

	Λ_c			Λ_b			
State	RQM [21]	NQM [27]	NQM [33]	PDG [24]	RQM [21]	NQM [27]	PDG [24]
$1^2S_2^{1+}$	2286	2285	2286	2286	5620	5618	5620
$1^2 P_{\lambda_2}^{\frac{1}{2}}$	2598	2628	2614	2592	5930	5938	5912
$1^2P_{\lambda^{\frac{3}{2}}}$	2627	2630	2639	2628	5942	5939	5920
$1^2D_{\lambda\lambda^{\frac{3}{2}+}}$	2874	2920	2843	2860?	6190	6211	?
$1^2 D_{\lambda \lambda} \frac{5}{2}^+$	2880	2922	2851	2880?	6196	6212	?

How to establish the D-wave states?

Evidence of D-wave Λ_c states

$$\Lambda_c(2860)^+$$

$$I(J^P) = 0(\frac{3}{2}^+)$$

Only seen in D⁰p channel

JHEP 1705 030

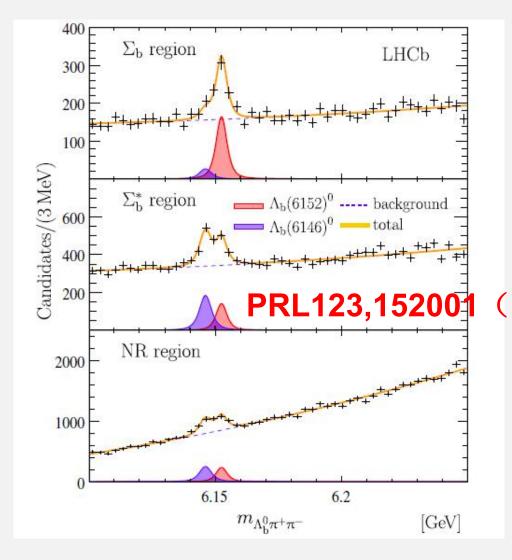
R. Aaij et al.

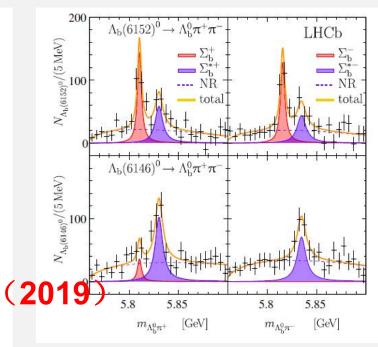
$$\Lambda_c(2880)^+$$

$$I(J^P) = 0(\frac{5}{2}^+)$$

$$M = 2882 \text{ MeV},$$
 $\Gamma = 5.6 \text{ MeV}$

Decay modes:


$$\Gamma_{1}$$
 $\Lambda_{c}^{+} \pi^{+} \pi^{-}$
 Γ_{2}
 $\Sigma_{c} (2455)^{0}, ++ \pi^{\pm}$
 Γ_{3}
 $\Sigma_{c} (2520)^{0}, ++ \pi^{\pm}$
 Γ_{4}
 ρD^{0}


Our explaination

	$ \Lambda_c^2 D_{\lambda\lambda}^{3+}\rangle(2856)$	$ \Lambda_c^2 D_{\lambda\lambda_2^{5+}}\rangle (2881)$
Decay mode	Γ_i (MeV)	Γ_i (MeV)
$\Sigma_c \pi$	$4.57^{+1.09}_{-1.20}$	$1.33^{+0.35}_{+0.50}$
$\Sigma_c^*\pi$	$0.95^{+0.03}_{+0.09}$	$4.38^{+0.67}_{-0.74}$
Sum	$5.52^{+1.06}_{-1.11}$	$5.71_{-0.24}^{+0.32}$

- $igspace \Lambda_c$ (2860) and Λ_c (2880) most likely corresponds to the two D-wave Λ_c states.
- igoplus To confirm the Λ_c (2860), look for the Σ_c π mode.
- \bullet M[Λ_c (2880)5/2+)]>M[Λ_c (2860)3/2+]

Evidence of D-wave Λ_b states

$$m_{\Lambda_b(6146)^0} = 6146.17 \pm 0.33 \text{ MeV},$$

 $m_{\Lambda_b(6152)^0} = 6152.51 \pm 0.26 \text{ MeV},$
 $\Gamma_{\Lambda_b(6146)^0} = 2.9 \pm 1.3 \text{ MeV},$
 $\Gamma_{\Lambda_b(6152)^0} = 2.1 \pm 0.8 \text{ MeV},$

Our explaination

PHYSICAL REVIEW D 100, 114035 (2019)

TABLE IV. Partial widths (MeV) of strong decays for the λ -mode 1D-wave Λ_b baryons.

9	$ J^P =$	$\frac{3}{2}$ +, 2 \rangle	$ J^P=rac{5}{2}^+,2 angle$		
Decay mode	$\Lambda_b(6146)$	$\Lambda_b(6152)$	$\Lambda_b(6146)$	$\Lambda_b(6152)$	
$\Sigma_b \pi$	4.41	4.67	0.64	0.73	
$\Sigma_b^*\pi$	1.26	1.41	4.26	4.60	
Sum	5.67	6.08	4.90	5.33	

 Λ_b (6146) mainly decays into $\Sigma_b^* \pi$, $J^P=5/2^+$

 Λ_b (6152) mainly decays into $\Sigma_b \pi$, $J^P=3/2^+$

However, we meet a serious problem of mass reverse!

 $M[\Lambda_h(5/2^+)] < M[\Lambda_h(3/2^+)]$??? One or two resonances? ??

 $M[\Lambda_c (2880)5/2^+)] > M[\Lambda_c (2860)3/2^+]$

Looking for higher Λ_c states

Can one find two 2P-wave states with masses around 3.0 GeV?

Qi-Fang Lv and XH, PRD101 (2020) no.1, 014017

TABLE IV. Decay widths of the $\Lambda_c(2P)$ states in MeV.

Mode	$\Lambda_{c1}(\frac{1}{2}^-, 2P)$	$\Lambda_{c1}(\frac{3}{2}^-, 2P)$
$\Sigma_c^{++}\pi^-$	0.49	0.52
	0.48	0.53
$rac{\Sigma_c^+\pi^0}{\Sigma_c^0\pi^+}$	0.49	0.52
$\Sigma_c^{*++}\pi^-$	0.50	0.97
$\Sigma_c^{*+}\pi^0$	0.51	0.97
$\Sigma_c^{*0}\pi^+$	0.50	0.97
D^0p	1.19	19.54
D^+n	1.68	18.80
$D^{*0}p$	17.31	55.25
$D^{*+}n$	16.67	56.59
Total width	39.84	154.67

 Λ_c (2940) may be the 2P state with JP=3/2.

Looking for higher Λ_b states

Can one find two 2P-wave states with masses around 6.3 GeV?

TABLE V. Decay widths of the $\Lambda_b(2P)$ states in MeV.

Mode	$\Lambda_{b1}(\frac{1}{2}^{-}, 2P)$	$\Lambda_{b1}(\frac{3}{2}^-, 2P)$
$\Sigma_b^+\pi^-$	0.76	0.60
$\Sigma_b^0 \pi^0$	0.75	0.61
$\Sigma_b^{-}\pi^+$	0.78	0.58
$\Sigma_b^{*+}\pi^-$	0.94	1.34
$\Sigma_b^{*0} \pi^0$	0.95	1.34
$\Sigma_b^{*-}\pi^+$	0.92	1.35
$B^{-}p$	12.47	17.42
B^0n	13.07	17.04
$B^{*-}p$	30.33	60.76
$B^{*0}n$	29.91	61.37
Total width	90.90	162.42

Qi-Fang Lv and XH, PRD101 (2020) no.1, 014017

Ξ_c and Ξ_b states

State	Ξ_c				Ξ_b		
	RQM [21]	NQM [22]	NQM [33]	PDG [24]	RQM [21]	NQM [22]	PDG [24]
$1^2S_2^{1+}$	2476	2466	2470	2468	5803	5806	5795
$1^{2}P_{\lambda^{\frac{1}{2}}}^{\frac{1}{2}}$	2792	2773	2793	2792	6120	6090	?
$1^{2}P_{\lambda^{\frac{3}{2}}}$	2819	2783	2820	2817	6130	6093	?
$1^2D_{\lambda\lambda^{\frac{3}{2}}}$	3059	3012	3033	3055?	6366	6311	?
$1^2D_{\lambda\lambda}^{\frac{5}{2}+}$	3076	3004	3040	3080?	6373	6300	?

YX Yao, KL Wang, XH, PRD98,076015(2018)

How to establish the missing P and D-wave states?

The 1P Ξ_c state may be established.

$$\Xi_c(2790)$$

$$\Xi_c(2815)$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

$$M = 2792 \text{ MeV},$$
 $\Gamma = 8.9 \text{ MeV}$

$$M = 2817 \text{ MeV},$$
 $\Gamma = 2.43 \text{ MeV}$

Seen in the Ξ_c ' π channel

Mode
$$\Gamma_1 = \Xi'_c \pi$$

$$\Gamma_2 = \Xi_c (2645) \pi$$

Our explaination with 1P states

$ ^{2S+1}L_{\lambda}J^{P}\rangle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i
$ ^2P_{\lambda^{\frac{1}{2}}}^{-}\rangle$	$\Xi_c(2790)$	$\Xi_c'\pi$	3.61	100%
7.1.1.20 .1 .2.1		$\Xi'^*_{c}\pi$	3.9×10^{-4}	$\approx 0.0\%$
		total	3.61	
$ {}^{2}P_{\lambda}\frac{3}{2}^{-}\rangle$	$\Xi_c(2815)$	$\Xi_c'\pi$	0.31	14.69%
		$\Xi_c^*\pi$	1.80	85.31%
		total	2.11	

The mass and decay of Ξ_c (2815) can be well understood.

The decay width of Ξ_c (2790) is a factor 3 smaller than our prediction.

Lei-Hua Liu, Li-Ye Xiao, XH, PRD86,034024(2012) KL Wang, YX Yao, XH, QZ, PRD96,116016(2017)

Candidates of the D-wave Ξ_c states

$$\Xi_c(3055)$$

$$M = 3056 \text{ MeV},$$
 $\Gamma = 7.8 \text{ MeV}$

$$\Gamma_1$$
 $\Sigma^{++}K^ \Gamma_2$ ΛD^+

$$\frac{\Gamma(\Lambda D^{+})/\Gamma(\Sigma^{++}K^{-})}{VALUE}$$

5.09±1.01±0.76

$$\Xi_c(3080)$$

$$M = 3077 \text{ MeV},$$
 $\Gamma = 3.6 \text{ MeV}$

	Mode	
Γ ₁	$\Lambda_c^+ \overline{K} \pi$	
Γ ₂	$\Sigma_c(2455)\overline{K}$	
Γ ₃	$\Sigma_c(2455)^{++}K^-$	
Γ ₄	$\Sigma_c(2520)^{++}K^-$	
Γ_5	$\Sigma_c(2455)\overline{K}$ +	$\Sigma_c(2520)\overline{K}$
Γ8	ΛD^{+}	

Our explaination with 1D states

		$ \Xi_c^2 D_{\lambda\lambda\frac{3}{2}^+}\rangle(3055)$	$ \Xi_c^2 D_{\lambda\lambda}^{5+}\rangle (3080)$
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)
$\Xi_c'\pi$	2575	$1.93^{+0.57}_{-0.61}$	$0.75^{+0.18}_{+0.27}$
$\Xi'_{c}^{*}\pi$	2645	$0.60^{+0.04}_{+0.07}$	$2.08^{+0.38}_{-0.40}$
$\Sigma_c K$	2455	$2.49^{+0.38}_{-0.29}$	$0.22^{<-0.01}_{+0.10}$
$\Sigma_c^* K$	2520	$0.14^{<-0.01}_{<+0.01}$	$1.68^{+0.11}_{-0.14}$
$ \Xi_c' 1^4 P_{\lambda_2}^{-1}\rangle \pi$	2854	< 0.01	$1.42^{+0.39}_{-0.34}$
$ \Xi_c' 1^4 P_{\lambda_2}^{3} \rangle \pi$	2912	0.04	$0.20^{+0.04}_{-0.03}$
$ \Xi_c' 1^4 P_{\lambda \overline{2}}^{\overline{5}-}\rangle \pi$	2929	(****)	$0.54^{+0.10}_{-0.10}$
Sum		$5.20^{+0.91}_{-0.83}$	$6.90^{+0.84}_{-0.64}$

- **◆**The predicted decay widths and main decay modes are consistent with the observations.
- **◆**To be further confirmed, for some main decay modes are still missing.

Looking for the missing $1P \Xi_b$ states

Can one find two 1P-wave states with masses around 6.1 GeV?

$ ^{2S+1}L_{\lambda}J^{P}\rangle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i
${}^{2}P_{\lambda}\frac{1}{2}^{-}\rangle$	$\Xi_b(6120)$	$\Xi_b'\pi$	2.84	98.61%
0.5 6		$\Xi_{h}^{\prime *}\pi$	0.04	1.39%
		total	2.88	
${}^{2}P_{\lambda 2}^{3-}\rangle$	$\Xi_b(6130)$	$\Xi_b'\pi$	0.07	2.37%
	80/33 60	$\Xi_{h}^{\prime *}\pi$	2.88	97.63%
		total	2.95	

- The $J^P=1/2$ state mainly decays into $\Xi'_b\pi$.
- ♦ The J^P=3/2- state mainly decays into $\Xi'_b*\pi$.
- ◆ Very narrow states with a width of 3 MeV!

KL Wang, YX Yao, XH, QZ, PRD96,116016(2017)

Looking for the missing 1D Ξ_b states

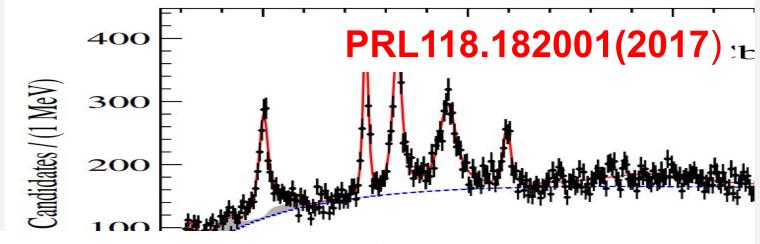
Can one find two 1D-wave states with masses around 6.37 GeV?

	X4	$ \Xi_b^2 D_{\lambda\lambda}^{3+}\rangle$ (6366)	$ \Xi_b^2 D_{\lambda\lambda}^{5+}\rangle$ (6373)
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)
$\Xi_b'\pi$	5935	$2.41^{+0.79}_{-0.81}$	$0.90^{+0.22}_{+0.30}$
$\Xi_b^{\prime*}\pi$	5955	$1.45^{+0.13}_{+0.25}$	$3.22^{+0.68}_{-0.68}$
$\Sigma_b K$	5811	$2.47^{+0.20}_{-0.27}$	0.07
$\Sigma_b^* K$	5832	$0.30^{+0.04}_{-0.01}$	$2.10^{+0.12}_{-0.16}$
$ \Xi_b' 1^4 P_{\lambda_2}^{-1}\rangle \pi$	6227	< 0.01	$0.28^{+0.06}_{-0.06}$
$ \Xi_b' 1^4 P_{\lambda_2}^{\frac{3}{2}}\rangle \pi$	6224	$0.11^{+0.02}_{-0.02}$	$0.10^{+0.02}_{-0.02}$
$ \Xi_b' 1^4 P_{\lambda^{\frac{5}{2}}}\rangle \pi$	6226	0.06	$0.45^{+0.09}_{-0.09}$
Sum		$6.8^{+0.92}_{-0.02}$	$7.11^{+0.75}_{-0.71}$

◆ Very narrow states with a width of about 7 MeV!

YX Yao, KL Wang, XH, PRD98,076015(2018)

Symmetric sextet


6_F states

Ω_c and Ω_b states

		2	\mathbf{Q}_{c}		Ω_b		
State	RQM [21]	NQM [27]	NQM [22]	PDG [24]	RQM [21]	NQM [27]	PDG [24]
$1^2S_{\frac{1}{2}}^{1+}$	2698	2731	2718	2695	6064	6076	6046
$1^{4}S_{\frac{3}{2}}^{\frac{3}{2}}$	2768	2779	2776	2770	6088	6094	?
$1^2P_{\lambda^{\frac{1}{2}}}$	2966	3030	2977	?	6330	6333	?
$1^{2}P_{\lambda \frac{3}{2}}$	3029	3033	2986	?	6331	6336	?
$1^4 P_{\lambda_2}^{\frac{1}{2}}$	3055	3048	2990	?	6339	6340	?
$1^4 P_{\lambda 2}^{\frac{2}{3}}$	3054	3056	2994	?	6340	6344	?
$1^4 P_{\lambda 2}^{\frac{5}{5}}$	3051	3057	3014	?	6334	6345	?
$1^2D_{\lambda\lambda^{\frac{3}{2}}}^{\lambda^2}$	3282	3257	3262	?	6530	6528	?
$1^2D_{\lambda\lambda\frac{5}{2}}$	3286	3288	3273	?	6520	6561	?
$1^4D_{\lambda\lambda}^{\lambda\lambda}^{2}$	3287	3292	3275	?	6540	6561	?
$1^4D_{\lambda\lambda\frac{3}{2}}^{\lambda\lambda\frac{3}{2}}$	3298	3285	3280	?	6549	6559	?
$1^4D_{\lambda\lambda\frac{5}{2}}$	3297	3299		?	6529	6566	?
$1^4D_{\lambda\lambda\frac{7}{2}}^{\lambda\lambda\frac{7}{2}}$	3283		3327	?	6517		?

LHCb and Belle provide good oppertunities. 20

LHCb observed five excited Ω_c states!



Four states were confirmed by Belle

0.	3000	3100	3200 -) [MeV]
Resonance	Mass (MeV)	n(= _ K	Γ (MeV)
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+}$	0.3	$4.5 \pm 0.6 \pm 0.3$
$\Omega_c(3050)^0$	$3050.2 \pm 0.1 \pm 0.1 \pm 0.1 \pm 0.1$	(C ***)	$0.8 \pm 0.2 \pm 0.1$
		of the said	<1.2 MeV, 95% C.L.
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+1}$	0.3	$3.5 \pm 0.4 \pm 0.2$
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+}$	S. March	$8.7 \pm 1.0 \pm 0.8$
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9 \pm 0.9$	of many	$1.1 \pm 0.8 \pm 0.4$

Our explaination

PRD95,116010 (2017)

State	Mass	$\Gamma(\Xi_c \bar{K})$	$\Gamma(\Xi_c'\bar{K})$	$\Gamma[\Omega_c(2695)\gamma]$	$\Gamma[\Omega_c(2770)\gamma]$	Tth total	$\Gamma^{\rm exp}_{ m total}$	Possible assignment
$ 1P_{\lambda}^{\frac{1}{2}}\rangle_1$	3000	4.0		0.36/0.20	0.02/0.08	4.38/4.28	4.5 ± 0.9	$\Omega_c(3000)$
$ 1^4P_{\lambda \overline{2}}^{3-}\rangle$	3050	0.61		1.12×10^{-3}	0.33	0.94	0.8 ± 0.3	$\Omega_c(3050)$
$ 1^2P_{\lambda \overline{2}}^{\overline{3}-}\rangle$	3066	4.61		0.35	5.68×10^{-4}	4.96	3.5 ± 0.4	$\Omega_c(3066)$
$ 1^4P_{\lambda 2}^{\frac{5}{2}-}\rangle$	3090	9.32	0.03	1.00×10^{-4}	0.18	9.53	8.7 ± 1.8	$\Omega_c(3090)$

Conslusion

 $\Phi\Omega_c$ (3000,3050,3066,3090) may be P-wave states with very narrow width.

 Φ Ω_c (3119) may be the 2S state.

◆A broad P wave state is waiting to be found!

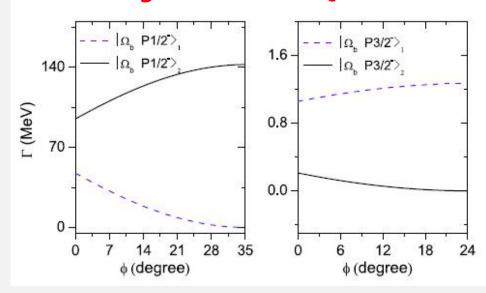
◆Radiative decay is worth observing.

Looking for D-wave Ω_c states @ 3.3 GeV

		$ \Omega_c^2 D_{\lambda\lambda}^{3+} $	(3282)	$ \Omega_c ^2 D_{\lambda\lambda} \frac{5}{2}^+$	(3286)	$ \Omega_c^4 D_{\lambda\lambda} ^{1+}$	(3287)	$ \Omega_c^4D_{\lambda\lambda} ^{3+}$	(3298)	$ \Omega_c^4 D_{\lambda\lambda}^{5+} $	(3297)	$ \Omega_c^4D_{\lambda\lambda}^{7+}$	(3283)
Decay mod	M_f	Γ_i	\mathcal{B}_i (%)	Γ_i	\mathcal{B}_i (%)	Γ_i	B _i (%)	Γ	\mathcal{B}_i (%)	Γ_i	\mathcal{B}_i (%)	Γ_i	\mathcal{B}_i (%)
$\Xi_c K$	2470	$7.97^{+3.85}_{-3.61}$	44.7	$5.16^{-1.13}_{+1.42}$	57.3	$15.9^{+7.8}_{-7.2}$	71.4	$7.90^{+4.08}_{-3.73}$	48.2	$1.65^{+0.35}_{+0.44}$	19.8	$6.43^{-1.43}_{+1.77}$	81.7
$\Xi_c'K$	2575	$9.26^{+2.34}_{-2.55}$	51.9	$1.77^{-0.45}_{+0.64}$	19.7	$4.71^{+1.22}_{-1.34}$	20.8	$2.44^{+0.68}_{-0.73}$		$0.15^{-0.04}_{+0.05}$	1.79	$0.54^{-0.14}_{+0.20}$	6.73
$\Xi_c^{\prime *}K$	2645	$0.50^{-0.01}_{+0.02}$	2.8	$2.05^{+0.28}_{-0.32}$	22.8	$1.65^{+0.25}_{-0.31}$	7.4	$5.97^{+0.90}_{-1.03}$		$6.61^{-0.60}_{+0.64}$	79.2	$0.88^{+0.11}_{-0.12}$	11.2
$ \Omega_c 1^2 P_{\lambda 2}^{1-}\rangle$			0.51	$9.79^{-1.60}_{+2.12}$	0.11	0.03	< 0.01	$0.49^{-0.05}_{+0.06}$		$0.19^{-0.02}_{+0.02}$	< 0.01	≃0.0	< 0.01
$ \Omega_c 1^2 P_{\lambda 2}^{3-}\rangle$			0.10	$39.7^{-6.7}_{+8.9}$	0.44	0.04	< 0.01			$0.17^{-0.02}_{+0.02}$		$0.13^{-0.02}_{+0.02}$	< 0.01
$\Omega_c 1^4 P_{\lambda 2}^{\frac{7}{1}}$			< 0.01		< 0.01	$70.3^{-11.3}_{+14.8}$	0.32	$34.7^{-5.6}_{+7.3}$	0.21	$5.56^{-0.91}_{+1.20}$	0.07	$1.07^{+0.21}_{+0.30}$	0.01
$\Omega_c 1^4 P_{\lambda 2}^{\tilde{3}-}$			< 0.01	0.09	< 0.01	$27.5^{-4.5}_{+5.9}$	0.12	$54.1^{-8.8}_{+11.4}$	0.33	$39.8^{-6.6}_{+8.6}$	0.47	$5.62^{-0.94}_{+1.23}$	0.07
$\Omega_c 1^4 P_{\lambda 2}^{\frac{5}{2}-}$			< 0.01	$0.14^{-0.02}_{+0.03}$	< 0.01	$2.44^{-0.45}_{+0.62}$	< 0.10	$7.95^{-1.36}_{+1.82}$	0.05	$19.6^{-3.3}_{+4.3}$	0.24	$23.1_{+5.3}^{-3.9}$	0.29
Sum	•	$17.84^{+6.16}_{-6.16}$		$9.03^{-1.30}_{+1.73}$		22.33+9.25		$16.21^{+5.64}_{-5.47}$		$8.34^{-0.98}_{+1.11}$		$7.82^{-1.46}_{+1.85}$	

Decay widths are relatively narrow (about 10-20 MeV).

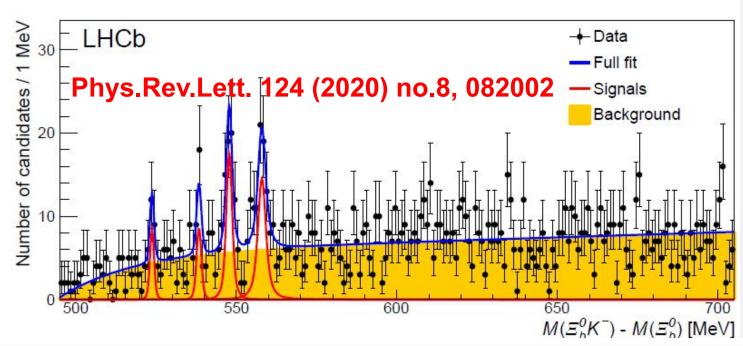
Decay modes $\Xi_c K$, $\Xi'_c K$, $\Xi'_c K$ are worth observing!


YX Yao, KL Wang, XH, PRD98,076015(2018)

Decay properties of the P-wave Ω_b states

TABLE X.	Partial	widths	for	the	strong	and	radiative	decays	of	the Ω_b	baryons.	
----------	---------	--------	-----	-----	--------	-----	-----------	--------	----	----------------	----------	--

State	Mass (MeV) [24]	$\Gamma[\Xi_b K]$ (MeV)	$\Gamma[\Omega_b\gamma]~({\rm keV})$	$\Gamma[\Omega_b^* \gamma]$ (keV)	Γ _{total} (MeV)
$ \Omega_b^4 S_2^{3+}\rangle$	6088		0.09		***
$ \Omega_b^2 P_{\lambda_2}^{1-}\rangle$	6339	49.38	154	1.49	49.53
$ \Omega_b^2 P_{\lambda_2}^{\frac{3}{2}-}\rangle$	6340	1.82	83.4	1.51	1.90
$ \Omega_b^{4}P_{\lambda_2^{-1}}\rangle$	6330	94.98	0.64	99.23	95.08
$ \Omega_b^{4}P_{\lambda 2}^{\frac{3}{2}-}\rangle$	6331	0.22	1.81	70.68	0.29
$ \Omega_b^4 P_{\lambda \frac{5}{2}}^{\frac{2}{5}}\rangle$	6334	1.60	1.21	63.26	1.66


KL Wang, YX Yao, XH, QZ, PRD96,116016 (2017)

- **♦** Four narrow P-wave states!
- **♦** One broad P-wave state.
- lacktriangle Mainly decay into $\Xi_b K$.
- **♦** Radiative decays are important.

KL Wang, QF Lv, XH, PRD99,014011 (2019)

LHCb observed four excited Ω_b states!

	$\delta M_{\rm peak} \ [{ m MeV}]$	Mass [MeV]	Width [MeV]
$\Omega_b(6316)^-$	$523.74 \pm 0.31 \pm 0.07$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	< 2.8 (4.2)
$\Omega_b(6330)^-$	$538.40 \pm 0.28 \pm 0.07$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	< 3.1 (4.7)
$\Omega_b(6340)^-$	$547.81 \pm 0.26 \pm 0.05$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	< 1.5 (1.8)
$\Omega_b(6350)^-$	$557.98 \pm 0.35 \pm 0.05$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	< 2.8 (3.2)
			$1.4^{+1.0}_{-0.8}\pm0.1$

Our explaination

Table 4 Partial decay widths (MeV) of the 1P states within the j-j coupling scheme in the Ω_b family. The value inside of the braces denotes the reference mass (MeV) of the corresponding state

State	$ J ^{p}, j\rangle$	$\Gamma[\Xi_b K]$ (MeV)
$Ω_b(6316)$	$ J^{P} = \frac{1}{2}^{-}, 1\rangle$	080808
$Ω_b(6316)$	$ J^{P} = \frac{1}{2}^{-}, 0\rangle$	126
$\Omega_b(6340)$	$ J^{P} = \frac{3}{2}^{-}, 2\rangle$	2.2
$\Omega_b(6330)$	$ J^{P} = \frac{3}{2}^{-}, 1\rangle$	
$\Omega_b(6350)$	$ J^{P} = \frac{5}{2}^{-}, 2\rangle$	3.4

Decays and masses are consistent with the predictions.

Good candidates of the P wave Ω_b states!

Where is the broad P wave state?

Looking for D-wave Ω_b states @ 6.5 GeV

		$ \Omega_b^{~2}\!D_{\lambda\lambda}{}^{3+}_{2}$	(6530)	$ \Omega_b^{\ 2}D_{\lambda\lambda\frac{5}{2}}^{\ +}$	(6520)	$ \Omega_b^{4}D_{\lambda\lambda}^{1+}\rangle$	(6540)	$ \Omega_b^{4}\!D_{\lambda\lambda}^{3+}$	(6549)	$ \Omega_b^{-4}D_{\lambda\lambda}^{-5} ^{+}$	(6529)	$ \Omega_b^4D_{\lambda\lambda_2^{7+}}$)(6517)
Decay	mode M_f	Γ_i	\mathcal{B}_i (%)	Γ_i	\mathcal{B}_i (%)	Γ_i	B _i (%)	Γ	\mathcal{B}_i (%)	Γ_i	\mathcal{B}_i (%)	Γ_i	\mathcal{B}_i (%)
$\Xi_b K$	5795	$11.2^{+5.5}_{-5.1}$	55.5	$6.18^{-1.36}_{+1.71}$	75.83	$22.1_{-10.5}^{+11.7}$	76.98	$10.9^{+6.1}_{-5.4}$	53.48	$2.07^{-0.49}_{+0.48}$	28.09	$7.83^{-1.69}_{+2.13}$	90.84
$\Xi_b'K$	5935	$8.43^{+1.17}_{-1.38}$	41.8	$0.30^{-0.09}_{+0.13}$	3.68	$4.69^{+0.73}_{-0.86}$	16.34	$2.55^{+0.44}_{-0.51}$	12.51	0.03	0.41	0.09	1.04
$\Xi_b^{\prime *} K$		$0.51_{-0.10}^{+0.09}$	2.52	$1.65^{+0.15}_{-0.16}$	20.25	$1.86^{+0.23}_{-0.27}$	6.48	$6.87^{+1.85}_{-1.01}$	33.71	$5.24^{+0.37}_{-0.43}$	71.10	$0.68^{+0.06}_{-0.07}$	7.89
$ \Omega_b 1^2 F$	$\rho_{\lambda 2}^{1-} \gamma 6301$		0.16	$4.03^{+0.66}_{+0.86}$	0.05	$0.55^{+0.08}_{+0.10}$	< 0.01	$1.20^{-0.16}_{+0.19}$	< 0.01	$0.32^{-0.05}_{+0.05}$	< 0.01	≃0.0	< 0.01
	$P_{\lambda \frac{3}{2}} \rangle \gamma 6304$		0.09	$16.8^{-2.8}_{+3.6}$	0.21	$0.26^{-0.04}_{+0.05}$		$0.10^{-0.02}_{+0.02}$		$0.73^{-0.10}_{+0.12}$		$0.56^{-0.07}_{+0.09}$	< 0.01
	$\rho_{\lambda \frac{1}{2}} - \gamma 6312$		< 0.01		< 0.01	$40.4^{-6.1}_{+7.5}$	0.14	$18.8^{-2.9}_{+3.5}$	0.09	$2.72^{-0.43}_{+0.57}$	0.04	$0.50^{-0.11}_{+0.15}$	< 0.01
$ \Omega_b 1^4 F$	$P_{\lambda \frac{3}{2}} \rangle \gamma 6311$	$0.74^{-0.10}_{+0.13}$	< 0.01	$0.27^{-0.04}_{+0.04}$	< 0.01		0.06	$31.0^{-4.7}_{+5.9}$	0.15	$15.4^{-2.5}_{+3.2}$	0.21	$2.70_{+0.58}^{-0.44}$	0.03
$ \Omega_b 1^4 F$	$2\lambda \frac{5}{2}$ γ 6311	$0.21^{-0.03}_{+0.04}$	< 0.01	$0.91^{-0.13}_{+0.17}$	< 0.01		0.01	$8.98^{-1.50}_{+1.98}$	0.04	$14.6^{-3.3}_{+2.0}$	0.20	$12.1^{-2.0}_{+2.6}$	0.14
Sum		$20.19_{-6.57}^{+6.57}$		$8.15^{-1.30}_{+1.68}$		$28.71^{+12.65}_{-11.61}$		$20.38^{+8.38}_{-6.91}$		$7.37^{-0.11}_{+0.04}$		$8.62^{-1.63}_{+2.06}$	

Decay widths are relatively narrow (about 10-20 MeV).

Decay modes $\Xi_b K$, $\Xi'_b K$, $\Xi'_b * K$ are worth observing!

Sevaral states may overlap with each other.

YX Yao, KL Wang, XH, PRD98,076015(2018)

Σ_c and Σ_b states

		Σ	C_{c}	Σ_b				
State	RQM [21]	NQM [27]	NQM [33]	PDG [24]	RQM [21]	NQM [27]	PDG [24]	
$1^2S_{\frac{1}{2}}^{1+}$	2443	2460	2456	2455	5808	5823	5811	
$1^{4}S_{\frac{3}{2}}^{\frac{3}{2}}$	2519	2523	2515	2520	5834	5845	5832	
$1^2 P_{\lambda \frac{1}{2}}^{-1}$	2713	2802	2702	?	6101	6127	?	
$1^{2}P_{\lambda^{\frac{3}{2}}}$	2798	2807	2785	?	6096	6132	?	
$1^4 P_{\lambda 2}^{\frac{7}{1}}$	2799	2826	2765	?	6095	6135	?	
$1^4P_{\lambda}^{\frac{3}{2}}$	2773	2837	2798	?	6087	6141	?	
$1^4P_{\lambda^{\frac{5}{2}}}^{\frac{5}{2}}$	2789	2839	2790	?	6084	6144	?	
$1^2D_{\lambda\lambda}^{\frac{3}{2}+}$	3043	3065	2952	?	6326	6356	?	
$1^2D_{\lambda\lambda}^{\frac{5}{2}+}$	3038	3099	2942	?	6284	6397	?	
$1^4D_{\lambda\lambda}^{\frac{1}{2}+}$	3041	3103	2949	?	6311	6395	?	
$1^4D_{\lambda\lambda\frac{3}{2}}$	3040	3094	2964	?	6285	6393	?	
$1^4D_{\lambda\lambda}\frac{5}{2}$	3023	3114	2962	?	6270	6402	?	
$1^4D_{\lambda\lambda}^{\frac{7}{2}+}$	3013		2943	?	6260		?	

Only the ground states are established!

Decay properties of the P-wave $\Sigma_{c/b}$ states

TABLE V. Partial widths (MeV) and branching fractions for the strong decays of the 1P-wave states in the Σ_c and Σ_b families.

$ ^{2S+1}L_{\lambda}J^{P}\rangle$	Σ_c states	Channel	Γ_i (MeV)	${\cal B}_i$	Σ_b states	Channel	Γ_{th} (MeV)	\mathcal{B}_i
$ ^2P_{\lambda \frac{1}{2}}^{-}\rangle$	$\Sigma_c(2713)$	$\Lambda_c \pi$	6.49	28.65%	$\Sigma_{b}(6101)$	$\Lambda_b \pi$	1.74	7.68%
A 574 (c)		$\Sigma_c \pi$	16.08	70.99%		$\Sigma_b \pi$	19.26	85.00%
		$\Sigma_c^*\pi$	0.08	0.35%		$\Sigma_b^*\pi$	1.66	7.33%
		total	22.65			total	22.66	
$ {}^{2}P_{\lambda}\frac{3}{2}^{-}\rangle$	$\Sigma_{c}(2798)$	$\Lambda_c \pi$	22.53	61.73%	$\Sigma_b(6096)$	$\Lambda_b\pi$	29.31	74.60%
. He i		$\Sigma_c \pi$	8.84	24.22%		$\Sigma_b \pi$	4.81	12.24%
		$\Sigma_c^*\pi$	5.13	14.05%		$\sum_{b}^{*}\pi$	5.17	13.16%
		total	36.5			total	39.29	
$ {}^4P_{\lambda}\frac{1}{2}^{-}\rangle$	$\Sigma_{c}(2799)$	$\Lambda_c \pi$	6.66	37.78%	$\Sigma_{b}(6095)$	$\Lambda_b \pi$	4.00	28.15%
3.3.2		$\Sigma_c \pi$	10.30	58.42%		$\Sigma_b \pi$	9.50	66.85%
		$\Sigma_c^*\pi$	0.67	3.80%		$\Sigma_b^*\pi$	0.71	5.0%
		total	17.63			total	14.21	
$ {}^4P_{\lambda}\frac{3}{2}^{-}\rangle$	$\Sigma_{c}(2773)$	$\Lambda_c \pi$	3.62	14.66%	$\Sigma_{b}(6087)$	$\Lambda_b \pi$	5.38	20.46%
-		$\Sigma_c \pi$	0.29	1.17%		$\Sigma_b \pi$	0.20	0.76%
		$\Sigma_c^*\pi$	20.78	84.16%		$\Sigma_b^*\pi$	20.71	78.78%
		total	24.69			total	26.29	
$ {}^4P_{\lambda}\frac{5}{2}^{-}\rangle$	$\Sigma_{c}(2789)$	$\Lambda_c \pi$	25.03	75.35%	$\Sigma_{b}(6084)$	$\Lambda_b\pi$	31.38	81.85%
		$\Sigma_c \pi$	2.29	6.89%		$\Sigma_b \pi$	1.09	2.84%
		$\Sigma_c^*\pi$	5.90	17.76%		$\Sigma_b^*\pi$	5.77	15.05%
		total	33.22			total	38.34	

Relatively narrow states!

jj coupling scheme

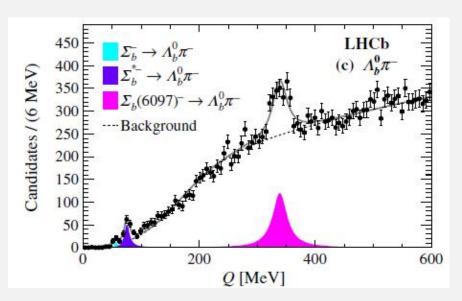
State	J,j angle	Channel	Γ_i (MeV)	${\cal B}_i$	$ ^{2S+1}L_J\rangle$	Channel	Γ_i (MeV) [16]	\mathcal{B}_i [16]
$\Sigma_b(6101)$	$ J=\frac{1}{2}^-,1\rangle$	$\Lambda_b\pi$ $\Sigma_b\pi$ $\Sigma_b^*\pi$ total	28.89 2.50 31.39	92.04% 7.96%	$ ^2P_{1/2}\rangle$	$\Lambda_b \pi$ $\Sigma_b \pi$ $\Sigma_b^* \pi$ total	1.74 19.26 1.66 22.66	7.68% 85.00% 7.33%
$\Sigma_b(6095)$	$ J=\tfrac{1}{2}^-,0\rangle$	$egin{array}{l} \Lambda_b\pi \ \Sigma_b\pi \ \Sigma_b^*\pi \ \end{array}$ Total	6.00 6.00	100.0%	$ ^4P_{1/2}\rangle$	$egin{array}{l} \Lambda_b\pi \ \Sigma_b\pi \ \Sigma_b^*\pi \ \end{array}$ Total	4.00 9.50 0.71 14.21	28.15% 66.85% 5.0%
$\Sigma_b(6096)$	$ J=\frac{3}{2}^-,2\rangle$	$\Lambda_b\pi$ $\Sigma_b\pi$ $\Sigma_b^*\pi$ Total	35.18 3.25 0.63 39.06	90.07% 8.32% 1.61%	$ ^2P_{3/2}\rangle$	$\Lambda_b \pi$ $\Sigma_b \pi$ $\Sigma_b^* \pi$ Total	29.31 4.81 5.17 39.29	74.60% 12.24% 13.16%
$\Sigma_b(6087)$	$ J=rac{3}{2}^-,1\rangle$	$egin{array}{l} \Lambda_b\pi \ \Sigma_b\pi \ \Sigma_b^*\pi \ \end{array}$ Total	1.47 26.39 27.86	5.28% 94.72%	$ ^4P_{3/2}\rangle$	$egin{array}{l} \Lambda_b\pi \ \Sigma_b\pi \ \Sigma_b^*\pi \ \end{array}$ Total	5.38 0.20 20.71 26.29	20.46% 0.76% 78.78%
$\Sigma_b(6084)$	$ J=\frac{5}{2}^{-},2\rangle$	$egin{array}{l} \Lambda_b\pi \ \Sigma_b\pi \ \Sigma_b^*\pi \ \end{array}$ Total	31.38 1.09 5.77 38.34	81.85% 2.84% 15.05%	$ ^4P_{5/2}\rangle$	$egin{array}{l} \Lambda_b \pi \ \Sigma_b \pi \ \Sigma_b^* \pi \ \end{array}$ Total	31.38 1.09 5.77 38.34	81.85% 2.84% 15.05%

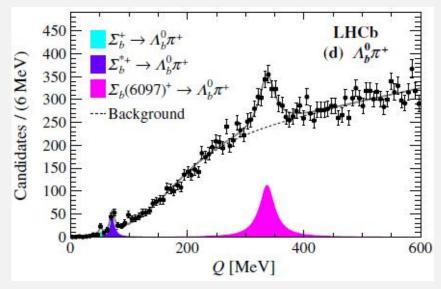
Configuration mixing within the states in LS scheme!

KL Wang, Qi-Fang Lv, XH, PRD99,014011 (2019)

Evidence of the P-wave Σ_c states from Exp.

$$\Sigma_c(2800)$$

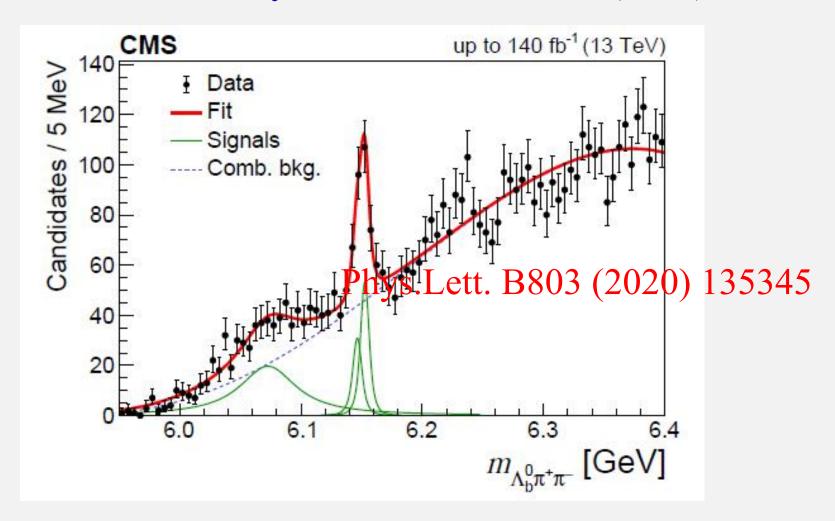

$$I(J^P) = 1(??)$$
 Status: ***


Seen in the $\Lambda_c^+\pi^+$, $\Lambda_c^+\pi^0$, and $\Lambda_c^+\pi^-$ mass spectra.

$\Sigma_c(2800)^{++}$ VALUE (MeV)	WIDTH EVTS	DOCUMENT IE	1	TECN	COMMENT
VALUE (IVIEV)	EVIS	DOCOMENTIL	,	TECIV	COMMENT
$75^{+18}_{-13}^{+12}_{-11}$	$2810 + 1090 \\ -775$	MIZUK	05	BELL	$e^+e^-\approx \Upsilon(4S)$
$\Sigma_c(2800)^+$ W	IDTH				
VALUE (MeV)	EVTS	DOCUMENT IE)	TECN	COMMENT
$62^{+37}_{-23}^{+52}_{-38}$	$1540 + 1750 \\ -1050$	MIZUK	05	BELL	$e^+e^-\approx \Upsilon(4S)$
$\Sigma_c(2800)^0$ WI	DTH				
VALUE (MeV)	EVTS	DOCUMENT IE)	TECN	COMMENT
72+22 OUR AV	ERAGE				
$86 + \frac{33}{33} + 12$		AUBERT	08B	N BABR	$B^- \rightarrow \overline{p} \Lambda^+ \pi^-$

- lack A good candidate of P wave state with JP=3/2- or 5/2-!
- igoplus Looking for more P wave states in the $\Sigma_{\rm c}{}^{(*)}\pi$ final states.

LHCb observed P wave candidate Σ_b (6097)



$$m[\Sigma_b(6097)^-] = 6098.0 \pm 1.7 \pm 0.5 \text{ MeV},$$

 $\Gamma[\Sigma_b(6097)^-] = 28.9 \pm 4.2 \pm 0.9 \text{ MeV},$
 $m[\Sigma_b(6097)^+] = 6095.8 \pm 1.7 \pm 0.4 \text{ MeV},$
 $\Gamma[\Sigma_b(6097)^+] = 31.0 \pm 5.5 \pm 0.7 \text{ MeV}.$

Mass, width, and decay mode are consistent with a P wave candidate with $J^P=3/2$ or 5/2.

Looking for the missing narrow 1P $J^P=1/2$ -state in the $\Lambda_b\pi$.

CMS found broad structure @ 6070 MeV in the $\Lambda_b \pi^+ \pi^-$ Confirmed by LHCb [JHEP 2006 (2020) 136]

 $M=6072 \text{ MeV}, \Gamma=72 \text{ MeV}$

Our explaination with P wave Σ_b state

TABLE III.	The decay	properties of the	λ-mode 11	P-wave Σ_b state	s. The units of	of mass and	width are in MeV.
------------	-----------	-------------------	-----------	-------------------------	-----------------	-------------	-------------------

State	Mass	$\Gamma[\Sigma_b\pi]$	$\Gamma[\Lambda_b\pi]$	$\Gamma[\Sigma_b^*\pi]$	$\Gamma[\Lambda_b(5912)\pi]$	$\Gamma[\Lambda_b(5920)\pi]$	Γ[total]
$ J^P = \frac{1}{2}, 1\rangle$	6072	26.2		1.11	0.42	0.44	28.2
$ J^{P} = \frac{1}{2}, 0\rangle$	6072		9.18		0.12	0.13	9.43
$ J^{P} = \frac{3}{2}, 2\rangle$	6097	3.26	35.2	1.97	0.50	0.75	41.7
$ J^{P} = \frac{3}{2}, 1\rangle$	6087	1.46	*: *: *:	26.4	*. *. *.	• • •	27.8
$ J^P=\frac{5}{2}^-,2\rangle$	6107	1.84	38.9	7.00	0.71	1.12	49.5

- lacktriangle As the $\Lambda_b(2S)$, our predicted width is too narrow.
- ♦ Decay mode can be understand with cascade decay: $Σ_b$ (6072)--- $Σ_b^{(*)}π$ ---- $Λ_bπ$ +π-
- **◆** Two overlapping states with $J^P=1/2^-$ and $3/2^-$, which can explain the broad width.
- $igoplus More observations for the <math>\Sigma_b^{(*)}\pi$ channels.

Decay properties of the D-wave Σ_c states

		$ \Sigma_c^2 D_{\lambda\lambda_2^{3+}}\rangle(3043)$	$ \Sigma_c^2 D_{\lambda\lambda}^{5+}\rangle(3038)$	$ \Sigma_c^4 D_{\lambda\lambda_2^{1+}}\rangle(3041)$	$ \Sigma_c^{~4}D_{\lambda\lambda}{\textstyle\frac{3}{2}}^+\rangle(3040)$	$ \Sigma_c^4 D_{\lambda\lambda}^{5+}_2\rangle(3023)$	$ \Sigma_c^4 D_{\lambda\lambda\overline{2}}^{7+}\rangle(3013)$
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)
$\Lambda_c \pi$	2286	$1.29^{+2.54}_{-1.22}$	$11.9^{-1.65}_{+1.51}$	$2.62^{+5.09}_{-2.46}$	$1.15^{+2.32}_{-1.09}$	$3.1^{+0.46}_{+0.42}$	$13.1^{-2.06}_{+1.83}$
$\Sigma_c \pi$	2455	$7.06^{+4.66}_{-3.95}$	$8.78^{-1.86}_{+2.25}$	$3.53^{+2.31}_{-1.96}$	$1.77^{+1.14}_{-0.98}$	$0.54^{+0.11}_{+0.14}$	$2.18^{+0.48}_{+0.60}$
$\Sigma_c^*\pi$	2520		$2.91^{+0.72}_{-0.61}$	$1.71^{+0.79}_{-0.76}$	$7.47^{+2.04}_{-1.77}$	$11.6^{+0.80}_{-0.34}$	$1.45^{+0.13}_{-0.02}$
$\Xi_c K$	2470		0.03	$2.27^{+0.22}_{-0.27}$	$1.12^{+0.10}_{-0.13}$	< 0.01	0.01
$ \Lambda_c^2 P_{\lambda_2^{1-}}\rangle \pi$	2592	$4.93_{-0.19}^{+0.25}$	$10.3_{+0.68}^{+0.83}$	$52.6^{-3.2}_{+2.7}$	$3.06^{+2.44}_{-1.70}$	$11.2^{-0.8}_{+0.9}$	$11.1_{-3.0}^{+3.5}$
$ \Lambda_c^2 P_{\lambda_2}^{3-}\rangle \pi$	2628	$52.8^{+6.76}_{-5.77}$	$10.9^{+2.1}_{-2.4}$	$64.0^{+22.2}_{-18.8}$	$43.1_{-3.7}^{+4.4}$	$1.92^{+0.02}_{<+0.01}$	$24.2^{+0.05}_{-0.04}$
$ \Sigma_c^2 P_{\lambda \frac{1}{2}}\rangle \pi$	2713	$4.09_{-0.29}^{+0.35}$	$5.85^{+0.75}_{+0.86}$	$7.56^{+0.77}_{+0.89}$	$2.10_{-0.82}^{+0.99}$	$1.13^{-0.16}_{+0.18}$	$2.83^{+0.76}_{-0.68}$
$ \Sigma_c^2 P_{\lambda}^{\frac{3}{2}-}\rangle \pi$	2798	$25.6^{+4.82}_{-4.29}$	$0.76^{-0.05}_{+0.18}$	$15.8^{+4.0}_{-3.6}$	$3.58^{+0.39}_{-0.34}$	0.01	$0.95^{+0.06}_{-0.04}$
$ \Sigma_c^4 P_{\lambda \frac{1}{2}} > \pi$	2799	0.09	$1.30_{-0.33}^{+0.38}$	$0.46^{+0.07}_{+0.10}$	$22.4_{-3.0}^{+3.4}$	$12.1_{-1.9}^{+2.1}$	< 0.01
$ \Sigma_c^4 P_{\lambda \frac{3}{2}}^{-}\rangle \pi$	2773	$3.42^{+0.22}_{-0.16}$	$1.26_{-0.09}^{+0.11}$	$4.18^{+0.05}_{+0.02}$	$18.9^{+2.4}_{-2.0}$	$4.54^{+2.16}_{-1.80}$	$1.03^{+0.03}_{+0.04}$
$ \Sigma_c^4 P_{\lambda \frac{5}{2}} ^{\frac{5}{2}} \rangle \pi$	2789	$2.20^{+0.06}_{<+0.01}$	$4.51^{+0.57}_{-0.45}$	$6.1^{+1.96}_{-1.72}$	$16.8^{+4.8}_{-4.3}$	$23.0_{-2.9}^{+3.3}$	$1.26^{+0.05}_{+0.09}$
Sum		105+19.5	$58.5^{-1.3}_{+1.6}$	$160.8^{+32.6}_{-25.9}$	$121.5_{-19.8}^{+24.4}$	$69.1_{-5.3}^{+6.9}$	$58.1^{+1.9}_{-1.2}$

Broader than the P wave states. The J^P=5/2⁺ and 7/2⁺ states are worth observing!

YX Yao, KL Wang, XH, PRD98,076015(2018)

Decay properties of the D-wave Σ_b states

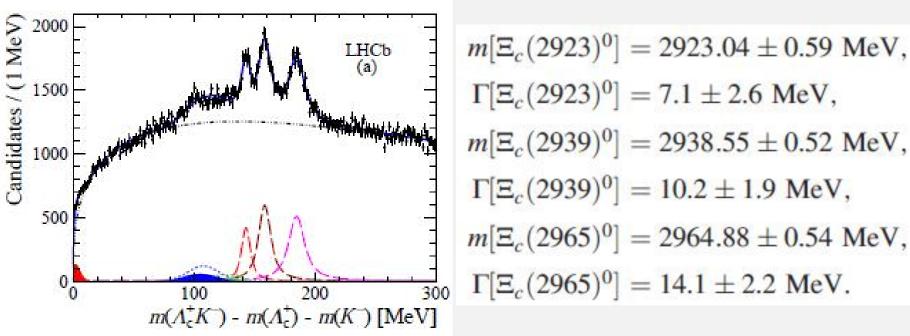
		$ \Sigma_b^2 D_{\lambda\lambda_2^{3+}}\rangle$ (6326)	$ \Sigma_b^2 D_{\lambda \lambda_2^{5+}}\rangle$ (6284)	$ \Sigma_b^{4}\!D_{\lambda\lambda}{}^{\underline{1}+}_{\underline{2}}\rangle(6311)$	$ \Sigma_b{}^4\!D_{\lambda\lambda}{}^{\underline{3}+}_{\underline{2}}\rangle(6285)$	$ \Sigma_b{}^4\!D_{\lambda\lambda}{}^{\underline{5}+}_{\underline{2}}\rangle(6270)$	$ \Sigma_b^4 D_{\lambda\lambda\frac{7}{2}^+}\rangle$ (6260)
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)
$\Lambda_b \pi$	5620	$0.56^{+2.76}_{-0.46}$	$17.3^{-1.1}_{+1.6}$	$1.56^{+5.81}_{-1.51}$	$1.21^{+3.07}_{-1.20}$	$4.43^{+0.58}_{+0.45}$	$18.5^{-2.6}_{+2.1}$
$\Sigma_b \pi$	5811	$8.28^{+5.54}_{-4.66}$	$6.32^{-1.44}_{+1.82}$	$4.16^{+2.51}_{-2.20}$	$2.03^{+1.03}_{-0.96}$	$0.37^{-0.09}_{+0.11}$	$1.43^{+0.33}_{+0.46}$
$\Sigma_b^*\pi$	5832	$4.21^{+0.58}_{+0.80}$	$3.26^{+0.81}_{-0.70}$	$2.05^{+1.08}_{-1.00}$	$8.36^{+2.26}_{-2.01}$	$12.6_{-0.5}^{+0.9}$	$1.54^{+0.15}_{-0.05}$
$\Xi_b K$	5794			$0.88^{+0.03}_{-0.04}$		• • •	• • •
$ \Lambda_b^2 P_{\lambda_2}^{1-}\rangle \pi$	5912	$5.70^{+0.22}_{-0.13}$	$6.96^{+0.61}_{+0.54}$	$51.6^{-2.9}_{+2.2}$	$3.05^{+2.13}_{-1.55}$	$7.68^{-0.65}_{+0.66}$	$8.89^{+2.77}_{-2.34}$
$ \Lambda_b^2 P_{\lambda 2}^{\bar{3}-}\rangle \pi$	5920	$70.0^{+8.3}_{-7.5}$	$10.4^{-2.0}_{+2.3}$	$66.0^{+24.1}_{-20.1}$	$40.5^{+4.1}_{-3.4}$	$1.90^{-0.001}_{+0.02}$	$21.1^{+0.06}_{-0.1}$
$ \Sigma_b^2 P_{\lambda_2}^{1-}\rangle \pi$	6101	$1.18^{+0.15}_{-0.13}$	$0.13^{+0.02}_{+0.03}$	$0.71^{+0.07}_{+0.09}$	$0.81^{+0.22}_{-0.20}$	0.01	$0.43^{+0.09}_{-0.08}$
$ \Sigma_b^2 P_{\lambda 2}^{\bar{3}-}\rangle \pi$	6096	$25.6^{+4.8}_{-4.2}$	$0.28^{+0.09}_{-0.05}$	$13.1^{+3.2}_{-2.9}$	$1.49^{+0.20}_{-0.18}$	< 0.01	$0.24^{+0.03}_{-0.03}$
$ \Sigma_b^4 P_{\lambda 2}^{1-}\rangle \pi$	6095	$0.10^{-0.04}_{+0.07}$	$0.79^{+0.21}_{-0.18}$	$0.33^{+0.06}_{+0.07}$	$10.5^{+1.81}_{-1.55}$	$5.30^{+1.0}_{-0.90}$	< 0.01
$ \Sigma_b^4 P_{\lambda 2}^{\bar{3}-}\rangle \pi$	6087	$2.53^{+0.16}_{-0.12}$	$0.41^{+0.05}_{-0.05}$	$2.24^{+0.04}_{-0.01}$	$6.44^{+1.01}_{-0.88}$	$3.52^{+1.09}_{-0.97}$	$0.15^{+0.01}_{<-0.01}$
$ \Sigma_b^4 P_{\lambda 2}^{5-}\rangle \pi$	6084	$2.39^{+0.02}_{+0.03}$	$2.09^{+0.32}_{-0.27}$	$5.46^{+1.72}_{-1.52}$	$10.7^{+2.8}_{-2.5}$	$10.8^{+1.8}_{-1.6}$	$0.34^{+0.02}_{-0.01}$
Sum		$121.4^{+21.4}_{-16.4}$	$47.9^{-3.7}_{+5.0}$	$148.0^{+35.5}_{-26.9}$	$85.1^{+18.6}_{-14.4}$	$48.5^{+3.5}_{-2.7}$	$52.6^{+0.2}_{-0.05}$

Broader than the P wave states. The J^P=5/2⁺ and 7/2⁺ states are worth observing!

YX Yao, KL Wang, XH, PRD98,076015(2018)

Ξ'c and Ξ'b states

		Ξ	E'c	Ξ_b'			
State	RQM [21]	NQM [22]	NQM [33]	PDG [24]	RQM [21]	NQM [22]	PDG [24]
$1^2S_{\frac{1}{2}}^{1+}$	2579	2592	2579	2575	5936	5958	5935
$1^4S_{\frac{3}{2}}^{\frac{3}{2}}$	2649	2650	2649	2645	5963	5982	5955
$1^2P_{\lambda^{\frac{1}{2}}}$	2936	2859	2839	?	6233	6192	?
$1^2 P_{\lambda \frac{3}{2}}^{\frac{2}{3}}$	2935	2871	2921	?	6234	6194	?
$1^4 P_{\lambda 2}^{\frac{1}{2}}$	2854		2900	?	6227		?
$1^4P_{\lambda^{\frac{3}{2}}}$	2912		2932	?	6224		?
$1^4 P_{\lambda 2}^{\frac{5}{5}}$	2929	2905	2927	?	6226	6204	?
$1^2D_{\lambda\lambda}^{\frac{3}{2}+}$	3167		3089	?	6459		?
$1^2D_{\lambda\lambda}^{\frac{5}{2}+}$	3166		3091	?	6432	6402	?
$1^4D_{\lambda\lambda}^{\frac{1}{2}+}$	3163		3075	?	6447		?
$1^4D_{\lambda\lambda}^{\frac{3}{2}+}$	3160		3081	?	6431		?
$1^4D_{\lambda\lambda}^{\frac{5}{2}+}$	3153	3080	3077	?	6420		?
$1^4D_{\lambda\lambda\frac{7}{2}}$	3147	3094	3078	?	6414	6405	?


Decay properties of the P-wave \(\mathbb{E}'_{c/b}\) states

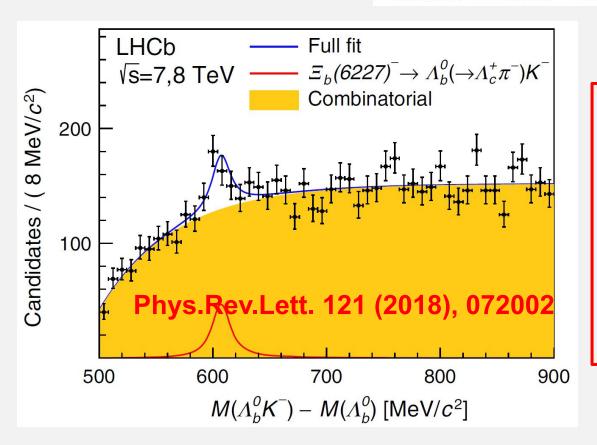
$ ^{2S+1}L_{\lambda}J^{P}\rangle$	State	Channel	Γ_i (MeV)	\mathcal{B}_i	State	Channel	Γ_i (MeV)	\mathcal{B}_i
$ ^2P_{\lambda\frac{1}{2}}^{-}\rangle$	$\Xi_c'(2936)$	$\Lambda_c K$	7.11	32.81%	$\Xi_b'(6233)$	$\Lambda_b K$	12,11	44.77%
35 552 55		$\Xi_c \pi$	3.90	18.00%		$\Xi_b \pi$	4.77	17.63%
		$\Xi_c'(2580)\pi$	10.08	46.52%		$\Xi_b'\pi$	9.23	34.12%
		$\Xi_c'(2645)\pi$	0.58	2.68%		$\Xi_{b}'(5945)\pi$	0.94	3.48%
		total	21.67			total	27.05	
$ ^2P_{\lambda \frac{3}{2}}^{-}\rangle$	$\Xi_c'(2935)$	$\Lambda_c K$	3.73	17.86%	$\Xi_b'(6234)$	$\Lambda_b K$	4.14	17.14%
100 00 00 30		$\Xi_c \pi$	10.85	51.94%		$\Xi_b \pi$	14.91	61.74%
		$\Xi_c'(2580)\pi$	3.89	18.62%		$\Xi_b'\pi$	2.37	9.81%
		$\Xi_c'(2645)\pi$	2.42	11.58%		$\Xi_{h}'(5945)\pi$	2.73	11.30%
		total	20.89			total	24.15	
$ {}^4P_{\lambda}\frac{1}{2}^{-}\rangle$	$\Xi_c'(2854)$	$\Lambda_c K$	18.56	50.09%	$\Xi_b'(6227)$	$\Lambda_b K$	17.28	53.60%
N 554 D	2011	$\Xi_c \pi$	15.02	40.54%	17.00 W	$\Xi_b\pi$	10.01	31.05%
		$\Xi_c'(2580)\pi$	3.44	9.28%		$\Xi_b'\pi$	4.54	14.08%
		$\Xi_c'(2645)\pi$	0.03	0.07		$\Xi_{b}'(5945)\pi$	0.41	1.27%
		total	37.05			total	32.24	
$ {}^4P_{\lambda}\frac{3}{2}^{-}\rangle$	$\Xi_c'(2912)$	$\Lambda_c K$	0.50	4.06%	$\Xi_{b}'(6224)$	$\Lambda_b K$	0.98	6.19%
		$\Xi_c \pi$	1.70	13.79%	8 7 .450	$\Xi_b\pi$	2.67	16.87%
		$\Xi_c'(2580)\pi$	0.13	1.05%		$\Xi_b'\pi$	0.10	0.63%
		$\Xi_c'(2645)\pi$	10.00	81.10%		$\Xi_{h}'(5945)\pi$	12.08	76.31%
		total	12.33			total	15.83	
$ {}^4P_{\lambda}\frac{5}{2}^{-}\rangle$	$\Xi_c'(2929)$	$\Lambda_c K$	4.06	20.10%	$\Xi_b'(6226)$	$\Lambda_b K$	4.20	17.22%
N 55 5	9-51 18	$\Xi_c\pi$	12.24	60.59%	d 200	$\Xi_b \pi$	16.37	67.12%
		$\Xi_c'(2580)\pi$	1.06	5.25%		$\Xi_b'\pi$	0.60	2.46%
		$\Xi_c'(2645)\pi$	2.84	14.06%		$\Xi_{b}'(5945)\pi$	3.22	13.20%
		total	20.2			total	24.39	

Relatively narrow states!

LHCb observed three P-wave candidates $\Xi_c(2923)$, $\Xi_c(2939)$, $\Xi_c(2965)$!

Mass, and decay mode are consistent with P wave candidates.

Our explaination with P wave \(\mathbb{E}'_c\) states


State	Mass	$\Gamma[\Xi_c\pi]$	$\Gamma[\Xi_c'\pi]$	$\Gamma[\Xi_c^*\pi]$	$\Gamma[\Lambda_c K]$	$\Gamma_{ m total}^{ m th}$	$\Gamma^{\rm exp}_{ m total}$	Possible assignment
$ 1P_{\lambda_2}^{1-}\rangle_1$	2880	0.86	12.9	0.18	1.17	15.1		
$ 1P_{\lambda}^{\frac{1}{2}-}\rangle_2$	2880	21.7	0.51	0.01	29.6	51.8	***	
$ 1^4P_{\lambda 2}^{3-}\rangle$	2923	1.74	0.15	10.7	0.48	13.1	$7.1 \pm 0.8 \pm 1.8$	$\Xi_c(2923)^0$
$ 1^2P_{\lambda}^{\frac{3}{2}-}\rangle$	2939	10.2	3.80	2.46	3.74	20.2	$10.2 \pm 0.8 \pm 1.1$	$\Xi_c(2939)^0$
$ 1^4P_{\lambda \frac{5}{2}}^{-}\rangle$	2965	15.5	1.64	3.57	5.43	26.1	$14.1 \pm 0.9 \pm 1.3$	$\Xi_c(2965)^0$

- \bullet $\Xi_c(2923)$, $\Xi_c(2939)$ may correspond to two $J^p=3/2^-$ states.
- \bullet $\Xi_c(2965)$ may be the JP=5/2- state.
- **◆** To confirm the nature, the other dominant decay modes should be further observed.

Kai-Lei Wang, Li-Ye Xiao, XH, PRD102,034029 (2020)

LHCb observed P-wave candidate Ξ_b (6227)

$$\Gamma[\Xi_b(6227)^-] = 18.1 \pm 5.4 \pm 1.8 \text{ MeV},$$

Mass, width, and decay mode are consistent with a P wave candidate with JP=3/2- or 5/2-.

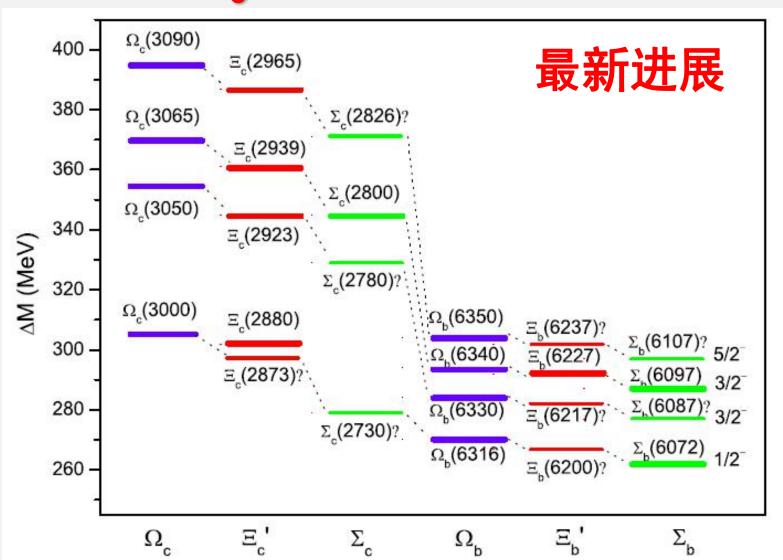
Decay properties of the D-wave Ξ'_{c} states

		$ \Xi_c^{\prime}{}^2D_{\lambda\lambda}^{3+}\rangle(3167)$	$ \Xi_c^{\prime2}D_{\lambda\lambda{2\over2}}^{5+}\rangle(3166)$	$ \Xi_c^{\prime4}D_{\lambda\lambda_2^{1+}}\rangle(3163)$	$ \Xi_c^{\prime4}D_{\lambda\lambda^{\frac{3}{2}^+}}\rangle(3160)$	$ \Xi_c^{\prime4}D_{\lambda\lambda}{}^{\underline{5}+}_2\rangle(3153)$	$ \Xi_c^{\prime}{}^4D_{\lambda\lambda}^{7+}\rangle(3147)$
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)
$\Xi_c \pi$	2470	$2.43^{+2.13}_{-1.59}$	$5.13^{-0.96}_{+1.05}$	$4.92^{+4.18}_{-3.19}$	$2.48^{+2.06}_{-1.60}$	$1.32^{-0.25}_{+0.29}$	$5.68^{-1.10}_{+1.24}$
$\Xi_c'\pi$	2578	$3.51^{+1.79}_{-1.66}$	$2.77^{-0.62}_{+0.77}$	$1.75^{+0.88}_{-0.81}$	$0.87^{+0.44}_{-0.40}$	$0.17^{+0.03}_{+0.05}$	$0.73^{+0.17}_{+0.21}$
$\Xi_c^{\prime*}\pi$	2645	$0.74^{-0.09}_{+0.13}$	$1.18^{+0.27}_{-0.26}$	$0.76^{+0.27}_{-0.28}$	$2.94^{+0.72}_{-0.69}$	$4.28^{+0.34}_{-0.24}$	$0.56^{+0.06}_{-0.04}$
$\Lambda_c K$	2286	$1.23^{+1.13}_{-0.83}$	$1.25^{+0.43}_{+0.53}$	$2.51^{+2.24}_{-1.67}$	$1.27^{+1.12}_{-0.84}$	$0.72^{-0.13}_{+0.15}$	$3.09_{+0.63}^{-0.58}$
$\Sigma_c K$	2455	$6.37^{+1.97}_{-2.07}$	$1.72^{-0.43}_{+0.58}$	$3.16_{-1.0}^{+0.96}$	$1.57^{+0.46}_{-0.49}$	$0.11^{+0.03}_{+0.04}$	$0.40^{-0.10}_{+0.14}$
$\Sigma_c^* K$	2520	$0.47^{-0.01}_{+0.04}$	$1.57^{+0.25}_{-0.28}$	$1.22^{+0.23}_{-0.26}$	$3.97^{+0.62}_{-0.70}$	$4.18_{-0.40}^{+0.37}$	$0.59^{+0.08}_{-0.08}$
$ \Lambda_c^2 P_{\lambda_2^{-}}\rangle K$	2592	$0.84^{+0.11}_{-0.10}$	$0.55^{+0.08}_{-0.06}$	$3.66_{+0.38}^{-0.30}$	$3.55^{+1.22}_{-1.06}$	$0.65^{+0.05}_{+0.07}$	$10.1_{-2.3}^{+2.5}$
$ \Lambda_c^2 P_{\lambda 2}^{\frac{3}{2}-}\rangle K$	2628	$10.9^{+2.4}_{-2.1}$	$0.24^{+0.10}_{-0.05}$	$39.1_{-8.6}^{+9.5}$	$7.25^{+1.53}_{-1.36}$	$0.15^{+0.02}_{-0.02}$	$1.15^{+0.15}_{-0.13}$
$ \Xi_c^2 P_{\lambda 2}^{\tilde{1}-}\rangle \pi$	2792	$1.85^{+0.15}_{-0.13}$	$1.83^{+0.15}_{-0.13}$	$14.5^{-1.28}_{+2.11}$	$9.28^{+1.53}_{-1.43}$	$3.37^{+0.31}_{+0.36}$	$14.4^{+4.0}_{-3.5}$
$ \Xi_c^2 P_{\lambda 2}^{\frac{3}{2}}\rangle \pi$	2815	$47.3_{-7.3}^{+7.7}$	$3.54_{+1.13}^{-0.82}$	$40.2_{-10.5}^{+11.9}$	$11.8^{+1.7}_{-1.4}$	$0.67^{+0.03}_{-0.02}$	$8.81^{+0.04}_{-0.04}$
$ \Xi_c^{\prime 2}P_{\lambda_2^{-1}}\rangle\pi$	2936	$0.39^{+0.05}_{-0.05}$	$0.21^{-0.03}_{+0.04}$	$0.26^{+0.03}_{<+0.01}$	$0.51^{+0.15}_{-0.14}$	0.03	$0.92^{+0.21}_{-0.19}$
$ \Xi_c^{\prime}{}^2P_{\lambda_2}^{\frac{3}{2}-}\rangle\pi$	2935	$8.53^{+1.70}_{-1.50}$	$0.22^{+0.03}_{+0.04}$	$5.50^{+1.33}_{-1.21}$	$1.0^{+0.13}_{-0.11}$	< 0.01	$0.33^{+0.02}_{-0.02}$
$ \Xi_c^{\prime} {}^4P_{\lambda 2}^{\tilde{1}-}\rangle \pi$	2854	$0.23^{-0.07}_{+0.10}$	$1.00^{+0.32}_{-0.30}$	$0.75^{+0.11}_{+0.14}$	$20.5_{-2.6}^{+2.9}$	$13.0^{+2.1}_{-2.0}$	< 0.01
$ \Xi_c^{\prime} {}^4P_{\lambda 2}^{3} - \rangle \pi$	2912	$1.01^{+0.10}_{-0.07}$	$0.41^{+0.04}_{-0.04}$	$1.10_{-0.02}^{+0.03}$	$5.62^{+0.82}_{-0.72}$	$2.85^{+1.08}_{-0.94}$	$0.34^{<-0.01}_{<+0.01}$
$ \Xi_c^{\prime} {}^4P_{\lambda \overline{2}}^{\overline{5}-}\rangle \pi$	2929	$0.59^{+0.04}_{-0.02}$	$1.46^{+0.22}_{-0.18}$	$2.23^{+0.64}_{-0.57}$	$5.75^{+1.51}_{-1.35}$	$7.55^{+1.17}_{-1.05}$	$0.37^{<-0.01}_{+0.01}$
Sum		$86.4^{+19.1}_{-17.2}$	$23.1_{+2.8}^{-0.16}$	$121.6^{+30.4}_{-25.5}$	$78.4^{+16.9}_{-14.9}$	$39.1_{-3.7}^{+4.3}$	$47.5^{+5.1}_{-4.1}$

Broader than the P wave states.

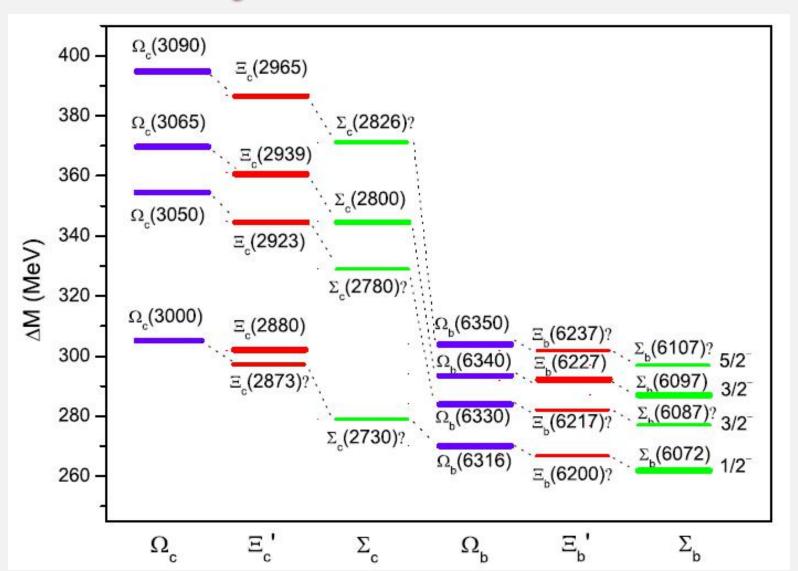
The JP=5/2+ and 7/2+ states are worth observing!

YX Yao, KL Wang, XH, PRD98,076015(2018)

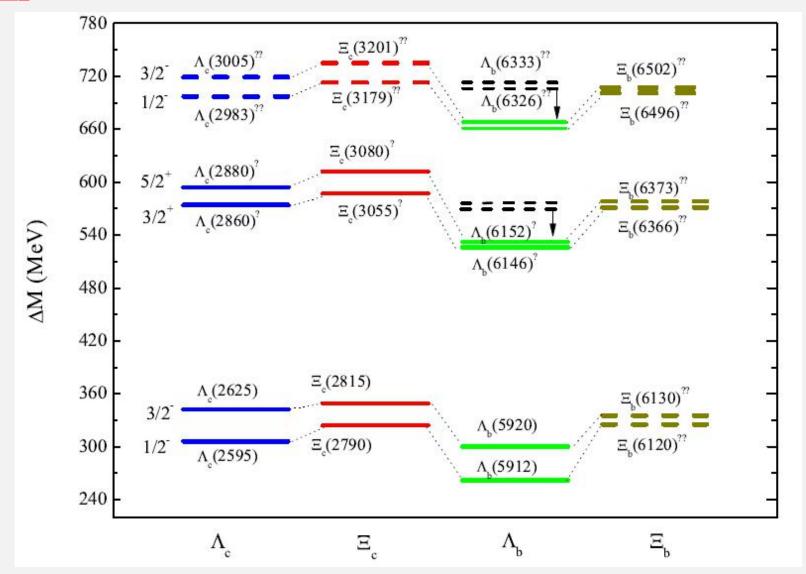

Decay properties of the D-wave \(\Xi_b\) states

		$ \Xi_b^{\prime2}D_{\lambda\lambda{2\over2}}^{3+}\rangle(6459)$	$ \Xi_b^{\prime 2}D_{\lambda\lambda\frac{5}{2}^+}\rangle(6432)$	$ \Xi_b^{\prime}{}^4\!D_{\lambda\lambda}{}^{1+}_2\rangle(6447)$	$ \Xi_b^{\prime 4}D_{\lambda\lambda_2^{3+}}\rangle$ (6431)	$ \Xi_b^{\prime4}D_{\lambda\lambda}{}^{\underline{5}+}_2\rangle(6420)$	$ \Xi_b^{\prime 4}D_{\lambda\lambda_2^{7+}}\rangle$ (6414)
Decay mode	M_f	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)	Γ_i (MeV)
$\Xi_b \pi$	5795	$2.02^{+3.07}_{-1.72}$	$9.41_{+1.44}^{-1.51}$	$4.41^{+6.04}_{-3.64}$	$2.43^{+2.93}_{-1.89}$	$2.42^{-0.40}_{+0.40}$	$10.3_{+1.81}^{-1.73}$
$\Xi_b'\pi$	5935	$4.18^{+2.37}_{-2.13}$	$2.82^{-0.64}_{+0.81}$	$2.06^{+1.10}_{-0.99}$	$1.01^{+0.48}_{-0.46}$	$0.17^{-0.04}_{+0.05}$	$0.71^{-0.17}_{+0.22}$
$\Xi_b^{\prime*}\pi$	5955	$1.60^{-0.21}_{+0.29}$	$1.59^{+0.39}_{-0.35}$	$1.00^{+0.47}_{-0.45}$	$4.03^{+1.09}_{-0.99}$	$6.16^{+0.46}_{-0.29}$	$0.79^{+0.08}_{-0.03}$
$\Lambda_b K$	5620	$1.04^{+1.67}_{-0.90}$	$2.45^{+0.89}_{+0.83}$	$2.39_{-1.98}^{+3.36}$	$1.40^{+1.47}_{-1.19}$	$1.29^{-0.21}_{+0.20}$	$5.45^{-0.90}_{+0.90}$
$\Sigma_b K$	5811	$7.80^{+2.16}_{-2.31}$	$0.86^{+0.22}_{+0.33}$	$4.03^{+0.98}_{-1.07}$	$1.83^{+0.37}_{-0.42}$	0.04	$0.16^{-0.04}_{+0.06}$
$\Sigma_b^* K$	5835	$0.85^{-0.04}_{+0.08}$	$1.95^{+0.28}_{-0.32}$	$1.77^{+0.34}_{-0.39}$	$5.11^{+0.74}_{-0.85}$	$4.77^{+0.41}_{-0.45}$	$0.68^{+0.08}_{-0.09}$
$\Lambda_b^2 P_{\lambda \frac{1}{2}}^{-} \rangle K$	5912	$0.77^{+0.11}_{-0.10}$	0.06	$1.54^{-0.10}_{+0.14}$	$3.18^{+0.81}_{-0.74}$	0.04	$3.65^{+0.79}_{-0.71}$
$\Lambda_b^2 P_{\lambda \frac{3}{2}} / K$	5920	$14.6^{+3.07}_{-2.8}$	$0.17^{+0.10}_{-0.07}$	$30.2^{+7.48}_{-6.65}$	$5.87^{+1.25}_{-1.13}$	0.06	
$\Xi_b^2 P_{\lambda \frac{1}{2}} \rangle \pi$	6120	$1.90^{+0.14}_{-0.11}$	$1.35^{+0.12}_{-0.09}$	$13.2^{-1.19}_{+1.28}$	$7.36^{+1.22}_{-1.13}$	$2.15^{-0.20}_{+0.25}$	$11.0^{+3.0}_{-2.6}$
$\Xi_b^2 P_{\lambda \frac{3}{2}} \rangle \pi$	6130	$54.4^{+8.22}_{-6.92}$	$2.80_{+0.93}^{-0.66}$	$39.3^{+12.0}_{-10.5}$	$10.5^{+1.47}_{-1.29}$	$0.56^{+0.03}_{<-0.01}$	$6.79^{+0.07}_{<-0.01}$
$\Xi_b^{\prime 2} P_{\lambda_2}^{1-} \rangle \pi$	6233	$0.47^{+0.06}_{-0.05}$	$0.10^{-0.01}_{+0.02}$	$0.28^{+0.03}_{+0.04}$	$0.43^{+0.11}_{-0.11}$	0.01	$0.65^{+0.14}_{-0.14}$
$\Xi_b^{\prime 2} P_{\lambda \frac{3}{2}} \rangle \pi$	6234	$9.60^{+1.87}_{-1.66}$	$0.14^{+0.04}_{-0.02}$	$5.33^{+1.31}_{-1.18}$	$0.72^{+0.10}_{-0.09}$	0.001	$0.18^{+0.01}_{-0.012}$
$\Xi_b^{\prime 4} P_{\lambda \frac{1}{2}} \rangle \pi$	6227	0.03	$0.43^{+0.11}_{-0.10}$	$0.13^{+0.02}_{+0.02}$	$5.80^{+0.94}_{-0.87}$	$3.35^{+0.61}_{-0.56}$	< 0.01
$\Xi_b^{\prime 4} P_{\lambda 2}^{\frac{3}{2}} \rangle \pi$	6224	$0.89^{+0.08}_{-0.05}$	$0.21^{+0.03}_{-0.03}$	$0.81^{+0.03}_{-0.01}$	$3.16^{+0.49}_{-0.43}$	$1.80^{+0.59}_{-0.52}$	$0.12^{<+0.01}_{<-0.01}$
$\Xi_b^{\prime 4} P_{\lambda 2}^{5-} \rangle \pi$	6226		$0.96^{+0.14}_{-0.13}$	$2.21_{-0.58}^{+0.65}$	$4.80^{+1.23}_{-1.12}$	$5.26^{+0.89}_{-0.76}$	$0.20^{+0.01}_{<-0.01}$
Sum		$100.8^{+22.6}_{-18.4}$	$25.3_{+3.3}^{-2.7}$	$108.7^{+32.4}_{-26.0}$	$57.6^{+14.7}_{-12.7}$	$28.1_{-1.7}^{+2.1}$	$40.7^{+1.3}_{-4.6}$

The J^P=5/2⁺ and 7/2⁺ states are worth observing!


YX Yao, KL Wang, XH, PRD98,076015(2018)

Summary



Summary

6_F states

3_F states

Predicted masses are taken from Ebert et al., arXiv:1105.0583.

LHCb, Belle II为我们研究重味 重子谱带来机遇!

许多夸克模型预言的态值得实 验寻找。

谢谢!