第二届LHCb前沿物理研讨会

Tetraquarks at LHCb

张艳席 北京大学

武汉大学,2020年12月13号

List of public analyses

- 1. Analysis of $B^+ \to D^+D^-K^+$, $X_{0,1}(2900) \to D^-K^+$, arXiv:2009.00025, 2009.00026
- 2. Study of $B_s^0 \rightarrow J/\psi \pi^+ \pi^- K^+ K^-$ decays, $X(4740) \rightarrow J/\psi \phi$, arXiv:2011.01867
- 3. Multiplicity-dependent $\chi_{c1}(3872)/\psi(2S)$ production, $\chi_{c1}(3872)/\psi(2S)$, arXiv:2009.06619
- 4. Observation of structure in J/ψ -pair mass spectrum, $X(6900) \rightarrow J/\psi J/\psi$, arXiv:2006.16957
- 5. $\psi_2(3823)$ and $\chi_{c1}(3872)$ in $B^+ \to (J/\psi \pi^+ \pi^-)K^+, \psi_2(3823) + \chi_{c1}(3872), arXiv:2005.13422$
- 6. Study of $\chi_{c1}(3872)$ lineshape, $\chi_{c1}(3872)$, <u>arXiv:2005.13419</u>
- 7. Observation of $\Lambda_b^0 \rightarrow \chi_c(3872)pK^-$ decay, $\chi_{c1}(3872)$, <u>arXiv:1907.00954</u>
- 8. Spectroscopy in prompt $D\overline{D}$ final state, $X(3843), \chi_{c2}(3930) \dots, arXiv:1903.12240$
- 9. Model-independent study of exotics in $B^0 \rightarrow J/\psi K^+\pi^-$, $Z_c(4200)$, $Z_c(4600)$, arXiv:1901.05745
- 10. Evidence of exotic in $B^0 \to \eta_c(1S)K^+\pi^-$, $Z_c(4100)^+$, arXiv:1809.07416
- 11. Beautiful tetraquarks in $\Upsilon \mu^+ \mu^-$ final state, $X_{bb\bar{b}\bar{b}}$, arXiv:1806.09707
- 12. AmAn of $B^+ \rightarrow J/\psi \phi K^+$, X(4140), X(4274), X(4500), X(4700), arXiv:1606.07898, 1606.07895
- 13. Confirmation of $Z_c(4430)^+$, $Z_c(4430)^+$, arXiv:1510.01951, 1404.1903
- 14. Measurement quantum numbers of X(3872), $J^{PC} = 1^{++}$, <u>arXiv:1504.06339, 1302.6269</u>
- 15. Evidence of $X(3872) \rightarrow \psi(2S)\gamma$, arXiv:1404.0275
- 16. Prompt production of *X*(3872), arXiv:1112.5310

Observation

Evidence

Exotic or not: *X*(3872) ?

 $J^{PC} = 1^{++}$ determined with $B^+ \rightarrow (J/\psi\rho)_X K^+$ $\chi_{c1}(2P)$?

Nearby states of $\chi_{c0,2}(2P)$ candidates:

- ≻ X(3860), observed in $e^+e^- → J/\psi(D\overline{D})$
- $\succ X_{0/2}(3915)$, observed in $D\overline{D}$, $J/\psi\omega$
- ≻ X(3940), observed in $e^+e^- \rightarrow J/\psi(D\overline{D}^*)$

Refs. L8/14

PRD100(2019)094003, Rev.Mod.Phys.90 (2018)015003, Rev.Mod.Phys.90 (2018)015004, Phys.Rept.639 (2016) 1

Mass and Width of X(3872) Refs. L5/6

 $m_{X(3872)} = 3871.64 \pm 0.06 \pm 0.01 \text{ MeV}$ $m_{D^0 \overline{D}^*} - m_{X(3872)} = 0.07 \pm 0.12(\delta m_K) \text{ MeV}$

Fit assuming S-wave Breit-Wigner

> Experimental resolution ≈ 2.4 MeV

 $\Gamma_{X(3872)} = 0.96^{+0.19}_{-0.18} \pm 0.21 \text{ MeV}$ Not zero by 5.5 σ

Consistent with study using inclusive $b \rightarrow X(3872)$ decays

X(3872) Flatte parameterization Ref. L6

Lineshape distorted due to coupling to threshold: $X(3872) \rightarrow DD^*$

X(3872) decay&production Ref. L2/7/15/16

张艳席(北京大学)

X(3872) in "nuclear" environment

Broken due to FSI with co-moving particles (comover model)

Rate depends on two parameters: binding energy, size

Explained $\psi(2S)/J/\psi$, $\Upsilon(nS)/\Upsilon(1S)$ production ratios in *p*Pb data

	$E_{\mathcal{Q}}^{\mathrm{thr}}$	$r_{\mathcal{Q}}$	$\sigma_{\mathcal{Q}}^{\mathrm{geo}}$	$\langle v\sigma angle_{\mathcal{Q}}$
$\psi(2S)$	$50\mathrm{MeV}$	$0.45\mathrm{fm}$	$6.36\mathrm{mb}$	$5.15\pm0.84\mathrm{mb}$
X(3872) compact	$116\mathrm{keV}$	$0.65\mathrm{fm}$	$13.3\mathrm{mb}$	$11.61 \pm 1.69\mathrm{mb}$
X(3872) molecule	$116\mathrm{keV}$	$6.6\mathrm{fm}$	$1368\mathrm{mb}$	$1197\pm171\mathrm{mb}$

$\langle v\sigma \rangle_{\mathcal{Q}} = \sigma_{\mathcal{Q}}^{\text{geo}} \left\langle \left(1 - \frac{E_{\mathcal{Q}}^{\text{thr}}}{E_c}\right)^{\dagger}\right\rangle$	$\Big)^n\Big\rangle$
$E_Q^{\rm thr} = m_{DD^{(*)}} - m$	

arXiv:2006.15044

 Breakup rate too small compared to expectation in molecule picture

Consistent with a compact state

 $N_{tracks}(data) = N_{tracks}(model)$?

b-decay vs prompt

X(3872) the only one (?) observed in e^+e^- , *b*-decay and prompt *pp* collisions

Production mechanism?Internal structure?Difficulties to identify wide states in prompt hadron collisions?

b-decay vs prompt

X(3872) the only one (?) observed in e^+e^- , *b*-decay and prompt *pp* collisions

Production mechanism?Internal structure?Difficulties to identify wide states in prompt hadron collisions?

Tetraquark in $J/\psi\phi$ system

$X \rightarrow J/\psi \phi$ first seen by CDF, confirmed by CMS

- > Observation of X(4140)
- Evidence of X(4274)

 \succ 1D analysis

PRL102(2009)242002 Mod.Phys.Lett.A32(2017)26 PLB734(2014)261

ccss quark contents

LHCb amplitude analysis, observed four states

- ➢ All much wider
- Only Run I data

States	JPC	Mass/MeV	Width/MeV
X(4140)	1++	$4146.5 \pm 4.5 ^{+4.6}_{-2.8}$	83 $\pm 21^{+21}_{-14}$
X(4274)	1++	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56.2 \pm 10.9 ^{+ \ 8.4}_{-11.1}$
X(4500)	0++	4506 $\pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$
X(4700)	0++	4704 $\pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$

"New" *X*(4740) structure

Ref. L2

A $J/\psi\phi$ structure in $B_s^0 \rightarrow J/\psi\phi\pi^+\pi^-$ decay

1D fit using S-wave Breit-Wigner

 $m_{X(4740)} = 4741 \pm 6 \pm 6 \text{ MeV}$ $\Gamma_{X(4740)} = 53 \pm 15 \pm 11 \text{ MeV}$

Systematic uncertainties:

- Shape of underlying non-X
- Alternative P-wave or D-wave BW
- $\succ \text{ Inteference } \mathcal{F}_{\mathrm{S}}\left(m_{\mathrm{J/\psi}\phi}\right) \propto \left|\mathcal{A}\left(m_{\mathrm{J/\psi}\phi}\right) + b\left(m_{\mathrm{J/\psi}\phi}\right)\mathrm{e}^{i\varphi}\right|^{2}$

Maybe not new

- Could be the X(4700) in $B^+ \rightarrow J/\psi \phi K^+$ decay
- Amplitude fit needed to resolve

Contribution relatively larger than other X states

Molecular vs tetraquark

Difficult to interpretation as molecular states

States	JPC	Mass/MeV	Nearest thresholds/MeV	
X(4140)	1++	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$D_s^+\overline{D}_s^{*-}$: 4080	60 MeV away
X(4274)	1++	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$D_s^+ D_{s0}^* (2317)^-: 4286$	
X(4500)	0++	4506 $\pm 11^{+12}_{-15}$	$D_s^+ D_{s1}^* (2536)^-: 4503$	P = - for S-wave
X(4700)	0++	4704 $\pm 10^{+14}_{-24}$	$D_s^{*+}\overline{D}_{s2}^{*}(2573)^{-}$: 4681	J

X(4274), X(4500), X(4700) tightly bound $cs\bar{c}\bar{s}$ states. But X(4140) difficult

PRD101(2020)054039 PRD99(2019)094032 EPJC79(2020)72 PRD94(2016)074007 EPJC77(2017)160 *X*(4140): $c\bar{c}$ state $\chi_{c1}(3P)$? *X*(4274): $c\bar{c}$ state $\chi_{c1}(3P)$?

Full-charm tetraquark candidate Ref. L4

 $(28 \text{ MeV}/c^2)$

Weighted Candidates

200

180

160

140

120

100

80

60

40

20 0

Di- J/ψ mass spectrum $J/\psi \rightarrow \mu^+\mu^-$ All data, 34K signal pairs

Spectrum modelling:

Smooth function for nonresonant production

> Breit-Wigner (BW) for peaking structures

✓ Broad structure (2 BWs): > 5σ

✓ Structure at 6.9 GeV/ c^2 (1 BW): > 5 σ

✓7.2 GeV/*c*² structure: < 1*σ*

Other scenario possible: $J/\psi \chi_c$ feeddown...

Difficulty to model the dip at 6.8 GeV !

$$\sigma(pp \rightarrow J/\psi J/\psi) = 15.2 \pm 1.3 \text{ nb}$$

JHEP 06 (2017) 047

张艳席(北京大学)

Full-charm tetraquark candidate Ref. L4

Interference to describe dip at 6.8 GeV

张艳席(北京大学)

Other quarkonium pairs

Ref. L11

ψ(2S)J/ψ,J/ψΥ being studied, signals ~1% of di-J/ψ
>Smaller production and μ⁺μ⁻ decay rate
>A few signal counts?

Structures in $B^+ \to D^+ D^- K^+$

16

14

6

8

$D^-K^+(\bar{c}\bar{s}ud)$ structure observed in $B^+ \to D^+D^-K^+$ decays

Only charmonia expected for conventional hadrons: 0⁺⁺, 1⁻⁻, 2⁺⁺

Partial wave (J^{PC})	Resonance	Mass (MeV/ c^2)	Width (MeV)
S wave (0^{++})	$\chi_{c0}(3860)$	3862 ± 43	201 ± 145
	X(3915)	3918.4 ± 1.9	20 ± 5
P wave $(1^{})$	$\psi(3770)$	3778.1 ± 0.9	27.2 ± 1.0
	$\psi(4040)$	4039 ± 1	80 ± 10
	$\psi(4160)$	4191 ± 5	70 ± 10
	$\psi(4260)$	4230 ± 8	55 ± 19
	$\psi(4415)$	4421 ± 4	62 ± 20
D wave (2^{++})	$\chi_{c2}(3930)$	3921.9 ± 0.6	36.6 ± 2.1

Structure not due to charmonia reflections

Ref. L1

LHCb

10

 $m^2(D^-K^+)$ [GeV²/ c^4]

(b)

12

Open charm tetraquark candidates Ref. L1

In total 22 $B \to \overline{D}^{(*)}D^{(*)}K^{0/+}$ modes and $B_s \to \overline{D}^{(*)}D^{(*)}KK, B \to D_s^+\overline{D}\pi^{+/-}...$

Some related by isospin. Allow to study similar states, with 100-10K signals PLB 704 (2011) 559

张艳席(北京大学)

Summary

- Extensive studies of *X*(3872), settled?
- Charged $Z_c(c\bar{c}u\bar{d})$ in b decays, how many; strange partners; production
- Many $X(c\bar{c}s\bar{s}) \rightarrow J/\psi\phi$ states, **possible excited** $c\bar{c}$ states?
- Fully heavy states $X_{QQ\bar{Q}\bar{Q}}$, full spectrum?
- Open charm tetraquark csud: many more to be studied

Summary

- Extensive studies of *X*(3872), settled?
- Charged $Z_c(c\bar{c}u\bar{d})$ in b decays, how many; strange partners; production
- Many $X(c\bar{c}s\bar{s}) \rightarrow J/\psi\phi$ states, **possible excited** $c\bar{c}$ states?
- Fully heavy states $X_{QQ\bar{Q}\bar{Q}}$, full spectrum?
- Open charm tetraquark csud: many more to be studied

Thank you for your attention

Backups

LHCb experiment

One of the four large experiments at CERN Aiming for precision measurements in *b*, *c* flavor sectors Forward acceptance: $2 < \eta < 5$

JINST 3 (2008) S08005 IJMPA 30 (2015) 1530022

Large Hadron Collider Experiments

LHCb detector

$\text{Di-}J/\psi$ invariant mass

\Box Same structures presented in high p_T bins

How to interpret data

- 1. There are nontrivial structures
- 2. But difficult to understand all structures
 - ✓ Peak at 6.9 GeV relatively isolated, well modeled by a BW X(6900)
 - ✓ Structure at threshold: one BW, multiple BWs or feed-downs
 - \checkmark Interference is possible and fits better, but not significant enough yet
- 3. Statistics could help, LHCb needs Run3. But CMS and ATLAS have many more data
- 4. Theory inputs?
 - ✓ Production arXiv:2009.08450 ...
 - ✓ Structure arXiv:2009.07795 ...
 - ✓ Spectrum arXiv:2006.14445 ...
 - ✓ Spin-parity arXiv:2007.05501 ...
- 5. Other decay may also help

 $J/\psi \psi', J/\psi \Upsilon, ss\bar{s}\bar{s} \dots$

Structure: naturally tetraquark but also explained with coupled channels $(\psi\psi, \psi'\psi...)$

