A general method for

Feynman loop integrals calculation

马滟青
北京大学

微扰量子场论研讨会，2021／05／15－16，上海交通大学

北京大学

Outline

I. Introduction

II. Auxiliary mass flow

III. Applications
IV. Outlook

The future of particle physics

$>$ Current status of LHC

- After 40 years test: SM is still very successful
- No clear signal of new physics

$>$ To test SM or discover NP

- Three possible choices: precision/energy/cosmology
- Experiment: precision measurement!
- Theory: precision calculation!

High luminosity LHC projection

Perturbative QFT

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules
- New developments: unitarity, recurrence relation

2. Calculate Feynman loop integrals

3. Calculate phase-space integrals

- Monte Carlo simulation with IR subtractions
- Mapping to loop integrals via reverse unitarity

$$
\int \frac{d^{D} p}{(2 \pi)^{D}}(2 \pi) \delta_{+}\left(p^{2}\right)=\lim _{\eta \rightarrow 0^{+}} \int \frac{d^{D} p}{(2 \pi)^{D}}\left(\frac{i}{p^{2}+i \eta}+\frac{-i}{p^{2}-i \eta}\right)
$$

FIs

> Feynman loop integrals

- Encoding the main nontrivial information of QFT

$$
\lim _{\eta \rightarrow 0^{+}} \int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \prod_{\alpha=1}^{N} \frac{1}{\left(q_{\alpha}^{2}-m_{\alpha}^{2}+\mathrm{i} \eta\right)^{\nu_{\alpha}}}
$$

- q_{α} : linear combination of loop momenta and external momenta
- Taking $\eta \rightarrow 0^{+}$before taking $D \rightarrow 4$

Multi-loop: a challenge for intelligence

> One-loop integrals: systematical approach existed as early as 1970s

't Hooft, Veltman, NPB (1979); Passarino, Veltman, NPB (1979); Oldenborgh, Vermaseren (1990)

- Further developments of unitarity-based method in the past decade

Britto, Cachazo, Feng, 0412103; Ossola, Papadopoulos, Pittau, 0609007; Giele, Kunszt, Melnikov, 0801.2237
See B. Feng's talk for recent development
B.W. Xiao's talk for non-covariant QFT

> About 40 years later, a satisfactory method for multi-loop calculation is still missing

Main strategy

1) Reduce loop integrals to basis (Master Integrals)

- Mainly integration-by-parts (IBP) reduction:

Chetyrkin, Tkachov, NPB (1981)
Laporta, 0102033 the main bottleneck
extremely time consuming for multi-scale problems unitarity-based reduction cannot give complete reduction beyond one-loop

2) Calculate MIs/original integrals

- Differential equations (depends on reduction and BCs) Kotikov, PLB (1991)
- Difference equations (depends on reduction and BCs) Laporta, 0102033
- Sector decomposition (extremely time-consuming) Binoth, Heinrich, 0004013
- Mellin-Barnes representation (nonplanar, time)

Smirnov, 9905323

IBP reduction

$>$ A result of dimensional regularization

Chetyrkin, Tkachov, NPB (1981)

$\int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{\partial}{\partial \ell_{j}^{\mu}}\left(v_{k}^{\mu} \prod_{\alpha=1}^{N} \frac{1}{\left(q_{\alpha}^{2}-m_{\alpha}^{2}+\mathrm{i} \eta\right)^{\nu_{\alpha}}}\right)=0, \quad \forall j, k$ \Downarrow

- Linear equations:

$$
\sum_{i=1} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- M_{i} scalar integrals, Q_{i} polynomials in D, \vec{s}, η

$>$ For each problem, the number of MIs is FINITE

- Feynman integrals form a finite dimensional linear space
- Reduce thousands of loop integrals to much less MIs

Difficulty of IBP reduction

$>$ Solve IBP equations

$$
\sum_{i=1} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- Very large scale of linear equations (can be billions of) E.g., Laporta 1910.01248
- Equations are coupled
\times Explicit solution for multi-scale problem: hard to get, expression can be too large
\times Numerical solution at each phase space point : too slow

$>$ Cutting-edge problems

- Hundreds GB RAM
- Months of runtime using super computer

Difficulty of MIs calculation

$>$ Analytical (depending on reduction): ${ }_{\text {r. Bonciani, tatal } 2016}$ e.g. Higgs $\rightarrow 3$ partons (Euclidean Region)

200MB, 10 min
$>$ Numerical (sector decomposition, independent of reduction): e.g. Quarkonium decay at NNLO

Feng, Jia, Sang, 1707.05758

NNLO (Virtual Squared)

NNLO (Double Virtual)

NNLO (Virtual-Real)

NNLO (Double Real)
$10^{5} \mathrm{CPU}$ core-hour

Recent developments

$>$ Selected improvements for reduction

- Finite field method Manteuffel, Schabinger, 1406.4513
- Direct solution Kosower, 1804.00131
- Syzygies method Böhm, Georgoudis, Larsen, Schönemann, Zhang, 1805.01873, Bendle et.al., 1908.04301
- Obtain one coefficient at each step Chawdhry, Lim, Mitov, 1805.09182
- Expansion of small parameters Xu, Yang, 1810.12002; Mishima, 1812.04373
- Intersection Numbers Frellesvig, et. al., 1901.11510, 1907.02000

Selected improvements for evaluation

- Quasi-Monte Carlo method Li, Wang, Yan, Zhao, 1508.02512
- Finite basis Manteuffel, Panzer, Schabinger, 1510.06758
- Uniform-transcendental basis Henn, 2013
- Loop-tree duality Capatti, Hirschi, Kermanschah, Ruijl, 1906.06138

State-of-the-art computation

$>\mathbf{2} \boldsymbol{\rightarrow} \mathbf{2}$ process with massive particles at twoloop order: almost done $g+g \rightarrow t+\bar{t}, \quad g+g \rightarrow H+H(g)$

$>$ Frontier in the following decade:

- $2 \rightarrow 3$ processes at two loops ($3 \mathbf{j} / \gamma, \mathbf{V} / \mathrm{H}+2 \mathbf{j} t \bar{t}+\mathbf{j}, t \bar{t} H, \ldots)$
- $2 \rightarrow 2$ processes at three loops ($2 \mathrm{j} / \gamma, \mathrm{V} / \mathrm{H}+\mathrm{j}, t \bar{t}, \mathrm{HH}, \ldots$)
- $2 \rightarrow 1$ processes at four loops ($\mathrm{j}, \mathrm{V} / \mathrm{H}$)
- Two-loop EW corrections ($e^{+} e^{-} \rightarrow H Z$)

> Very challenging

- Two-loop $g+g \rightarrow H+H(g)$: complete IBP reduction cannot be achieved within tolerable time

Borowka et. al., 1604.06447
Jones, Kerner, Luisoni, 1802.00349

- Four-loop $g+g \rightarrow H$ (NNLP in HTL): 860 days (wall time!)

Outline

I. Introduction

II. Auxiliary mass flow

III. Applications
IV. Outlook

Modified FIs

Liu, YQM, Wang, 1711.09572 Liu, YQM, 1801.10523

$>$ Modify Feynman loop integral by keeping

 finite $\eta$$$
\begin{aligned}
\mathcal{M}(D, \vec{s}, \eta) & \equiv \int \prod_{i=1}^{L} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \prod_{\alpha=1}^{N} \frac{1}{\left(\mathcal{D}_{\alpha}+\mathrm{i} \eta\right)^{\nu_{\alpha}}} \\
\mathcal{D}_{\alpha} & \equiv q_{\alpha}^{2}-m_{\alpha}^{2}
\end{aligned}
$$

- Think it as an analytical function of η
- Physical result is defined by

$$
\mathcal{M}(D, \vec{s}, 0) \equiv \lim _{\eta \rightarrow 0^{+}} \mathcal{M}(D, \vec{s}, \eta)
$$

Expansion at infinity

$>$ Expansion of propagators around $\eta=\infty$

$$
\frac{1}{\left[(\ell+p)^{2}-m^{2}+\mathrm{i} \eta\right]^{\nu}}=\frac{1}{\left(\ell^{2}+\mathrm{i} \eta\right)^{\nu}} \sum_{n=0}^{\infty} \frac{(\nu)_{n}}{n!}\left(\frac{-2 \ell \cdot p-p^{2}+m^{2}}{\ell^{2}+\mathrm{i} \eta}\right)^{n}
$$

- Only one region in the method of region: $l^{\mu} \sim|\eta|^{1 / 2}$
- No external momenta in denominator, vacuum integrals
- Simple enough to deal with

$>$ Vacuum MIs with equal internal masses

- Analytical results are known up to 3-loop

Davydychev,Tausk, NPB(1993)
Broadhurst, 9803091
Kniehl, Pikelner, Veretin, 1705.05136

- Numerical results are known up to 5-loop

Schroder, Vuorinen, 0503209
Luthe, PhD thesis (2015)
Luthe, Maier, Marquard, Ychroder, 1701.07068

Example

$>$ Sunrise integral

$$
\begin{gathered}
\hat{I}_{\nu_{1} \nu_{2} \nu_{3}} \equiv \int \prod_{i=1}^{2} \frac{\mathrm{~d}^{D} \ell_{i}}{\mathrm{i} \pi^{D / 2}} \frac{1}{\mathcal{D}_{1}^{\nu_{1}} \mathcal{D}_{2}^{\nu_{2}} \mathcal{D}_{3}^{\nu_{3}}} \\
\mathcal{D}_{1}=\left(\ell_{1}+p\right)^{2}-m^{2}, \mathcal{D}_{2}=\ell_{2}^{2}, \mathcal{D}_{3}=\left(\ell_{1}+\ell_{2}\right)^{2} \\
I_{111}=\eta^{D-3}\left\{\left[1-\frac{D-3}{3} \frac{m^{2}}{\mathrm{i} \eta}+\frac{(D+4)(D-3)}{9 D} \frac{p^{2}}{\mathrm{i} \eta}\right] I_{2,2}^{\text {bub }}\right. \\
\\
\left.-\mathrm{i}\left[\frac{(D-2)^{2}}{3 D} \frac{p^{2}}{\mathrm{i} \eta}\right] I_{2,1}^{\text {bub }}+\mathcal{O}\left(\eta^{-2}\right)\right\}
\end{gathered}
$$

A new representation

$>$ Asymptotic expansion: a convergent series

$$
\begin{aligned}
& \mathcal{M}(D, \vec{s}, \eta)=\eta^{L D / 2-\sum_{\alpha} \nu_{\alpha}} \sum_{\mu_{0}=0}^{\infty} \eta^{-\mu_{0}} \mathcal{M}_{\mu_{0}}^{\mathrm{bub}}(D, \vec{s}) \\
& \mathcal{M}_{\mu_{0}}^{\mathrm{bub}}(D, \vec{s})=\sum_{k=1}^{B_{L}} I_{L, k}^{\mathrm{bub}}(D) \sum_{\vec{\mu} \in \Omega_{\mu_{0}}^{r}} C_{k}^{\mu_{0} \ldots \mu_{r}}(D) s_{1}^{\mu_{1}} \cdots s_{r}^{\mu_{r}}
\end{aligned}
$$

- $I_{L, k}^{\mathrm{bub}}(D): k$-th master vacuum integral at L-loop order
- $C_{k}^{\mu_{0} \ldots \mu_{r}}(D)$: rational functions of D
- A convergent series, defines an analytical function around $\eta=\infty$

$>$ A new representation

- Uniqueness theorem of analytical functions: physical FI is uniquely determined by this asymptotic series via analytical continuation
- A new series representation of Fls
- All Fls (therefore scattering amplitudes) are determined by equal-mass vacuum integrals

Find relations

$>$ Decomposition of $Q_{i}(D, \vec{s}, \eta)$

$$
\sum_{i=1}^{n} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

$$
\begin{aligned}
& Q_{i}(D, \vec{s}, \eta)=\sum_{\left(\lambda_{0}, \vec{\lambda}\right) \in \Omega_{d_{i}}^{r+1}} Q_{i}^{\lambda_{0} \ldots \lambda_{r}}(D) \eta^{\lambda_{0}} s_{1}^{\lambda_{1}} \cdots s_{r}^{\lambda_{r}} \\
& \Rightarrow \sum_{k, \rho_{0}, \vec{\rho}} f_{k}^{\rho_{0} \cdots \rho_{r}} \mathcal{I}_{L, k}^{\mathrm{bub}}(D) \eta^{\rho_{0}} s_{1}^{\rho_{1}} \cdots s_{r}^{\rho_{r}}=0
\end{aligned}
$$

$>$ Linear equations: $f_{k}^{\rho_{0} \ldots \rho_{r}}=0$

- With enough constraints $\Rightarrow Q_{i}^{\lambda_{0} \ldots \lambda_{r}}(D)$
- With finite field technique, only integers in a finite field are involved, equations can be efficiently solved
$>$ Relations among $G \equiv\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ can be determined

Analytical continuation

> Set up and solve DEs of MIs

$$
\frac{\partial}{\partial \eta} \vec{I}(D ; \eta)=A(D ; \eta) \vec{I}(D ; \eta) \quad \text { with known } \vec{I}(D ; \infty)
$$

Solve it numerically: a well-studied mathematic problem
Step1: Asymptotic expansion at $\eta=\infty$ Step2: Taylor expansion at analytical points Step3: Asymptotic expansion at $\eta=0$

Singularity structure

Outline

I. Introduction

II. Auxiliary mass flow
III. Applications
IV. Outlook

Reduction: a two-step strategy

$>$ First-step: numerical

- Reduce to MIs at some (~100) phase space points, over finite field
- Fine if not efficient enough, can use AMF, traditional IBP, intersection number, ...

$>$ Second-step: all-purpose

- Construct block-triangular reduction systems
- Very efficient to use

Reduction: example

>5 gluon scattering

(a) dp

(b) hb

Guan, Liu, YQM, 1912.09294

- For the first time, complete reduction of all two-loop 5-gluon Fls, size of results: $66 \mathrm{MB}, 40 \mathrm{MB}, 31 \mathrm{MB}, 11 \mathrm{MB}$
- Easy to obtain, about 200 CPU core-hour
- Fast enough for numerical evaluation: <1s for each phase space point, fast by 100 times v.s. traditional IBP

Reduction: comparison

$>$ Compare with explicit solution

- Explicit solutions are very hard to obtain
- The size of explicit solution can be too huge to be used

$>$ Efforts in literature

- Complete reduction of (c) get a file ~20GB Chawdhry, Lim, Mitov, 1805.09182
- Reduction 26 out of 3000+ Fls of (a) (not the most complicated ones), get a file ~2GB Bendle et.al., 1908.04301

(a) $d p$

(b) hb

- UT basis, multivariate partial fraction: 186MB for (a)

Bendle et.al., 2104.06866

Evaluation: strategy to introduce η

Try Lu, Ya, in repepataion
$>$ Try to control \#MIs: propagator mode

Evaluation: a two-loop example

$>$ Two-loop double-pentagon

- Time $=5 \mathrm{~h}=(40 * 5 \mathrm{~s}+3000 * 0.05 \mathrm{~s})^{*} 45+. .$.
- Set DEs:90\%; solve: 10\%.
- New reduction strategy: $100 \times$ fast

$$
\begin{aligned}
& I_{\text {phy }}[1,1,1,1,1,1,1,1,0,0,0]= \\
& -0.06943562517263776 \epsilon^{-4} \\
& +(1.162256636711287+1.416359853446717 \mathrm{i}) \epsilon^{-3} \\
& +(37.82474332116938+15.91912443581739 \mathrm{i}) \epsilon^{-2} \\
& +(86.2861798369034+166.8971535711277 \mathrm{i}) \epsilon^{-1} \\
& -(4.1435965578662-333.0996040071305 \mathrm{i}) \\
& -(531.834114822928-1583.724672502141 \mathrm{i}) \epsilon \\
& -(2482.240253232612-2567.398291724192 \mathrm{i}) \epsilon^{2} \\
& -(8999.90369367113-19313.42643829926 \mathrm{i}) \epsilon^{3} \\
& -(28906.95582696762-17366.82954322838 \mathrm{i}) \epsilon^{4} .
\end{aligned}
$$

Evaluation: a three-loop example

$>t \bar{t}$ hadroproduction at three-loop order

- Time $=15 \mathrm{~h}=\left(40 * 50 \mathrm{~s}+6000^{\star} 0.6 \mathrm{~s}\right)^{\star} 8+\ldots$
- Set DEs:90\%; solve: 10\%.
- New reduction strategy: $100 \times$ fast

Evaluation: other Examples

$>$ Two-loop: $\mathrm{H} / \mathrm{V}+2 \mathrm{j}, t \bar{t} \mathrm{H}, 4 \mathrm{j}$

Abreu, Ita, Moriello et al, 20' Canko, et al, 20'

- New results (except W+2j), highly nontrivial consistence checked

Other applications of AMF

$>$ Directly reduce amplitudes (avoid tensor reduction)

$>$ Calculate two-loop MIs

FFs of $g \rightarrow Q \bar{Q}\left({ }^{1} S_{0}^{[1,8]}\right)+X$
Zhang, et.al., 1810.07656

$$
e^{+} e^{-} \rightarrow H^{ \pm} W^{\mp} \quad \text { Yang, et.al., } 2005.11010
$$

$$
g g \rightarrow Z Z \quad \text { Brønnum-Hansen, Wang, 2101.12095 }
$$

Outlook

$>$ Feynman integrals are completely determined by vacuum integrals
$>$ General strategy to do reduction and evaluate MIs: correct, efficient, useful
$>$ Ready for complete NNLO $3 \mathbf{j} / \gamma$;
Other interesting processes: stay tune
Thank you!

Integration regions

$>$ General integration region

- loop momentum of each branch can be either $O(1)$ or $O(\sqrt{\eta})$
- regions for one-loop: (S), (L)

$$
\begin{equation*}
\overrightarrow{(\mathrm{S})} \tag{L}
\end{equation*}
$$

- regions for two-loop: (S,S,S), (S,L,L), (L,S,L), (L,L,S), (L,L,L)

- $R_{1}=2, R_{2}=5, R_{3}=15, R_{4}=47, \ldots$

Expansion

Expansion in each region

- all large: single-mass vacuum integrals

$$
\frac{1}{\left((\ell+p)^{2}-m^{2}-k \eta\right)^{v}} \sim \frac{1}{\left(\ell^{2}-k \eta\right)^{v}},
$$

- mixed: factorized integrals with a factor being vacuum integrals

$$
\frac{1}{\left(\left(\ell_{\mathrm{S}}+\ell_{\mathrm{L}}+p\right)^{2}-m^{2}-k \eta\right)^{v}} \sim \frac{1}{\left(\ell_{\mathrm{L}}^{2}-k \eta\right)^{v}} .
$$

- all small: integrals with fewer propagators

$$
\frac{1}{\left((\ell+p)^{2}-m^{2}-\eta\right)^{v}} \sim \frac{1}{(-\eta)^{v}}
$$

Example

$>$ 2-loop non-planar sector for $\mathrm{Q}+\overline{\mathrm{Q}} \rightarrow g+g$

- 168 master integrals Feng, Jia, Sang, 1707.05758
- Traditional method sector decomposition: $O\left(10^{4}\right)$ CPU core-hour
- Our method: a few minutes

MIs can be thought as special functions, and DEs tell us how to evaluate these special functions

Infrared Divergences

$>$ Example: one-loop four-point integral

2

$$
4
$$

$$
\begin{gathered}
s=10, t=-3, m^{2}=1 \\
I[1,1,1,1]=\frac{0.0665971-0.101394 \mathrm{i}}{\epsilon}+(-0.0133705+0.287857 \mathrm{i}) .
\end{gathered}
$$

- eta-reg: $\quad I[1,1,1,1](\eta) \sim(0.0665971-0.101394 i) \log (\eta)+0.0250704+0.22933 \mathrm{i}$.
- dim-reg: $I[1,1,1,1](\eta) \sim \eta^{-\epsilon} f_{1}+f_{2}+\eta^{1 / 2-\epsilon} f_{3}$,

$$
\begin{aligned}
& f_{1}=\frac{-0.0665971+0.101394 \mathrm{i}}{\epsilon}+(0.0384409-0.0585265 \mathrm{i}), \\
& f_{2}=\frac{0.0665971-0.101394 \mathrm{i}}{\epsilon}+(-0.0133705+0.287857 \mathrm{i}), \\
& f_{3}=0.1309
\end{aligned}
$$

- take $\eta \rightarrow 0$, only f_{2} survives

What is reduction

> Reduction

- Find relations between loop integrals
- Use them to express all loop integrals as linear combinations of Mls
$>$ Relations among $G \equiv\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$

$$
\sum_{i=1}^{n} Q_{i}(D, \vec{s}, \eta) \mathcal{M}_{i}(D, \vec{s}, \eta)=0
$$

- $Q_{i}(D, \vec{s}, \eta)$: homogeneous polynomials of \vec{s}, η of degree d_{i}
$>$ Constraints from mass dimension

$$
2 d_{1}+\operatorname{Dim}\left(\mathcal{M}_{1}\right)=\cdots=2 d_{n}+\operatorname{Dim}\left(\mathcal{M}_{n}\right)
$$

- Only 1 degree of freedom in $\left\{d_{i}\right\}$, chosen as $d_{\max } \equiv \operatorname{Max}\left\{d_{i}\right\}$

Reduction

$>$ With $G=G_{1} \cup G_{2}$, satisfy

- G_{1} is more complicated than G_{2}
- G_{1} can be reduced to G_{2}
$>$ Algorithm Search for efficient relations

1. Set $d_{\text {max }}=0$
2. Find out all reduction relations among G with fixed $d_{\text {max }}$
3. If obtained relations are enough to determine G_{1} by G_{2}, stop;
else, $d_{\text {max }}=d_{\text {max }}+1$ and go to step 2

$>$ Conditions for G_{1} and G_{2}

1. Relations among G_{1} and G_{2} are not too complicated: easy to find
2. $\# G_{1}$ is not too large: numerically diagonalize relations easily

Reduction scheme with only dots

$>$ FIs: $\vec{v}=\left(v_{1}, \ldots, v_{N}\right), v_{i} \geq 0$

- $\mathbf{0}^{ \pm} \equiv$ Identity, $\mathbf{m}^{ \pm} \equiv(\mathbf{m}-\mathbf{1})^{ \pm} \mathbf{1}^{ \pm}$
- $\mathbf{1}^{+}(5,1,0,3)=\{(6,1,0,3),(5,2,0,3),(5,1,0,4)\}$
- $\mathbf{1}^{-}(5,1,0,3)=\{(4,1,0,3),(5,0,0,3),(5,1,0,2)\}$
$>$ 1-loop: $G_{1}=1^{+} \vec{v}, G_{2}=1^{-} 1^{+} \vec{v} \quad$ Duplancic and Nizic, 0303184
$>$ Multi-loop:

$$
G_{1}=\mathbf{m}^{+} \vec{v}, G_{2}=\left\{\mathbf{1}^{-} \mathbf{m}^{+}, \mathbf{1}^{-}(\mathbf{m}-\mathbf{1})^{+}, \ldots, \mathbf{1}^{-} \mathbf{1}^{+}\right\} \vec{v}
$$

- $m=2,3$ in examples, $\# G_{1}$ is not too large, include dozens of integrals
- Relations among G_{1} and G_{2} are not too complicated, see examples

A step-by-step reduction is realized!

Examples

$>$ 2-loop $g+g \rightarrow H+H$ and $g+g \rightarrow g+g+g$

$g+g \rightarrow H+H$				$g+g \rightarrow g+g+g$			
Sector	Type	$d_{\max }$	\mathbf{m}^{+}	Sector	Type	$d_{\max }$	\mathbf{m}^{+}
1(a)	7-NP	1	$\mathbf{3}^{+}$	$2(\mathrm{a})$	$8-\mathrm{NP}$	1	$\mathbf{3}^{+}$
$1(\mathrm{~b})$	$7-\mathrm{P}$	1	$\mathbf{3}^{+}$	$2(\mathrm{~b})$	$8-\mathrm{NP}$	3	$\mathbf{3}^{+}$
$1(\mathrm{c})$	$6-\mathrm{NP}$	5	$\mathbf{3}^{+}$	$2(\mathrm{c})$	$7-\mathrm{NP}$	4	$\mathbf{3}^{+}$
$1(\mathrm{~d})$	$6-\mathrm{P}$	4	$\mathbf{2}^{+}$	2(d)	6-NP	2	$\mathbf{3}^{+}$

Difficulty:

- More legs $>$ less legs
- Nonplanar > Planar
- $\mathbf{m}^{+} \vec{e}>\mathbf{m}^{+} \vec{v}$
- Relations can be obtained by a single-core laptop in a few hours
- Diagonalizing at each phase space point (floating number): 0.01 second
- Results checked numerically by FIRE

