SUSY Search at the CEPC

Jiarong Yuan Nankai University, Institute of High Energy Physics 2020/11/27

Supersymmetry Introduction

. . .

 The Supersymmetry is one of the most appealing BSM theories, which can be helpful for: dark matter candidate, hierarchy problem, grand unification of gauge couplings

Overview

- Search for sleptons and electroweakinos at CEPC.
- Signal scenarios
 - Direct production of stau pairs (DM relic density consistent with cosmology observation)
 - Direct production of smuon pairs (can explain g-2 excess)
 - Production of chargino pairs decaying via W bosons (Bino LSP, large cross section)
 - > Production of chargino pairs decaying via W bosons (Higgsino LSP, interesting related with higgs)
- Search results in final states with two opposite sign (OS) charged muons(in last 3 scenarios).

Cross-section based on Madgraph calculation

Technical detail

About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points. ILD-like detector

- Software
 - Signal samples: MadGraph+Pythia8

Simulation: Mokka

- Reconstruction: Marlin
- Normalized to 5050 fb^{-1}
- Dominant backgrounds:

- > SM processes with two-e or two- μ or two- τ and large missing energy final states.(DirectStau)
- > SM processes with two- μ or two- τ and large missing energy final states.(Other 3 scenarios)

process	Cross Section [fb]
μμ	4967.58
ττ	4374.94
$WW \to \ell \ell$	392.96
$ZZorWW \rightarrow \mu\mu\nu\nu$	214.81
$ZZorWW \rightarrow \tau \tau \nu \nu$	205.84
$\nu Z, Z o \mu \mu$	43.33
$ZZ ightarrow \mu\mu u u$	18.17
$\nu Z, Z \to \tau \tau$	14.57
$ZZ \rightarrow \tau \tau \nu \nu$	9.2
$\nu\nu H, H \rightarrow \tau \tau$	3.07
$e\nu W, W \to \mu\nu$	429.2
$e\nu W, W \to \tau \nu$	429.42
$eeZ, Z \rightarrow \nu\nu$	29.62
$eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$	249.34

Direct stau: Optimization Strategy

- Use the leading track with minus(positive) charge to represent the $\tau^{-}(\tau^{+})$ for simplicity.
- Select events with 2 OS τ with energy > 0.5GeV.
- Perform a multi-dimension optimization, considering variables:

```
\Delta R(\tau,\tau), \Delta R(\tau,recoil), \Delta \varphi(\tau,\tau), \Delta \varphi(\tau,recoil), M_{\tau\tau}, M_{recoil}, E_{\tau}
```

- Check for both upper cut and down cut for each variable.
- Use $\frac{S}{\sqrt{B+dB^2}}$ as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).

 e^{\pm}

 e^{\mp}

Direct stau: SR & Results

Events/0.05

Two SRs are defined for different $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$.

SR-lowD	eltaM	SR2-highDeltaM						
	$ \Delta \phi(\tau, reco$	oil) > 2	.5					
	$\Delta R(\tau, rec$	coil) < 3						
$ \Delta R(\tau,\tau) $	> 1.2	$ \Delta R(\tau,\tau) > 0.6$						
	$E_{\tau} < 1$	5GeV						
$m_{\tau\tau} < 3$	0GeV	m_r	_{ecoil} < 180GeV					
		$m_{\tau\tau} < 35 GeV$						
Process	SR-lowDelt	aM	SR2-highDeltaM					
ττ	199.76 <u>+</u> 21.2	2945	6.81 <u>+</u> 3.93176					
$\nu\nu H, H \rightarrow \tau\tau$	0.155 <u>+</u> 0.1	55	0.155 <u>+</u> 0.155					
$ZZorWW \rightarrow \tau \tau \nu \nu$	611.82 <u>+</u> 25.1	.033	41.2 <u>+</u> 6.51429					
$ZZ \rightarrow \tau \tau \nu \nu$	18.76 <u>+</u> 3.17	102	7.504 <u>+</u> 2.00553					
$\nu Z, Z \to \tau \tau$	50.388 <u>+</u> 6.11	1044	4.446 <u>+</u> 1.81507					
$ZZorWW \rightarrow \mu\mu\nu\nu$	8.544 <u>+</u> 3.02	076	1.068±1.068					
$ZZ ightarrow \mu\mu u u$	6.92 <u>+</u> 3.094	72	0					
$WW \rightarrow \ell\ell$	85.932 <u>+</u> 9.37	7595	12.276 <u>+</u> 3.54378					
$\nu Z, Z \to \mu \mu$	106.848 <u>+</u> 10.	9051	1.113 <u>+</u> 1.113					
μμ	121.74 <u>+</u> 27.2	2219	0					
$e\nu W,W ightarrow \mu u$	0		0					
evW,W ightarrow au v	91.637 <u>+</u> 9.60)617	45.315 <u>+</u> 6.75516					
$eeZ, Z \rightarrow \nu\nu$	3.072 <u>+</u> 1.77	362	0					
$eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$	19.855 <u>+</u> 4.55	5505	5.225 <u>+</u> 2.33669					
Total background	1325.43 <u>+</u> 47.	0509	125.112 <u>+</u> 11.4571					
(100,10)	1209.58±10	2.228	751.668 <u>+</u> 80.5873					
(100,50)	2531.48 <u>+</u> 147	7.891	639.35±74.3229					
(100,90)	7283.4 <u>+</u> 250	.854	0					

$|\Delta \phi(\tau, recoil)| > 2.5: \tau\tau; ZZorWW \rightarrow \tau\tau\nu\nu; \mu\mu \quad \Delta R(\tau, recoil) < 3: \tau\tau; ZZorWW \rightarrow \tau\tau\nu\nu; \mu\mu$

 $|\Delta R(\tau,\tau)| > 1.2: \tau\tau; ZZorWW \rightarrow \tau\tau\nu\nu; \nu Z, Z \rightarrow \mu\mu \quad E_{\tau} < 15GeV: WW \rightarrow ll; \mu\mu; e\nu W, W \rightarrow \tau\nu$

Direct stau: SR & Results

Two SRs are defined for different $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$.

7283.4+250.854

0

SR-lowDeltaM

 $m_{\tau\tau} < 30 GeV$

Process

ττ

 $\nu\nu H, H \rightarrow \tau\tau$

 $ZZorWW \rightarrow \tau \tau \nu \nu$

 $ZZ \rightarrow \tau \tau \nu \nu$

 $\nu Z, Z \rightarrow \tau \tau$

 $ZZorWW \rightarrow \mu\mu\nu\nu$

 $ZZ \rightarrow \mu\mu\nu\nu$

 $WW \rightarrow \ell \ell$

 $\nu Z, Z \rightarrow \mu \mu$

μμ

 $e\nu W, W \rightarrow \mu\nu$

 $evW.W \rightarrow \tau v$

 $eeZ.Z \rightarrow \nu\nu$

 $eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$

Total background

(100, 10)

(100, 50)

(100, 90)

SR-highDeltaM

Direct stau: Sensitivity map

• Assuming 10% systematic uncertainty, the discovery sensitivity reaches up to 115 GeV.

Direct smuon: Optimization Strategy

- Select events with 2 OS muons with energy > 0.5GeV.
- Perform a multi-dimension optimization, considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$

- Check for both upper cut and down cut for each variable.
- Use $\frac{S}{\sqrt{B+dB^2}}$ as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).

 μ^{\pm}

 μ^{\mp}

 e^{\pm}

 $\tilde{\mu}$

ũ

Direct smuon: SR & Results

• Three SRs are defined for different $\Delta m(\tilde{\mu}, \tilde{\chi}_1^0)$.

SR-highDeltaM	SR-midDeltaM	SR-lowDeltaM					
2 μ	ieV)						
$\Delta R(\mu, recoil) < 2.9$	$\Delta R(\mu, recoil) < 2.6$	$\Delta R(\mu, recoil) < 2.7$					
E_{μ} >40 GeV	$E_{\mu} < 50 GeV$						
$M_{\mu\mu} < 68 GeV$	$p_T > 50 GeV/c$	$M_{\mu\mu} < 85 GeV$					
$M_{recoil} > 60 GeV$		$M_{recoil} > 135 GeV$					

process	SR-high∆m	SR-mid∆m	SR-low∆m		
ττ	72.64 <u>+</u> 12.84	68.1 <u>+</u> 12. 43	5361.74 <u>+</u> 110.32		
$\nu\nu H, H \to \tau\tau$	0	0	60.76 <u>+</u> 3.07		
$ZZorWW \rightarrow \tau \tau \nu \nu$	3.09 <u>+</u> 1.78	1.03 <u>+</u> 1.03	2242.31 <u>+</u> 48.0581		
$ZZ \to \tau \tau \nu \nu$	1.07 <u>+</u> 0.76	0	68.608 <u>+</u> 6.06		
$\nu Z, Z \to \tau \tau$	0	0	115.60 <u>+</u> 9.26		
$ZZorWW \rightarrow \mu\mu\nu\nu$	1561. 42 <u>+</u> 40. 84	624.78 <u>+</u> 25.83	19535.9 <u>+</u> 114.45		
$ZZ \rightarrow \mu\mu\nu\nu$	69.2 <u>+</u> 9.79	15.22 <u>+</u> 4.59	218.67 <u>+</u> 17.40		
$WW \to \ell\ell$	163.68 <u>+</u> 12.94	154.47 <u>+</u> 12.57	7589.64 <u>+</u> 88.11		
$\nu Z, Z \rightarrow \mu \mu$	96.83±10.38	12.24 <u>+</u> 3.69	736.81 <u>+</u> 28.64		
$\mu\mu$	1095.66 <u>+</u> 81.67	298.26 <u>+</u> 42.61	11060.10 <u>+</u> 259.47		
total background	3063.59 <u>+</u> 94.22	1174.11 <u>+</u> 53.21	46990.10 <u>+</u> 334.20		
Ref. point (100,10)	8817.9± 276.10	587.86 <u>+</u> 71.29	19771.1 <u>+</u> 413.43		
Ref. point (100,50)	8186.81 <u>+</u> 266.04	3423. 42 <u>+</u> 172. 42	61094.20 <u>+</u> 726.75		
Ref. point (100,90)	0	0	139210 <u>+</u> 1094.03		

Direct smuon: Sensitivity map

• Assuming 10% systematic uncertainty, the discovery sensitivity reaches up to 115 GeV.

Chargino pair (Bino LSP): Optimization Strategy

- Select events with 2 OS muons with energy > 10 GeV.
- Perform a multi-dimension optimization considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$

- Check for both upper cut and down cut for each variable.
- Use $\frac{S}{\sqrt{S+B+dB^2}}$ as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).

θ±

 $\tilde{\chi}_1^0$

 W^{\pm}

 W^{\exists}

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_1^{\dagger}$

 e^{\mp}

Chargino pair (Bino LSP): SR & Results

Chargino pair (Bino LSP): Sensitivity map

 Assuming 10% systematic uncertainty, the discovery sensitivity can still reach up to all the mass phase space.

Chargino pair (Higgsino LSP): Optimization Strategy

- Select events with 2 OS muons.
- Perform a multi-dimension optimization considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$

W

- Check for both upper cut and down cut for each variable.
- Use $Z_n = \sqrt{2} \operatorname{erf}^{-1}(1-2p)$ as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).

Chargino pair (Higgsino LSP): SR & Results

One signal region is defined. •

Signal Region 2 OS µ $M_{recoil} > 237.5 GeV$ E_{μ} >1GeV

 $3.2 < \Delta R(\mu, recoil) < 4.6$

 $\Delta \phi(\mu, recoil) < 2.9$

Selection	Yields
ττ	106.62 <u>+</u> 15.55
$\nu\nu H, H \rightarrow \tau\tau$	0
$ZZorWW \rightarrow \tau \tau \nu \nu$	2.07 <u>+</u> 1.46
$ZZ \to \tau \tau \nu \nu$	0.53±0.53
$\nu Z, Z \to \tau \tau$	0
$ZZorWW \rightarrow \mu\mu\nu\nu$	3.20 <u>+</u> 1.85
$ZZ \rightarrow \mu\mu\nu\nu$	5.54 <u>+</u> 2.77
$WW \to \ell \ell$	1.02 <u>+</u> 1.02
$\nu Z, Z ightarrow \mu \mu$	27.83 <u>+</u> 5.57
μμ	42.61 <u>+</u> 16.10
total background	189.40 <u>+</u> 23.38
Ref. point (90,30)	400.18 <u>+</u> 38.69
Ref. point (102,30)	279.84 <u>+</u> 29.83
Ref. point (110,30)	266.70 <u>+</u> 26.03
Ref. point (118,30)	296.40±19.63

Chargino pair (Higgsino LSP): Sensitivity map

• Assuming 10% systematic uncertainty, the discovery sensitivity can reach up to 118 GeV except a corner at high- μ region.

- A preliminary SUSY sensitivity study has been performed to direct stau production, direct smuon production and chargino pair production (Bino LSP and Higgsino LSP) in CEPC, which is promising. With assuming 10% systematic uncertainty:
 - > For direct stau production, the discovery sensitivity reaches up to 115 GeV.
 - > For direct smuon production, the discovery sensitivity reaches up to 115 GeV.
 - For chargino pair production (Bino LSP), the discovery sensitivity can still reach up all the mass phase space.
 - For chargino pair production (Higgsino LSP), the discovery sensitivity can reach up to 118 GeV.

Thank you.

Backup

Validation of the angular between tracks vs truth taus

Compare the angular at different truth levels

- Between two truth tau leptons
- Between two leading tracks originating from tau leptons
- > Between two leading tracks with opposite sign \rightarrow least truth info

- Many OS tracks generated from the same parent \rightarrow very close to each other
- Observed in both signal and backgrounds
- In general, promising to use the angular of the OS leading tracks

• Direct smuon

• Chargino pair (Bino LSP)

• Chargino pair (Higgsino LSP)

Signal significance Z_n $Z_n = \sqrt{2} \operatorname{erf}^{-1}(1-2p)$, where $p \propto \int_0^\infty db G(b; N_b, \delta b) \sum_{i=N_s+b}^\infty \frac{e^{-b}b^i}{i!}$

Electrowikinos mass split

Standard wino-bino case: large ∆m between N1 and C1/N2; → MET + hard leptons N1,N2,C1 almost degenerate: experimental challenging; → MET + soft leptons

- → Lower xsec than higgsino LSP;
- → WW+MET dominant;

	$e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 (m_{l_{1,2}} = 100 GeV)$												CEPC@240GeV)						
N -	0.0339	0.03	0.0264	0.023	0.02	0.0173	0.0148	0.0124	0.0104	0.0084	0.0068	0.0053	0.0039	0.0027	0.0017	0.0009			
4.					0.0488	0.042	0.036	0.0303	0.0251	0.0202	0.0161	0.0122	0.0089	0.006	0.0036	0.0017			
ш.						0.0484	0.0415	0.0346	0.0285	0.0231	0.0181	0.0138	0.01	0.0067	0.0039	0.0017			
æ -						0.0508	0.043	0.0361	0.0297	0.024	0.0188	0.0143	0.0102	0.0068	0.0039	0.0017			
10							0.0439	0.0369	0.0303	0.0245	0.0191	0.0145	0.0103	0.0068	0.0039	0.0016			
12							0.0444	0.0371	0.0306	0.0246	0.0192	0.0145	0.0104	0.0068	0.0038	0.0016			
14							0.0447	0.0373	0.0305	0.0247	0.0194	0.0145	0.0104	0.0068	0.0038	0.0015			
15							0.0446	0.0377	0.0308	0.0249	0.0193	0.0146	0.0103	0.0068	0.0038	0.0015			
16							0.045	0.0374	0.0307	0.0248	0.0193	0.0144	0.0103	0.0068	0.0038	0.0015			
18							0.0447	0.0374	0.0308	0.0248	0.0193	0.0145	0.0103	0.0067	0.0037	0.0015			
20							0.0449	0.0375	0.0309	0.0249	0.0194	0.0146	0.0103	0.0066	0 0037	0.0014			
22							0.0448	0.0373	0.0309	0.0246	0.0193	0.0145	0.0102	0.0067	0.0037	0.0014			
24							0.045	0.0375	0.0308	0.0247	0.0192	0.0145	0.0103	0.0066	0.0037	0.0014			
26							0.0449	0.0372	0.031	0.0247	0.0194	0.0145	0.0103	0.0066	0.0037	0.0014			
βu							0.045	0.0375	0.0387	0 0248	0.0192	0.0145	0.0103	0.0067	0 0037	0.0014			
å ä							0.0451	0.0376	0.0308	0.0248	0.0192	0.0144	0.0102	0.0066	0 0036	0.0014			
34							0.0448	0.0376	0.0309	0.0247	0.0193	0.0145	0.0103	0.0066	0 0037	0.0014			
99 -							0.045	0.0376	0.0309	0.0248	0.0193	0.0144	0.0102	0.0066	0 0036	0.0014			
90 - 10							0.0449	0.0375	0.0307	0.0248	0.0194	0.0145	8.0102	0.0066	0 0036	0.0014			
40							0.045	0.0376	0.0309	0.0246	0.0193	0.0144	8.0102	0.0066	0 0036	0.0014			
42							0.0449	0.0373	0.0308	0.0248	0.0191	0.0144	8.0102	0.0066	0.0036	0.0014			
4 -							0.0449	0.0374	0.0308	0.0247	0.0192	0.0144	8.0102	0.0066	0 0036	0.0014			
-4-6 -							0.045	0.0375	0.0308	0.0246	0.0192	0.0144	8.0102	0.0066	0 0036	0.0014			
8							0.0449	0.0374	0.0308	0.0246	0.0193	0.0143	0.0101	0.0066	0 0036	0.0013			
20							0.0449	0.0374	0.0308	0 0246	0.0193	0.0144	0.0101	0.0066	0 0036	0.0014			
25							0.0448	0.0377	0.0308	0.0246	0.0193	0.0144	0.0102	0.0065	0.0036	0.0013			
5							0.0449	0.0374	0.0306	0.0246	0.0193	0.0145	0.0102	0.0065	0.0036	0.0013			
36							0.0449	0.0375	0.0307	0.0247	0.0191	0.0144	0.0101	0.0066	0.0036	0.0013			
85							0.0451	0.0374	0.0306	0.0247	0.0191	0.0143	0.0102	0.0065	0.0036	0.0013			
60	0.1064	0.0938	0.0823	0.0715	0.0619	0.053	0.045	0.0376	0.0306	0.0246	0.0192	0.0144	0.0102	0.0065	0.0036	0.0013			
	90	92	94	96	98	100	102	μ[G	eV]	108	110	112	114	116	118	120			

چ cross section [fb]

0.04

6.02

		e	+ e -	→ χ̂	$\tilde{\chi}_2^0 \tilde{\chi}_2^0$	(m _l	1, 2 =	100	GeV	, CL	EPC(@24	0Ge	V)	
~	0.028	0.0245	0.0211	0.0182	0.0155	0.013	0.0107	0.0087	0.0069	0.0053	0.0039	0.0027	0.0017	0.0008	0.00025
4	0.0648				0.0354	0.0295	0.0242	0.0195	0.0154	0.0117	0.0084	0.0056	0.0033	0.0015	0.00029
æ.	0.0741					0.0336	0.0275	0.0221	0.0173	0.013	0.0093	0.0062	0.0035	0.0015	0.0002
	0.0777					0.0349	0.0287	0.0229	0.0179	0.0134	0.0096	0.0063	0.0035	0.0015	0.00015
10	0.0793					0.0354	0.0291	0.0233	0.0182	0.0137	0.0097	0.0063	0.0035	0.0014	0.00011
12	0.08					0.0358	0.0293	0.0235	0.0182	0.0137	0.0097	0.0063	0.0035	0.0014	9e-05
14	0.0803					0.0359	0.0294	0.0236	0.0184	0.0136	0.0097	0.0063	0.0035	0.0013	8e-05
15	0.0807					0.0362	0.0295	0.0237	0.0182	0.0137	0.0096	0.0062	0.0034	0.0013	7e 05
16	0.0807					0.0362	0.0295	0.0236	0.0183	0.0137	0.0096	0.0062	0.0034	0.0013	6e 05
18	0.0808					0.0358	0.0295	0.0236	0.0183	0.0137	0.0097	0.0062	0.0034	0.0013	5e-05
20	0.0811					0.036	0.0297	0.0236	0.0183	0.0137	0.0096	0.0062	0.0034	0.0013	5e-05
52	0.0811					0.036	0.0296	0.0237	0.0183	0.0136	0.0096	0.0062	0.0034	0.0013	4e-05
24	0.0808					0.0362	0.0295	0.0236	0.0183	0.0136	0.0096	0.0062	0.0034	0.0013	4e-05
26	0.0812					0.0364	0.0296	0.0237	0.0183	0.0136	0.0096	0.0061	0.0034	0.0012	4e-05
ມ ສ	0.0808					0.0362	0.0293	0.0236	0.0183	0.0136	0.0096	0 0062	0.0033	0.0012	3e-05
ran °	8.081					0.0362	0.0295	0.0237	0.0182	0.0137	0.0096	0 0061	0.0034	0.0012	3e-05
34	0.0811					0.0361	0.0297	0.0236	0 0183	0.0135	0.0096	0 0061	0.0033	0.0012	3e-05
36	0.0811					0.0363	0.0296	0.0236	0 0183	0.0136	0.0096	0 0061	0.0033	0.0012	3e-05
38	8.081					0 0362	0.0295	0.0236	0 0183	0.0135	0.0095	0 0061	0.0033	0.0012	3e-05
4	8.081					0 036	0.0297	0.0235	0 0182	0.0136	0.0095	0 0061	0.0033	0.0012	3e-05
42	0.0808					0.0362	0.0295	0.0236	0 0183	0.0136	0.0095	0 0061	0.0033	0.0012	2e-05
4	0.0812					0.0362	0.0295	0.0236	0 0182	0.0136	0.0096	0 0061	0.0033	0.0012	2e-05
46	0.0811					0.0361	0.0294	0.0236	0 0182	0.0136	0.0095	0 0061	0.0033	0.0012	2e-05
8	0.081					0.0364	0.0296	0.0236	0.0182	0.0136	0.0095	0.0061	0.0033	0.0012	2e-05
20	0.0812					0.0363	0.0296	0.0235	0.0182	0.0136	0.0095	0.0061	0.0033	0.0012	2e-05
25	0.0809					0.0361	0.0295	0.0235	0.0184	0.0136	0.0095	0.0061	0.0033	0.0012	2e-05
54	0.0811					0.0362	0.0296	0.0234	0.0182	0.0136	0.0095	0.0061	0.0033	0.0012	2e-05
36	0.0813					0.0361	0.0294	0.0235	0.0184	0.0136	0.0095	0.0061	0.0033	0.0012	2e-05
58	0.0808					0.0361	0.0294	0.0235	0.0182	0.0136	0.0095	0.0061	0.0033	0.0012	2e-05

0.0362 0.0295 0.0237

100

98

μ[GeV]

0.0182 0.0136 0.0095 0.0061 0.0033

106

108 110 112 114

25

0.06

0.05

cross section [fb]

0.03

- 0.02

- 0.01

0.0012 2e-05

116

2	[dd]
	section
0	cross

0.8

-0.4

			е	+ e -	- →	$\tilde{\chi}_1^+ \dot{\chi}_1$	č_1 (1	$m_{l_{1,2}}$	= 1	00G	ieV,	CE	PC@	924()Ge	V)	
	~ -				1.886											0.934	0.723
	۰.														1 012	0.834	0.571
	φ.														0.975	0.777	0.489
	æ .														0.949	0.745	0.434
	я ·														0.943	0.727	0.398
	<u>-</u>														0.927	0.716	0.374
	ų -														0.918	0.706	0.35
	51.													1.076	0.92	0.698	0.337
	91														0.913	0.69	0.324
	81														0.908	0.688	0.312
	27													1.075	0.906	0.682	0.304
	<u>7</u>													1.068	0.907	0.682	0.295
	24													1.072	0.899	0.677	0.29
	56													1.086	0.9	0.677	0.283
nβ	- 28													1.067	0 898	0.675	0.279
ta	œ -													1.07	0.898	0.67	0.273
	34													1.071	0.895	0.669	0.268
	- 3e													1.065	0.896	0.67	0.265
	8F -													1.063	0 893	0.666	0.262
	6 -													1.065	0.89	0.666	0.258
	4.													1.059	0 893	0.666	0.256
	ŧ.													1 065	0.889	0.664	0.252
	46													1.062	0.889	0.663	0.25
	6 -													1.058	0.895	0.659	0.248
	<u>8</u> -													1.051	0.889	0.662	0.246
	25													1.064	0.893	0.658	0.243
	54													1.064	0.891	0.66	0.241
	36													1.061	0.886	0.659	0.239
	2B -													1.058	0.895	0.657	0.238
	9 -	1.944												1.059	0.887	0.656	0.236
		90	92	94	96	98	100	102	μ[G	eV]	108	110	112	114	116	118	120

		е	+ e -	_ →	$\tilde{\chi}_{1}^{0} \dot{\chi}_{1}$	č2 (n	$n_{l_{1,2}}$	= 10	00 <i>G</i>	eV,	CEPC@240GeV)						
~ ~	1.086													0.564	0.465	0.323	
4.	1.079													0.53	0.421	0.254	
φ.	1.074													0 513	0.402	0.217	
æ -	1.072													0.509	0.385	0.193	
01	1.073													0.499	0.381	0.177	
12	1.064													0.499	0.375	0.164	
14	1.078													0.496	0.372	0.155	
51	1.073													0.495	0.368	0.148	
16	1.075													0.492	0.366	0.142	
81	1.069													0.491	0.365	0.136	
20	1.074													0.488	0.363	0.133	
22	1.072													0.488	0.363	0.129	
24	1.073													0.49	0.359	0.126	
26	1.072													0.486	0.36	0.123	
β Ω	1.075													0.484	0.361	0.12	
۲a ۳	1.068													0.483	0.359	0.118	
34	1.071													0.488	0.36	0.116	
36	1.07													0.488	0.358	0.115	
89 ·	1.075													0.486	0.358	0.113	
6.	1.069													0.484	0.359	0.111	
42	1.069													0.485	0.356	0.11	
4 -	1.072													0.485	0.357	0.109	
46	1.07													0.485	0.357	0.108	
-4 -0 -0	1.07													0.483	0.354	0.106	
05	1.071													0.483	0.353	0.105	
25	1.069													0.483	0.354	0.104	
5	1.075													0.484	0.354	0.104	
36	1.069													0.482	0.355	0.102	
58	1.072													0.485	0.354	0.101	
60	1.07	1.051	1.03	1.002	0.976	0.944	8.907	0.868	0 825	0.773	0.722	0.657	0.579	0.483	0.353	0.101	
	90	92	94	96	98	100	102	µ[́G	eV]	108	110	112	114	116	118	120	

cross section [pb]

-04

- 0.2

č