# Study of cluster counting method for PID with drift chamber



Linghui Wu, Guang Zhao, Shuiting Xin, Mingyi Dong, Gang Li, Shengsen Sun

CEPC day, Nov 25, 2020

### Outline

- Motivation
- Simulation on ionization with Garfield++
- Preliminary results with peak finding
- Estimation of performance for the DC in CRD
- Summary and plan

### **Motivation**

- Particle identification is essential for flavor physics and jet study
  - Reduce combination background
  - Improve mass resolution
  - Improve jet energy resolution
  - Benefit flavor tagging
- dE/dx measurement from the drift chamber can be used for PID
  Some work has been done:
  Xin's talk in CEPC day (Sep 23, 2020)



From Manqi's talk in CEPC Day (Oct 19)

### Primary ionization vs total energy loss

#### Primary ionization



$$P(n, n_0) = \frac{e^{-n_0} n_0^n}{n!}$$

$$\sigma = \frac{1}{\sqrt{n_{Tot}}}$$

Secondary ionization



Use truncated mean for dE/dx (track length from 0.5~5m)

**σ = 3~8%** 

### **Cluster counting for IDEA**



dN<sub>cl</sub>/dx



 $\sigma \approx 2.0\%$ 



#### Simulation for IDEA

21/10/2020 CEPC Meeting P. Azzi (INFN-PD)

Number of cluster for different particles vs momentum



Standard deviation for Number of Cluster distribution vs momentum



### Drift chamber of CEPC reference detector

### Parameters

- Two DC between the silicon trackers
- Cell size: 1cm\*1cm
- 118 layers for 1.5m
- He(50%) + iC<sub>4</sub>H<sub>10</sub>(50%)

 To study the cluster counting method, a simulation with Garfield++ is performed





### Simulation with Garfield++





Garfield++: A widely used software for simulation of gaseous detectors https://garfieldpp.web.cern.ch/garfieldpp

### Validation of dE/dx resolution on BESIII

#### 600 hres 10079 Entries Mean 1701 500 RMS 106.3 Constant 579.5 ± 7.2 π<sup>+</sup> 1.0Gev/c 400 $1700 \pm 1.0$ Mean resol(dE/dx)=5.95% Sigma $101.1 \pm 0.7$ 300 200 100 2200 2400 1000 1200 1400 1600 1800 2000 dE/dx $\frac{\sigma(dE/dx)}{dE/dx} = 5.95\%$

**BESIII** data

#### Ionization simulation with Garfield



 $\frac{\sigma(dE/dx)}{dE/dx} = 5.6\%$ 

- 1 GeV/c  $\pi$ , cos $\theta$ =0, only simulated ionization
- Truncated mean (70%)

### Comparison between dE/dx & dN/dx



- 10 GeV/c, cosθ=0
- Cell size: 1cm\*1cm, 118 layers ~ 1.5m

### **Resolutions vs number of layers**



- 20 GeV/c, cosθ=0
- Cell size: 1cm\*1cm, 118 layers ~ 1.5m

### Separation power for K/ $\pi$



- $\cos\theta=0$ , R=1.5m
- Truncated mean cut (70%) for dE/dx

### Simulation with Garfield++



Simulation of induced signal is very time consuming (> 1 hours for each signal)

### Simulation of the signal

#### 10GeV pion, $\cos\theta=0$



#### Peak finding with **TSpectrum**



#### Distribution of N<sub>cl</sub>



#### Efficiency of peak finding



### New peak finding algorithm -- TMAX



Number of layers

### Study on different gas ratio

- The cluster density can be reduced by improving the ratio of He
- Lower cluster density would be better to cluster finding
- More studies ongoing
  - Impact on tracking, final dN/dx or dE/dx resolutions ...





120

### Estimation of DC performances

- A fast estimation on the momentum, dE/dx and dN/dx resolutions for the Si+DC design was performed to understand the impact of different parameters on the performance
- Momentum resolution
  - Space points measurements: using toy MC
  - M.S. effect : calculation with the formula

$$\left(\frac{\sigma(P)}{P}\right)^2 = \left(\frac{\sigma(P)}{P}\right)^2_{meas} + \left(\frac{\sigma(P)}{P}\right)^2_{MS}$$

- dE/dx & dN/dx resolution
  - Simulated with Garfield

$$\frac{\delta I}{I} = f(xp, n, \text{gas}) \text{ or } g(Lp, n, \text{gas})$$

Measurements:  $\frac{\delta P_T}{P_T} = \frac{\delta y P_T}{0.3qBL^2} \sqrt{\frac{720}{N+4}}$ MS:  $\frac{\delta p}{p} = \frac{21(\text{MeV}/c)}{\beta \sin \theta} \frac{10}{3} \left(\frac{\text{Tm}}{\text{GeV}/c}\right) \frac{1}{B} \sqrt{\frac{C_N}{2LX_{\text{rad}}}}$ 

> Walter Blum et al., Particle Detection with Drift chamber

### Comparison of $\sigma p_T/p_T$ for three designs

- The resolution is dominated by the multiple scattering effect
- The design of Si+DC has the most material budget



Thank Mingyi, Huirong, Hongbo and Yubo for providing material and spatial resolution parameters

#### Material budget in barrel region (L/X0)

|         | Vertex    | SIT or<br>SET | TPC | DC       | Total |
|---------|-----------|---------------|-----|----------|-------|
| Full Si | 0.15% * 6 | 0.65% * 6     |     |          | 4.8%  |
| Si+TPC  | 0.15% * 6 | 0.65% * 3     | 1%  |          | 3.85% |
| Si+DC   | 0.15% * 6 | 0.65% * 3     |     | 1.2% * 2 | 5.25% |

### Impact of detector size and magnetic field



18

### dE/dx & dN/dx resolutions



From Garfield simulation on the ionization process

### Software Development for DC in CEPCSW

#### Zhang Yao

- Geometry (Liu Mengyao-SDU, Lin Tao, Zhang Yao, Fu Chengdong)
  - Two drift chambers + Silicon trackers
- **dE/dx simulation** (Fang Wenxing, Lin Tao, Ryuta)
  - dE/dx simulation module with sampling method
  - Configurable Gaudi tools implemented
- Reconstruction (Zhang Yao)
  - Track fitting with Kalman filtering
- Plan
  - First release of SDT in CEPCSW by the end of Nov.
  - Simulation waveform for cluster counting
  - Drift chamber performance studies
  - Development of drift chamber tracking algorithms



#### Momentum after Kalman fitting



## Summary and plan

- A Garfield simulation was performed for the drift chamber of CEPC reference detector
- Preliminary results show that the resolution and separation power with cluster counting method are significantly better than traditional dE/dx method
- A fast estimation on detector performance was performed
- To do
  - Optimize the peak finding algorithm
  - Study the performance by varying detector configurations (gas, pressure ...)
  - Optimize detector parameters taking into account physics requirements and hardware issues
  - A detector system is being prepared to test the signals with different gas mixture

### Backup

#### **TMAX -- An updated cluster counting algorithm**



FIR: 20-coefficient filtering

Derivative (D) - D[i] = T[i + r] - T[i]

Second derivative (D') - D'[i] = D[i + r] - D[i]

TMAX

- TMAX[i] =  $\Sigma_i(D[i]) \Theta[-D[i]] * D[i]$
- where Θ(x) =
  - 0 (x < 0)
  - 1 (otherwise)
- Hit detection
  - Threshold: A weight function convoluted with the TMAX (1.35 MeV)

- Time is extracted for each peak (first derivative = 0)
- The rising edge height must pass a threshold

Zhao Guang



