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To test SM or discover NP

• Experiment: precision measurement!

• Theory: precision calculation!

The future of particle physics

Current status of  LHC

• After 40 years test: SM is still very successful

• No clear signal of  new physics

• Three possible choices: precision/energy/cosmology
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High luminosity LHC projection

• Theoretical uncertainty needs 

further reduced

• Perturbative calculation at high 

order!
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Perturbative QFT

1. Generate Feynman amplitudes
• Feynman diagrams and Feynman rules

• New developments: unitarity, recurrence relation 

2. Calculate Feynman loop integrals

3. Calculate phase-space integrals
• Monte Carlo simulation with IR subtractions

• Mapping to loop integrals via reverse unitarity
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FIs

Feynman loop integrals

• 𝑞𝛼: linear combination of  loop momenta and external momenta

• Taking 𝜂 → 0+ before taking 𝐷 → 4

• Encoding the main nontrivial 

information of  QFT
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One-loop integrals: systematical approach 

existed as early as 1970s

About 40 years later, a satisfactory method 

for multi-loop calculation is still missing

’t Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

Multi-loop: a challenge for intelligence

• Further developments of  unitarity-based method in the past decade

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237

See  B. Feng’s talk for recent development

B.W. Xiao’s talk for non-covariant QFT
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Main strategy

• Differential equations (depends on reduction and BCs)

• Difference equations (depends on reduction and BCs)

• Sector decomposition (extremely time-consuming)

• Mellin-Barnes representation (nonplanar, time)

1) Reduce loop integrals to basis (Master Integrals )                          

• Mainly integration-by-parts (IBP) reduction: 

the main bottleneck

extremely time consuming for multi-scale problems

unitarity-based reduction cannot give complete reduction beyond one-loop

Binoth, Heinrich, 0004013

Usyukina (1975)

Smirnov, 9905323

Kotikov, PLB (1991)

Chetyrkin, Tkachov, NPB (1981)

Laporta, 0102033

2) Calculate MIs/original integrals

Laporta, 0102033
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IBP reduction

A result of  dimensional regularization

• Linear equations:

Smirnov, Petukhov, 1004.4199

For each problem, the number of  MIs is FINITE

• Feynman integrals form a finite dimensional linear space

• Reduce thousands of  loop integrals to much less MIs

• 𝑀𝑖 scalar integrals, 𝑄𝑖 polynomials in 𝐷,  𝑠, 𝜂

Chetyrkin, Tkachov, NPB (1981)
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Difficulty of IBP reduction

Solve IBP equations

• Very large scale of  linear equations (can be billions of)

• Equations are coupled 

× Explicit solution for multi-scale problem: hard to get, expression 

can be too large

× Numerical solution at each phase space point : too slow

Cutting-edge problems

• Hundreds GB RAM

• Months of  runtime using super computer  

Laporta’s algorithm, 0102033

E.g., Laporta 1910.01248
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Difficulty of MIs calculation

Analytical (depending on reduction):               

e.g. Higgs → 3 partons (Euclidean Region)

R. Bonciani, et.al 2016 

200MB, 10 min

 Numerical (sector decomposition, independent of  

reduction): e.g. Quarkonium decay at NNLO

105 CPU core-hour

Feng, Jia, Sang, 1707.05758 
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Recent developments

Selected improvements for reduction

Selected improvements for evaluation

• Finite field method

• Direct solution

• Syzygies method

• Obtain one coefficient at each step

• Expansion of  small parameters 

• Intersection Numbers

• Quasi-Monte Carlo method

• Finite basis

• Uniform-transcendental basis

• Loop-tree duality

Henn, 2013

Manteuffel, Schabinger, 1406.4513 

Böhm, Georgoudis, Larsen, Schönemann, Zhang, 1805.01873, 

Bendle et.al., 1908.04301

Kosower, 1804.00131

Chawdhry, Lim, Mitov, 1805.09182

Manteuffel, Panzer, Schabinger, 1510.06758

Li, Wang, Yan, Zhao, 1508.02512 

Xu, Yang, 1810.12002; Mishima, 1812.04373

Frellesvig, et. al., 1901.11510, 1907.02000

Capatti, Hirschi, Kermanschah, Ruijl, 1906.06138
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State-of-the-art computation

2→2 process with massive particles at two-

loop order: almost done

Very challenging

𝑔 + 𝑔 → 𝑡 +  𝑡, 𝑔 + 𝑔 → 𝐻 + 𝐻(𝑔)

• Two-loop 𝑔 + 𝑔 → 𝐻 + 𝐻 (𝑔): complete IBP reduction cannot be achieved  

within tolerable time 

• Four-loop 𝑔 + 𝑔 → 𝐻 (NNLP in HTL):  860 days (wall time!)
Davies, Herren, Steinhauser, 1911.10214

Borowka et. al., 1604.06447

Jones, Kerner, Luisoni, 1802.00349

Frontier in the following decade: 

• 2→3 processes at two loops (3j/𝛾, V/H+2j 𝑡  𝑡+j, 𝑡  𝑡𝐻,…)

• 2→2 processes at three loops (2j/𝛾, V/H+j, 𝑡  𝑡, HH, …)

• 2→1 processes at four loops (j, V/H)

• Two-loop EW corrections (𝑒+𝑒− → 𝐻𝑍)
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Modify Feynman loop integral by keeping 

finite 𝜂

• Think it as an analytical function of  𝜂

• Physical result is defined by

Modified FIs
Liu, YQM, Wang, 1711.09572

Liu, YQM, 1801.10523
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Expansion of  propagators around 𝜂 = ∞

• Analytical results are known up to 3-loop

• Numerical results are known up to 5-loop 

Vacuum MIs with equal internal masses

Expansion at infinity

• Only one region in the method of  region: 𝑙𝜇 ∼ 𝜂 1/2

• No external momenta in denominator, vacuum integrals

• Simple enough to deal with 

Schroder, Vuorinen, 0503209

Luthe, PhD thesis (2015)

Luthe, Maier, Marquard, Ychroder, 1701.07068

Davydychev,Tausk, NPB(1993) 

Broadhurst, 9803091

Kniehl, Pikelner, Veretin, 1705.05136
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Example

Sunrise integral
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Asymptotic expansion: a convergent series

A new representation

• 𝐼𝐿,𝑘
bub(𝐷): 𝑘-th master vacuum integral at 𝐿-loop order

• 𝐶𝑘
𝜇0…𝜇𝑟 𝐷 : rational functions of  𝐷

• A convergent series, defines an analytical function around 𝜂 = ∞

• Uniqueness theorem of  analytical functions: physical FI is uniquely 

determined by this asymptotic series via analytical continuation

• A new series representation of  FIs

• All FIs (therefore scattering amplitudes) are determined by equal-mass 

vacuum integrals

A new representation
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Find relations

Decomposition of  𝑄𝑖(𝐷,  𝑠, 𝜂)

Linear equations: 

Relations among 𝐺 ≡ {𝑀1, 𝑀2, … ,𝑀𝑛} can be 

determined

• With enough constraints ⇒ 𝑄𝑖
𝜆0…𝜆𝑟(𝐷)

• With finite field technique, only integers in a finite field are involved, 

equations can be efficiently solved

⇒
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Set up and solve DEs of  MIs

Singularity structure

Solve it numerically: a well-studied 

mathematic problem

Step1: Asymptotic expansion at 𝜂 = ∞
Step2: Taylor expansion at analytical points

Step3: Asymptotic expansion at 𝜂 = 0

with known  𝐼(𝐷;∞)

Analytical continuation
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Reduction: a two-step strategy

First-step: numerical 

Second-step: all-purpose

Guan, Liu, YQM, 1912.09294

• Reduce to MIs at some (~100) phase space points, over finite field

• Fine if  not efficient enough, can use AMF, traditional IBP, 

intersection number, …

• Construct block-triangular reduction systems

• Very efficient to use
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Reduction: example

5 gluon scattering

• For the first time, complete reduction of  all two-loop 5-gluon FIs, size 

of  results: 66MB, 40MB, 31MB, 11MB

• Easy to obtain, about 200 CPU core-hour

• Fast enough for numerical evaluation: <1s for each phase space point, 

fast by 100 times v.s. traditional IBP

Guan, Liu, YQM, 1912.09294



24/30

Reduction: comparison

• Complete reduction of  (𝑐) get a file ~ 20GB

• Reduction 26 out of  3000+ FIs of  (𝑎) (not the most complicated ones), 

get a file ~ 2GB

Chawdhry, Lim, Mitov, 1805.09182

Bendle et.al., 1908.04301

Efforts in literature

• Explicit solutions are very hard to obtain

• The size of  explicit solution can be too huge to be used 

Compare with explicit solution

• UT basis, multivariate partial fraction: 186MB for (a)

Bendle et.al., 2104.06866
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Evaluation: strategy to introduce 𝜂

Try to control #MIs: propagator mode
Liu, YQM, in preparation
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Evaluation: a two-loop example

• Time =5h=(40*5s+3000*0.05s)*45+…

• Set DEs:90%; solve: 10%.

• New reduction strategy: 100× fast

Two-loop double-pentagon

Consistent with literature:
Chicherin, et. al. 1901.05932

Chicherin, Sotnikov, 2009.07803

 𝑠 = {𝑠12, 𝑠23, 𝑠34, 𝑠45, 𝑠15}

108
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Evaluation: a three-loop example

 𝑡  𝑡 hadroproduction at three-loop order

• Time =15h=(40*50s+6000*0.6s)*8+…

• Set DEs:90%; solve: 10%.

• New reduction strategy: 100× fast

208

• New result, (highly nontrivial) 

consistence checked
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Evaluation: other Examples

Two-loop: H/V+2j, 𝑡  𝑡H, 4j 

Abreu, Ita, Moriello et al, 20’

Canko, et al, 20’

• New results (except W+2j), highly nontrivial consistence checked
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Other applications of AMF

Calculate two-loop MIs

Zhang, et.al., 1810.07656

Yang, et.al., 2005.11010

Brønnum-Hansen, Wang, 2101.12095

Directly reduce amplitudes (avoid tensor 

reduction)
Wang, Li, Basat, 1901.09390

Basat, Li, Wang, 2102.08225
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 Feynman integrals are completely determined by 

vacuum integrals

Outlook

 General strategy to do reduction and evaluate MIs:

correct, efficient, useful

 Ready for complete NNLO 3j/𝛾; 

Other interesting processes: stay tune

Thank you!
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Integration regions

General integration region

• loop momentum of  each branch can be either 𝑂 1 or 𝑂( 𝜂)

• regions for one-loop: (S), (L) 

• regions for two-loop: (S,S,S), (S,L,L), (L,S,L), (L,L,S), (L,L,L)

• 𝑅1 = 2, 𝑅2 = 5, 𝑅3 = 15, 𝑅4 = 47,…
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Expansion

Expansion in each region

• all large: single-mass vacuum integrals

• mixed: factorized integrals with a factor being vacuum integrals

• all small: integrals with fewer propagators
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• 168 master integrals

• Traditional method sector decomposition: 𝑂(104) CPU core-hour

• Our method: a few minutes

2-loop non-planar sector for Q +  Q → 𝑔 + 𝑔

Example

Feng, Jia, Sang, 1707.05758 

MIs can be thought as special functions, and DEs 

tell us  how to evaluate these special functions
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Infrared Divergences

Example: one-loop four-point integral

• eta-reg: 

• dim-reg: 

• take 𝜂 → 0, only 𝑓
2

survives

𝑠 = 10, 𝑡 = −3,𝑚2 = 1
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What is reduction

Relations among 𝐺 ≡ {𝑀1, 𝑀2, … ,𝑀𝑛}

Reduction

• 𝑄𝑖(𝐷,  𝑠, 𝜂): homogeneous polynomials of   𝑠, 𝜂 of  degree 𝑑𝑖

• Find relations between loop integrals

• Use them to express all loop integrals as linear combinations of  MIs

Constraints from mass dimension

• Only 1 degree of  freedom in {𝑑𝑖}, chosen as 𝑑max ≡ Max {𝑑𝑖}
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Reduction

With 𝐺 = 𝐺1 ∪ 𝐺2, satisfy

• 𝐺1 is more complicated than 𝐺2

• 𝐺1can be reduced to 𝐺2

Algorithm

1. Set 𝑑max = 0

2. Find out all reduction relations among 𝐺 with fixed 𝑑max

3. If  obtained relations are enough to determine 𝐺1 by 𝐺2, stop; 

else, 𝑑max = 𝑑max + 1 and go to step 2

Search for efficient relations

Conditions for 𝐺1 and 𝐺2

1. Relations among 𝐺1and 𝐺2 are not too complicated: easy to find

2. #𝐺1 is not too large: numerically diagonalize relations easily
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Reduction scheme with only dots

FIs:  𝜈 = 𝜈1, … , 𝜈𝑁 , 𝜈𝑖 ≥ 0

• 𝟎± ≡ 𝐈𝐝𝐞𝐧𝐭𝐢𝐭𝐲, 𝐦± ≡ 𝐦− 𝟏 ±𝟏±

• 𝟏+ 5,1,0,3 = { 6,1,0,3 , 5,2,0,3 , (5,1,0,4)}

• 𝟏− 5,1,0,3 = { 4,1,0,3 , 5,0,0,3 , (5,1,0,2)}

1-loop: 𝐺1 = 𝟏+  𝜈, 𝐺2 = 𝟏−𝟏+  𝜈 Duplancic and Nizic, 0303184

Multi-loop:

𝐺1 = 𝐦+  𝜈, 𝐺2 = {𝟏−𝐦+, 𝟏−(𝐦 − 𝟏)+, … , 𝟏−𝟏+}  𝜈

• 𝑚 = 2,3 in examples, #𝐺1 is not too large, include dozens of  integrals

• Relations among 𝐺1and 𝐺2 are not too complicated, see examples

A step-by-step reduction is realized!
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2-loop 𝑔 + 𝑔 → 𝐻 +𝐻 and 𝑔 + 𝑔 → 𝑔 + 𝑔 + 𝑔

Examples

• Relations can be obtained by a single-core laptop in a few hours

• Diagonalizing at each phase space point (floating number): 0.01 second

• Results checked numerically by FIRE 

Difficulty:

• More legs > less legs

• Nonplanar > Planar 

• 𝐦+  𝑒 > 𝐦+  𝜈


