A general method for Feynman loop integrals calculation

微扰量子场论研讨会, 2021/05/15-16, 上海交通大学

I. Introduction

II. Auxiliary mass flow

III. Applications

IV. Outlook

The future of particle physics

Current status of LHC

- After 40 years test: SM is still very successful
- No clear signal of new physics

> To test SM or discover NP

- Three possible choices: precision/energy/cosmology
- Experiment: precision measurement!
- Theory: precision calculation!

High luminosity LHC projection

Perturbative QFT

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules
- New developments: unitarity, recurrence relation

2. Calculate Feynman loop integrals

3. Calculate phase-space integrals

- Monte Carlo simulation with IR subtractions
- Mapping to loop integrals via reverse unitarity

$$\int \frac{d^D p}{(2\pi)^D} (2\pi) \delta_+(p^2) = \lim_{\eta \to 0^+} \int \frac{d^D p}{(2\pi)^D} \left(\frac{i}{p^2 + i\eta} + \frac{-i}{p^2 - i\eta} \right)$$

Feynman loop integrals

 Encoding the main nontrivial information of QFT

- q_{α} : linear combination of loop momenta and external momenta
- Taking $\eta \to 0^+$ before taking $D \to 4$

Multi-loop: a challenge for intelligence

One-loop integrals: systematical approach existed as early as 1970s

't Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

• Further developments of unitarity-based method in the past decade

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237

See B. Feng's talk for recent development B.W. Xiao's talk for non-covariant QFT

> About 40 years later, a satisfactory method for multi-loop calculation is still missing

Main strategy

1) Reduce loop integrals to basis (Master Integrals)

 Mainly integration-by-parts (IBP) reduction: the main bottleneck

Chetyrkin, Tkachov, NPB (1981) Laporta, 0102033

extremely time consuming for multi-scale problems

unitarity-based reduction cannot give complete reduction beyond one-loop

2) Calculate MIs/original integrals

- Differential equations (depends on reduction and BCs) Kotikov, PLB (1991)
- Difference equations (depends on reduction and BCs) Laporta, 0102033
- Sector decomposition (extremely time-consuming) Binoth, Heinrich, 0004013
- Mellin-Barnes representation (nonplanar, time)
 Usyukina (1975)
 Smirnov, 9905323

IBP reduction

A result of dimensional regularization

Chetyrkin, Tkachov, NPB (1981)

• M_i scalar integrals, Q_i polynomials in D, \vec{s}, η

> For each problem, the number of MIs is FINITE

- Smirnov, Petukhov, 1004.4199
 Feynman integrals form a finite dimensional linear space
- Reduce thousands of loop integrals to much less MIs

Difficulty of IBP reduction

Solve IBP equations $\sum O(D \vec{a} \cdot n) \Lambda$

Laporta's algorithm, 0102033

$$\sum_{i=1} Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$$

- Very large scale of linear equations (can be billions of) E.g., Laporta 1910.01248
- Equations are coupled
- Explicit solution for multi-scale problem: hard to get, expression can be too large
- **×** Numerical solution at each phase space point : too slow

Cutting-edge problems

- Hundreds GB RAM
- Months of runtime using super computer

➢ Analytical (depending on reduction): R. Bonciani, et.al 2016e.g. Higgs → 3 partons (Euclidean Region)

200MB, 10 min

Numerical (sector decomposition, independent of reduction): e.g. Quarkonium decay at NNLO Feng, Jia, Sang, 1707.05758

Recent developments

Selected improvements for reduction

- Finite field method Manteuffel, Schabinger, 1406.4513
- Direct solution Kosower, 1804.00131
- Syzygies method Böhm, Georgoudis, Larsen, Schönemann, Zhang, 1805.01873, Bendle et.al., 1908.04301
- Obtain one coefficient at each step Chawdhry, Lim, Mitov, 1805.09182
- Expansion of small parameters Xu, Yang, 1810.12002; Mishima, 1812.04373
- Intersection Numbers
 Frellesvig, et. al., 1901.11510, 1907.02000

Selected improvements for evaluation

- Quasi-Monte Carlo method Li, Wang, Yan, Zhao, 1508.02512
- Finite basis Manteuffel, Panzer, Schabinger, 1510.06758
- Uniform-transcendental basis Henn, 2013
- Loop-tree duality Capatti, Hirschi, Kermanschah, Ruijl, 1906.06138

> 2→2 process with massive particles at twoloop order: almost done $g + g \rightarrow t + \bar{t}$, $g + g \rightarrow H + H(g)$

Frontier in the following decade:

- 2 \rightarrow 3 processes at two loops (3j/ γ , V/H+2j $t\bar{t}$ +j, $t\bar{t}H$,...)
- 2 \rightarrow 2 processes at three loops (2j/ γ , V/H+j, $t\bar{t}$, HH, ...)
- $2 \rightarrow 1$ processes at four loops (j, V/H)
- Two-loop EW corrections ($e^+e^- \rightarrow HZ$)

Very challenging

- Two-loop $g + g \rightarrow H + H(g)$: complete IBP reduction cannot be achieved within tolerable time Borowka et. al., 1604.06447 Jones, Kerner, Luisoni, 1802.00349
- Four-loop $g + g \rightarrow H$ (NNLP in HTL): 860 days (wall time!)

Davies, Herren, Steinhauser, 1911.10214

I. Introduction

II. Auxiliary mass flow

III. Applications

IV. Outlook

Modified FIs

Liu, YQM, Wang, 1711.09572 Liu, YQM, 1801.10523

Modify Feynman loop integral by keeping finite η

$$\mathcal{M}(D, \vec{s}, \eta) \equiv \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D} \ell_{i}}{\mathrm{i} \pi^{D/2}} \prod_{\alpha=1}^{N} \frac{1}{(\mathcal{D}_{\alpha} + \mathrm{i} \eta)^{\nu_{\alpha}}}$$
$$\mathcal{D}_{\alpha} \equiv q_{\alpha}^{2} - m_{\alpha}^{2}$$

- Think it as an analytical function of η
- Physical result is defined by

$$\mathcal{M}(D,\vec{s}\,,0)\equiv \lim_{\eta\to 0^+}\mathcal{M}(D,\vec{s}\,,\eta)$$

Expansion at infinity

> Expansion of propagators around $\eta = \infty$

$$\frac{1}{[(\ell+p)^2 - m^2 + \mathrm{i}\eta]^{\nu}} = \frac{1}{(\ell^2 + \mathrm{i}\eta)^{\nu}} \sum_{n=0}^{\infty} \frac{(\nu)_n}{n!} \left(\frac{-2\ell \cdot p - p^2 + m^2}{\ell^2 + \mathrm{i}\eta}\right)^n$$

- Only one region in the method of region: $l^{\mu} \sim |\eta|^{1/2}$
- No external momenta in denominator, vacuum integrals
- Simple enough to deal with

> Vacuum MIs with equal internal masses

- Analytical results are known up to 3-loop
- Numerical results are known up to 5-loop

Davydychev, Tausk, NPB(1993) Broadhurst, 9803091 Kniehl, Pikelner, Veretin, 1705.05136

Schroder, Vuorinen, 0503209 Luthe, PhD thesis (2015) Luthe, Maier, Marquard, Ychroder, 1701.07068

$$\mathcal{D}_1 = (\ell_1 + p)^2 - m^2, \ \mathcal{D}_2 = \ell_2^2, \ \mathcal{D}_3 = (\ell_1 + \ell_2)^2$$

$$I_{111} = \eta^{D-3} \left\{ \left[1 - \frac{D-3}{3} \frac{m^2}{i\eta} + \frac{(D+4)(D-3)}{9D} \frac{p^2}{i\eta} \right] I_{2,2}^{\text{bub}} - i \left[\frac{(D-2)^2}{3D} \frac{p^2}{i\eta} \right] I_{2,1}^{\text{bub}} + \mathcal{O}(\eta^{-2}) \right\}$$

A new representation

> Asymptotic expansion: a convergent series

$$\mathcal{M}(D, \vec{s}, \eta) = \eta^{LD/2 - \sum_{\alpha} \nu_{\alpha}} \sum_{\mu_0 = 0} \eta^{-\mu_0} \mathcal{M}^{\text{bub}}_{\mu_0}(D, \vec{s})$$
$$\mathcal{M}^{\text{bub}}_{\mu_0}(D, \vec{s}) = \sum_{k=1}^{B_L} I^{\text{bub}}_{L,k}(D) \sum_{\vec{\mu} \in \Omega^r_{\mu_0}} C^{\mu_0 \dots \mu_r}_k(D) s_1^{\mu_1} \cdots s_r^{\mu_r}$$

- $I_{L,k}^{\text{bub}}(D)$: k-th master vacuum integral at L-loop order
- $C_k^{\mu_0...\mu_r}(D)$: rational functions of D
- A convergent series, defines an analytical function around $\eta = \infty$

> A new representation

- Uniqueness theorem of analytical functions: physical FI is uniquely determined by this asymptotic series via analytical continuation
- A new series representation of FIs
- All FIs (therefore scattering amplitudes) are determined by equal-mass vacuum integrals

Find relations

Decomposition of $Q_i(D, \vec{s}, \eta)$

$$\sum_{i=1}^{n} Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$$

$$Q_{i}(D, \vec{s}, \eta) = \sum_{(\lambda_{0}, \vec{\lambda}) \in \Omega_{d_{i}}^{r+1}} Q_{i}^{\lambda_{0} \dots \lambda_{r}}(D) \eta^{\lambda_{0}} s_{1}^{\lambda_{1}} \cdots s_{r}^{\lambda_{r}}$$
$$\implies \sum_{k, \rho_{0}, \vec{\rho}} f_{k}^{\rho_{0} \dots \rho_{r}} \mathcal{I}_{L,k}^{\text{bub}}(D) \eta^{\rho_{0}} s_{1}^{\rho_{1}} \cdots s_{r}^{\rho_{r}} = 0$$

- > Linear equations: $f_k^{\rho_0 \dots \rho_r} = 0$
 - With enough constraints $\Rightarrow Q_i^{\lambda_0 \dots \lambda_r}(D)$
 - With finite field technique, only integers in a finite field are involved, equations can be efficiently solved
- ➢ Relations among G ≡ { $M_1, M_2, ..., M_n$ } can be determined

Set up and solve DEs of MIs

I. Introduction

II. Auxiliary mass flow

III. Applications

IV. Outlook

Reduction: a two-step strategy

Guan, Liu, YQM, 1912.09294

First-step: numerical

- Reduce to MIs at some (~100) phase space points, over finite field
- Fine if not efficient enough, can use AMF, traditional IBP, intersection number, ...

Second-step: all-purpose

- Construct block-triangular reduction systems
- Very efficient to use

Reduction: example

- For the first time, complete reduction of all two-loop 5-gluon Fls, size of results: 66MB, 40MB, 31MB, 11MB
- Easy to obtain, about 200 CPU core-hour
- Fast enough for numerical evaluation: <1s for each phase space point, fast by 100 times v.s. traditional IBP

Compare with explicit solution

- Explicit solutions are very hard to obtain
- The size of explicit solution can be too huge to be used
- Efforts in literature
- Complete reduction of (c) get a file ~ 20GB Chawdhry, Lim, Mitov, 1805.09182
- Reduction 26 out of 3000+ FIs of (a) (not the most complicated ones),

• UT basis, multivariate partial fraction: 186MB for (a)

Bendle et.al., 2104.06866

Evaluation: strategy to introduce η

Liu, YQM, in preparation

Try to control #MIs: propagator mode

mode	propagators	#MIs
all	$\{1,2,3,4,5,6,7,8\}$	476
loop	$\{4,5,6,7,8\}$	305
	$\{1,\!2,\!3,\!4,\!5,\!6\}$	319
branch	$\{4,\!5,\!6\}$	233
	$\{7,\!8\}$	234
propagator	$\{4\}$	178
	$\{5\}$	176
	$\{7\}$	220

Evaluation: a two-loop example

> Two-loop double-pentagon

- Time =5h=(40*5s+3000*0.05s)*45+...
- Set DEs:90%; solve: 10%.
- New reduction strategy: 100× fast

$$I_{\rm phy}[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0] =$$

- $-\ 0.06943562517263776\epsilon^{-4}$
- + $(1.162256636711287 + 1.416359853446717i)\epsilon^{-3}$
- + $(37.82474332116938 + 15.91912443581739i)\epsilon^{-2}$
- $+ (86.2861798369034 + 166.8971535711277 i)\epsilon^{-1}$
- -(4.1435965578662 333.0996040071305i)
- $-\ (531.834114822928 1583.724672502141 \mathrm{i})\epsilon$
- $-\left(2482.240253232612-2567.398291724192\mathrm{i}\right)\epsilon^2$
- $-\ (8999.90369367113 19313.42643829926 \mathrm{i})\epsilon^3$
- $-\left(28906.95582696762-17366.82954322838\mathrm{i}\right)\epsilon^4.$

Consistent with literature: Chicherin, et. al. 1901.05932 Chicherin, Sotnikov, 2009.07803

$\succ t\bar{t}$ hadroproduction at three-loop order

- Time =15h=(40*50s+6000*0.6s)*8+...
- Set DEs:90%; solve: 10%.
- New reduction strategy: 100× fast

New result, (highly nontrivial)
 consistence checked

Evaluation: other Examples

• New results (except W+2j), highly nontrivial consistence checked

Other applications of AMF

Directly reduce amplitudes (avoid tensor

reduction) a_{2} a_{2} a_{2} a_{3} b_{3} b_{3}

Wang, Li, Basat, 1901.09390 Basat, Li, Wang, 2102.08225

Calculate two-loop MIs

FFs of $g \to Q\bar{Q}({}^{1}S_{0}^{[1,8]}) + X$

Zhang, et.al., 1810.07656

 $e^+e^- \to H^\pm W^\mp$

Yang, et.al., 2005.11010

 $gg \to ZZ$

Brønnum-Hansen, Wang, 2101.12095

- Feynman integrals are completely determined by vacuum integrals
- General strategy to do reduction and evaluate MIs: correct, efficient, useful
- Ready for complete NNLO 3j/γ;
 Other interesting processes: stay tune

Thank you!

General integration region

- loop momentum of each branch can be either O(1) or $O(\sqrt{\eta})$
- regions for one-loop: (S), (L)

$$(S)$$
 (L)

• regions for two-loop: (S,S,S), (S,L,L), (L,S,L), (L,L,S), (L,L,L)

• $R_1 = 2, R_2 = 5, R_3 = 15, R_4 = 47, \dots$

Expansion in each region

• all large: single-mass vacuum integrals

$$\frac{1}{((\ell+p)^2 - m^2 - k\eta)^{\nu}} \sim \frac{1}{(\ell^2 - k\eta)^{\nu}},$$

• mixed: factorized integrals with a factor being vacuum integrals

$$\frac{1}{((\ell_{\rm S} + \ell_{\rm L} + p)^2 - m^2 - k\eta)^{\nu}} \sim \frac{1}{(\ell_{\rm L}^2 - k\eta)^{\nu}}.$$

• all small: integrals with fewer propagators

➤ 2-loop non-planar sector for $Q + \overline{Q} \rightarrow g + g$

• 168 master integrals

Feng, Jia, Sang, 1707.05758

- Traditional method sector decomposition: $O(10^4)$ CPU core-hour
- Our method: a few minutes

MIs can be thought as special functions, and DEs tell us how to evaluate these special functions

Infrared Divergences

> Example: one-loop four-point integral

- **eta-reg:** $I[1, 1, 1, 1](\eta) \sim (0.0665971 0.101394i) \log(\eta) + 0.0250704 + 0.22933i.$
- **dim-reg:** $I[1, 1, 1, 1](\eta) \sim \eta^{-\epsilon} f_1 + f_2 + \eta^{1/2-\epsilon} f_3$,

$$\begin{split} f_1 &= \frac{-0.0665971 + 0.101394 \mathrm{i}}{\epsilon} + (0.0384409 - 0.0585265 \mathrm{i}), \\ f_2 &= \frac{0.0665971 - 0.101394 \mathrm{i}}{\epsilon} + (-0.0133705 + 0.287857 \mathrm{i}), \\ f_3 &= 0.1309. \end{split}$$

• take $\eta \rightarrow 0$, only f_2 survives

Reduction

- Find relations between loop integrals
- Use them to express all loop integrals as linear combinations of MIs

> Relations among $G \equiv \{M_1, M_2, \dots, M_n\}$ $\sum_{i=1}^n Q_i(D, \vec{s}, \eta) \mathcal{M}_i(D, \vec{s}, \eta) = 0$

• $Q_i(D, \vec{s}, \eta)$: homogeneous polynomials of \vec{s}, η of degree d_i

Constraints from mass dimension

$$2d_1 + \operatorname{Dim}(\mathcal{M}_1) = \cdots = 2d_n + \operatorname{Dim}(\mathcal{M}_n)$$

• Only 1 degree of freedom in $\{d_i\}$, chosen as $d_{\max} \equiv Max \{d_i\}$

Reduction

≻ With $G = G_1 \cup G_2$, satisfy

- G_1 is more complicated than G_2
- G_1 can be reduced to G_2

Algorithm Search for efficient relations

- **1. Set** $d_{\max} = 0$
- **2.** Find out all reduction relations among G with fixed d_{\max}
- **3.** If obtained relations are enough to determine G_1 by G_2 , stop;

else, $d_{\text{max}} = d_{\text{max}} + 1$ and go to step 2

\succ Conditions for G_1 and G_2

- **1.** Relations among G_1 and G_2 are not too complicated: easy to find
- 2. $#G_1$ is not too large: numerically diagonalize relations easily

Reduction scheme with only dots

$$\succ \mathbf{FIs:} \ \vec{\nu} = (\nu_1, \dots, \nu_N), \nu_i \ge 0$$

- * $0^{\pm} \equiv$ Identity, $m^{\pm} \equiv (m-1)^{\pm} 1^{\pm}$
- $\mathbf{1}^+(5,1,0,3) = \{(6,1,0,3), (5,2,0,3), (5,1,0,4)\}$
- $\mathbf{1}^{-}(5,1,0,3) = \{(4,1,0,3), (5,0,0,3), (5,1,0,2)\}$
- > 1-loop: $G_1 = \mathbf{1}^+ \vec{\nu}, G_2 = \mathbf{1}^- \mathbf{1}^+ \vec{\nu}$

Duplancic and Nizic, 0303184

➤ Multi-loop:

 $G_1 = \mathbf{m}^+ \vec{\nu}, G_2 = \{\mathbf{1}^- \mathbf{m}^+, \mathbf{1}^- (\mathbf{m} - \mathbf{1})^+, \dots, \mathbf{1}^- \mathbf{1}^+\}\vec{\nu}$

- m = 2,3 in examples, # G_1 is not too large, include dozens of integrals
- Relations among G_1 and G_2 are not too complicated, see examples

A step-by-step reduction is realized!

> 2-loop g + g → H + H and g + g → g + g + g

- Relations can be obtained by a single-core laptop in a few hours
- Diagonalizing at each phase space point (floating number): 0.01 second
- Results checked numerically by FIRE