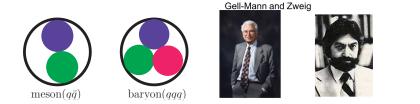
Fully-charm tetraquark states and their strong decays into di-charmonia

Wei Chen

Sun Yat-Sen University

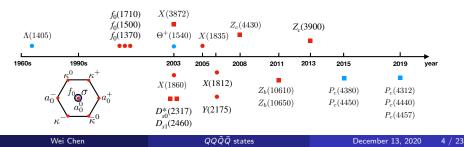
Based on: PLB773 (2017), 247-251; Sci.Bull. 65 (2020), 1994-2000

In collaboration with Hua-Xing Chen, Xiang Liu, T. G. Steele, and Shi-Lin Zhu


The 2nd Workshop on Frontier Physics at LHCb 12-13 December 2020, Wuhan, China

3 Decay properties of the $QQ\bar{Q}\bar{Q}$ tetraquarks

- Quark model is established to classify hadrons: mesons $(q\bar{q})$ and baryons (qqq).
- Hadrons with exotic quantum numbers are exotic hadron states.
- QCD allows for hadrons outside the naive quark model. Hadron structures are more complicated in QCD: $N_{quarks} \neq 2, 3$.
- $SU(3)_c$ gauge symmetry: $(N_q N_{\bar{q}})$ is divisible by 3, plus any number N_g of valence gluons can form a color singlet.

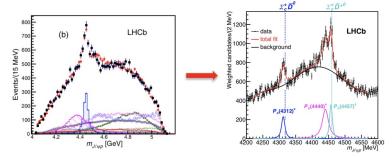

Searching for exotica

Light hadron sector:

- Dibaryon: Deuteron, H states, d*(2380).
- Hybrid candidates: $\pi_1(1400)$, $\pi_1(1600)$ and $\pi_1(2015)$ (dispute).
- Glueball candidates: $a_0(980)$ and $f_0(980)$.
- Tetraquark candidates: light scalar mesons.
- Pentaquark: $\Theta^+(1540)$ (S = 1, long story of appeared and disappeared)

Heavy hadron sector: breakthough in multiquarks!

- P_c(4380), P_c(4312), P_c(4440), P_c(4457), P_{cs}(4459): hidden-charm pentaquark states.
- Plenty of XYZ states: candidates of molecules, tetraquarks, hybrids...



Pentaquarks: $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$

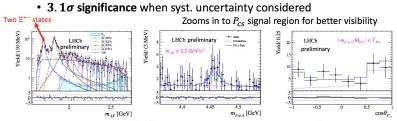
LHCb observed Pc states in 2015 and 2019:

PRL 115 (2015) 072001

PRL 122 (2019) 222001

	State	$M \;[\mathrm{MeV}\;]$	$\Gamma \;[\mathrm{MeV}\;]$	(95% CL)	\mathcal{R} [%]
	$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-}~^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
I	$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
	$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-1.9}^{-5.7}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

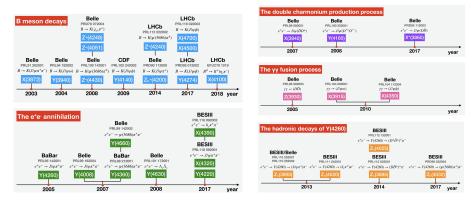
Wei Chen


5 / 23

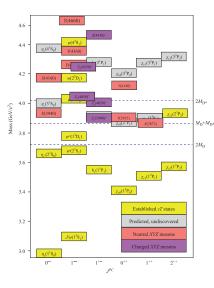
LHCb-PAPER-2020-039 LHCb preliminary

6 / 23

Full 6D amplitude analysis


• Adding a P_{cs} improves $-2 \ln L$ by 43 units, $\sim 4.3\sigma$ significance

 P_{cs} mass 19MeV below the $\Xi_c^0 \overline{D}^{*0}$ threshold. Statistic not enough for J^P determination.


	State	$M_0 \; [\mathrm{MeV}]$	$\Gamma[MeV]$		
	$P_{cs}(4459)^0$	$4458.8 \pm 2.9 {}^{+4.7}_{-1.1}$	$17.3 \pm 6.5 {}^{+8.0}_{-5.7}$		
	$\Xi(1690)^{-}$	$1692.0 \pm 1.3 {}^{+1.2}_{-0.4}$	$25.9 \pm 9.5 {}^{+14.0}_{-13.5}$		istent with PDG,
	$\Xi(1820)^{-}$	$1822.7 \pm 1.5 {}^{+1.0}_{-0.6}$	$36.0 \pm 4.4 {}^{+7.8}_{-8.2}$	with	improved precision
10/29/20		Implicat	ions workshop 20)20	15
Wei Che	n	($QQar{Q}ar{Q}$ states		December 13, 2020

Experiments: Belle, BaBar, BESIII, CDF, CLEO, D0, LHCb...

Prog.Part.Nucl.Phys.107 (2019) 237-320.

Overview of XYZ States

Front. Phys. 10 (2015) 101401

- Many charmonium-like states were discovered above the open-charm thresholds.
- Their masses and decay modes are different from the pure $c\bar{c}$ charmonium states.
- Some charged Z_c states were observed, which are evidences for four-quark states (cc̄ud̄).
- They are good candidates for exotic hadron states: molecule, tetraquark, hybrid

. . .

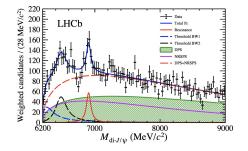
Theoretical Models

- Theoretical configurations: tetraquark, molecule, hybrid,...
- Z_c^{\pm} states: tetraquark, molecule

• What happens as the mass of the light quarks is raised? Binding becomes stronger?

• QED analog: molecular positronium Ps₂ (bound state of $e^+e^-e^+e^-$) discovered in 2007 _{Nature 449} (09, 2007) 195–197.

Doubly hidden-flavor tetraquarks: $QQ\bar{Q}\bar{Q}$


 $QQ\bar{Q}\bar{Q}$ Tetraquarks:

- They are far away from the mass range of the observed conventional $q\bar{q}$ hadrons.
- Can be clearly distinguished experimentally from the normal states.
- The light mesons $(\pi, \rho, \omega, \sigma...)$ can not be exchanged between two charmonia/bottomonia.
- The binding force comes from the short-range gluon exchange.
- A molecule configuration is not favored and thus the $QQ\bar{Q}\bar{Q}$ is a good candidate for compact tetraquark.

X(6900): resonance structure in J/ψ -pair mass spectrum

LHCb observed several structures in the J/ψ -pair mass spectrum (Sci. Bull., 2020, 2020, 65):

- The mass and width of X(6900) are:(1) M = 6905 ± 11 ± 7 MeV, Γ = 80 ± 19 ± 33 MeV based on no-interference fit; (2) M = 6886 ± 11 ± 11 MeV, Γ = 168 ± 33 ± 69 MeV based on the simple model with interference.
- A broad structure next to threshold ranging from 6.2 to 6.8 GeV;
- Hint for another structure around 7.2 GeV with low significance.
- These structures are consistent with predicted $T_{cc\bar{c}\bar{c}}$ (PLB773(2017), 247-251).

Tetraquark Sum Rules

• Study two-point correlation function of current J(x) with the same quantum numbers with hadron state:

$$\Pi(q^2) = i \int d^4 x e^{iq \cdot x} \langle \Omega | T[J(x)J^{\dagger}(0)] | \Omega \rangle$$

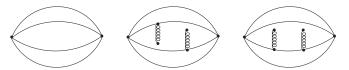
- Classify states |X
 angle by coupling to current $\langle \Omega|J(x)|X
 angle
 eq 0$
- Currents are probes of spectrum and might not overlap with state

Interpolating currents with
$$J^{PC} = 0^{++}$$
:

$$\begin{split} J_1 &= Q_a^T C \gamma_5 Q_b \bar{Q}_a \gamma_5 C \bar{Q}_b^T ,\\ J_2 &= Q_a^T C \gamma_\mu \gamma_5 Q_b \bar{Q}_a \gamma^\mu \gamma_5 C \bar{Q}_b^T ,\\ J_3 &= Q_a^T C \sigma_{\mu\nu} Q_b \bar{Q}_a \sigma^{\mu\nu} C \bar{Q}_b^T ,\\ J_4 &= Q_a^T C \gamma_\mu Q_b \bar{Q}_a \gamma^\mu C \bar{Q}_b^T ,\\ J_5 &= Q_a^T C Q_b \bar{Q}_a C \bar{Q}_b^T , \end{split}$$

 $QQ\bar{Q}\bar{Q}$ states

• Hadron level: described by the dispersion relation


$$\Pi(q^2) = \frac{(q^2)^N}{\pi} \int \frac{\operatorname{Im}\Pi(s)}{s^N(s-q^2-i\epsilon)} ds + \sum_{n=0}^{N-1} b_n(q^2)^n,$$

$$\rho(s) = \frac{1}{\pi} \operatorname{Im}\Pi(s) = \sum_n \delta(s-m_n^2) \langle 0|J|n \rangle \langle n|J^{\dagger}|0 \rangle$$

$$= f_X^2 \delta(s-m_X^2) + \operatorname{continuum},$$

• Quark-gluon level: evaluated via operator product expansion(OPE)

$$\Pi(s) = \Pi^{pert}(s) + \Pi^{\langle GG \rangle}(s) + ...,$$

 $QQ\bar{Q}\bar{Q}$ states

• Define moments in Euclidean region $Q^2 = -q^2 > 0$:

$$\begin{split} M_n(Q_0^2) &= \frac{1}{n!} \left(-\frac{d}{dQ^2} \right)^n \Pi(Q^2)|_{Q^2 = Q_0^2} \\ &= \int_{m_H^2}^\infty \frac{\rho(s)}{(s+Q_0^2)^{n+1}} ds = \frac{f_X^2}{(m_X^2 + Q_0^2)^{n+1}} \left[1 + \delta_n(Q_0^2) \right], \end{split}$$

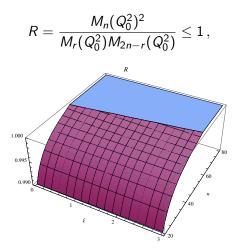
where $\delta_n(Q_0^2)$ contains the higher states and continuum.

Ratio of the moments

$$r(n, Q_0^2) \equiv \frac{M_n(Q_0^2)}{M_{n+1}(Q_0^2)} = (m_X^2 + Q_0^2) \frac{1 + \delta_n(Q_0^2)}{1 + \delta_{n+1}(Q_0^2)}.$$

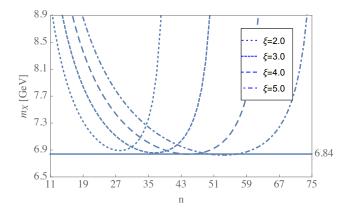
Predict hadron mass

$$m_X = \sqrt{r(n,Q_0^2) - Q_0^2}$$


for sufficiently large *n* when $\delta_n(Q_0^2) \cong \delta_{n+1}(Q_0^2)$ for convergence.

Limitations for (n, ξ) parameter space:

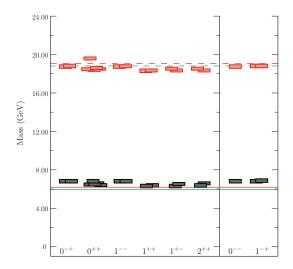
$$\xi = Q_0^2/16m_c^2$$
, for $ccar{c}ar{c}$ system;
 $\xi = Q_0^2/m_b^2$, for $bbar{b}ar{b}$ system.


- Small ξ: higher dimensional condensates give large contributions to M_n(Q₀²), leading to bad OPE convergence.
- Large ξ : slower convergence of $\delta_n(Q_0^2)$. This can be compensated by taking higher derivative *n* for the lowest lying resonance to dominate.
- Large *n*: moving further away from the asymptotically free region. The OPE convergence would also become bad.
- Requiring Π^(GG)(s) ≤ Π^{pert}(s) to obtain an upper limit n_{max}, which will increase with respect to ξ.
- Good (n, ξ) region: the lowest lying resonance dominates the moments while the OPE series has good convergence.

Hölder's inequality:

The boundary gives $(n, \xi) = (48, 0.2), (49, 0.4), (49, 0.6), (50, 0.8).$

Mass for $cc\bar{c}\bar{c}$ tetraquark with $J^{PC} = 0^{-+}$: mass curves have plateaus at $(n,\xi) = (28,2), (36,3), (45,4), (53,5)$

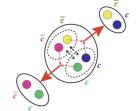

$$m_{\mathcal{T}_{cc\bar{c}\bar{c}}} = (6.84 \pm 0.18) \, {
m GeV}.$$

PLB773(2017), 247-251

JPC	Currents	$m_{X_c}(\text{GeV})$	$m_{X_h}(\text{GeV})$
0++	J_1	6.44 ± 0.15	18.45 ± 0.15
	J_2	6.59 ± 0.17	18.59 ± 0.17
	J_3	$\textbf{6.47} \pm \textbf{0.16}$	18.49 ± 0.16
	J_4	$\textbf{6.46} \pm \textbf{0.16}$	18.46 ± 0.14
	J_5	$\textbf{6.82} \pm \textbf{0.18}$	19.64 ± 0.14
1++	$J_{1\mu}^+$	$\textbf{6.40} \pm \textbf{0.19}$	18.33 ± 0.17
	$J^+_{1\mu}\ J^+_{2\mu}$	$\textbf{6.34} \pm \textbf{0.19}$	18.32 ± 0.18
1^{+-}	$J_{1\mu}^{-}$	$\textbf{6.37} \pm \textbf{0.18}$	18.32 ± 0.17
	$J^{-}_{1\mu}\ J^{+}_{2\mu}$	6.51 ± 0.15	18.54 ± 0.15
2++	$J_{1\mu\nu}$	$\textbf{6.51} \pm \textbf{0.15}$	18.53 ± 0.15
	$J_{2\mu\nu}$	$\textbf{6.37} \pm \textbf{0.19}$	18.32 ± 0.17
0-+	L^+	6.84 ± 0.18	18.77 ± 0.18
0	$\begin{array}{c}J_1^+\\J_2^+\end{array}$	6.85 ± 0.18	18.79 ± 0.18
0	J_1^-	$\textbf{6.84} \pm \textbf{0.18}$	18.77 ± 0.18
1^{-+}	$J_{1''}^+$	$\textbf{6.84} \pm \textbf{0.18}$	18.80 ± 0.18
	$J^+_{1\mu}\ J^+_{2\mu}$	$\textbf{6.88} \pm \textbf{0.18}$	18.83 ± 0.18
1	$J^{1\mu}$	$\textbf{6.84} \pm \textbf{0.18}$	18.77 ± 0.18
	$J_{2\mu}^{-\mu}$	$\textbf{6.83} \pm \textbf{0.18}$	18.77 ± 0.16

Our previous calculations in 2017 are consistent very good with the LHCb's observation:

- > The masses of $cc\overline{c}\overline{c}$ tetraquarks with $J^{PC} = 0^{++}$, 2^{++} are agree with the broad structure around 6.2-6.8 GeV;
- > The masses of $cc\overline{c}\overline{c}$ tetraquarks with $J^{PC} = 0^{-+}$, 1^{-+} are consistent with the mass of X(6900).



Decay behavior: cccc tetraquarks

- $cc\bar{c}\bar{c} \rightarrow (ccq) + (\bar{c}\bar{c}\bar{q})$: kinematically forbidden.
- $cc\bar{c}\bar{c} \rightarrow (cqq) + (\bar{c}\bar{q}\bar{q})$: suppressed by two light quark pair creation.
- ccc̄c̄ → (cc̄) + (cc̄): charm quark pair rearrangement or annihilation (suppressed). Phase space is small.
- $cc\bar{c}\bar{c} \rightarrow (q\bar{c}) + (c\bar{q})$: possible via a heavy quark pair annihilation and a light quark pair creation, with large phase space.
- $cc\bar{c}\bar{c}(L=1) \rightarrow cc\bar{c}\bar{c}(L=0) + (q\bar{q})_{I=0}$: OZI forbidden.

Strong decays into di-charmonia

PLB773(2017), 247-251; Sci.Bull.65,2020, 1994-2000

JPC	S-wave	P-wave
0++	$\eta_c(1S)\eta_c(1S), \ J/\psi J/\psi$	$\eta_{c}(1S)\chi_{c1}(1P), J/\psi h_{c}(1P)$
0-+	$\eta_c(1S)\chi_{c0}(1P), J/\psi h_c(1P)$	${\sf J}/\psi{\sf J}/\psi$
0	$J/\psi\chi_{c1}(1P)$	$J/\psi\eta_c(1S)$
1++	_	$J/\psi h_{c}(1P), \eta_{c}(1S)\chi_{c1}(1P), \\ \eta_{c}(1S)\chi_{c0}(1P)$
1+-	$J/\psi\eta_c(1S)$	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$
1^{-+}	$J/\psi h_c(1P)$, $\eta_c(1S)\chi_{c1}(1P)$	${\sf J}/\psi{\sf J}/\psi$
1	$J/\psi\chi_{c0}(1P), J/\psi\chi_{c1}(1P), \eta_{c}(1S)h_{c}(1P)$	$J/\psi\eta_c(1S)$

Strong decays into di-charmonia

We calculate their relative	branching rati	ios through the	Fierz rearrangement:

	Decay channels									
J ^{PC}	Configuration	$J/\psi J/\psi$	$\eta_c \eta_c$	$J/\psi h_c$	$\eta_c \chi_{c0}$	$\eta_c \chi_{c1}$	$J/\psi \eta_c$	$J/\psi\chi_{c0}$	$J/\psi\chi_{c1}$	$\eta_c h_c$
0++	$X_1 = 0_{cc}^+, 0_{\bar{c}\bar{c}}^+\rangle_0$	1	0.45	-	-	2.1×10^{-5}	-	-	-	-
	$X_2 = 1_{cc}^+, 1_{cc}^+\rangle_0$	1	4.1	-	-	8.6×10^{-5}	-	-	-	-
1+-	$X_3 = 1_{cc}^+, 1_{cc}^+\rangle_1$	-	-	_	-	-	1	-	-	-
2++	$X_4 = 1_{cc}^+, 1_{cc}^+\rangle_2$	1	0.036	-	-	6.0×10^{-4}	-	-	-	-
0-+	$X_5 = 0_{cc}^-, 0_{c\bar{c}}^+\rangle_0^a$	1	-	0.21	0.69	-	-	-	-	-
	$X_6= 1^\pm_{cc},1^\mp_{c\bar c}\rangle_0$	1	-	0.21	6.2	-	-	-	-	-
0	$X_7 = 0^{cc},0^+_{\bar{c}\bar{c}}\rangle^b_0$	-	-	-	-	-	1	-	1.4	-
1-+	$X_8 = 1_{cc}^-, 0_{c\bar{c}}^+\rangle_1^a$	1	0.11	0.30	-	0.36	-	-	-	-
	$X_9 = 1^{cc}, 1^+_{c\bar{c}}\rangle^a_1$	1	1.0	0.30	-	3.2	-	-	-	-
1	$X_{10} = 1_{cc}^{-}, 0_{cc}^{+}\rangle_{1}^{b}$	-	-	-	-	-	1	0.79	1.5	0.43
	$X_{11} = 1_{cc}^{-}, 1_{cc}^{+}\rangle_{1}^{b}$	-	-	-	-	-	1	7.1	1.5	0.43

- > We suggest the broad structure around 6.2-6.8 GeV to be a S-wave $cc\overline{c}c$ tetraquark with $J^{PC} = 0^{++}$ or 2^{++} , while the narrow structure around 6.9 Gev to be a P-wave $cc\overline{c}c$ tetraquark with $J^{PC} = 0^{-+}$ or 1^{-+} .
- > We propose to confirm them in the **di**- $\eta_{cr} J/\psi h_{cr} \eta_{c} \chi_{c0r} \eta_{c} \chi_{c1}$ channels. These channels are helpful to determine their quantum numbers.

- LHCb has observed two resonance structures in the J/ψ-pair mass spectrum: a narrow structure X(6900) and a broad structure around 6.2-6.8 GeV;
- We have calculated the mass spectra for the ccccc and bbbb tetraquark states. We also study strong decays of the possible fully-charm tetraquarks, and calculate their relative branching ratios through the Fierz rearrangement
- Our results suggest that the broad structure around 6.2–6.8 GeV can be interpreted as an S-wave $cc\bar{c}\bar{c}$ tetraquark state with $J^{PC} = 0^{++}$ or 2^{++} , while the narrow structure X(6900) to be a P-wave one with $J^{PC} = 0^{-+}$ or 1^{-+} .
- We propose to confirm them in the di- η_c , $J/\psi h_c$, $\eta_c \chi_{c0}$ and $\eta_c \chi_{c1}$ channels. These channels are helpful to determine their quantum numbers.

Thank you for your attention!