Parton Degrees of Freedom: Connected and Disconnected Sea Partons from CT18 Parametrization of PDFs

> Tie-Jiun Hou Northeastern University, China

Work with Jian Liang(UKY), Keh-Fei Liu(UKY), Meng-Shi Yan(PKU) and C.-P. Yuan(MSU)

> May 15, 2021 微扰量子场论研讨会,上海

CT18CS Global PDF Analysis

An alternative parametrization of CT18 for \bar{u} and \bar{d} at $Q_0 = 1.3$ GeV scale with an input from Lattice QCD.

Brief Review of Global PDF Analysis

LHC data sets included in CT18

- 245 1505.07024 LHCb Z (W) muon rapidity at 7 TeV
- 246 1503.00963 LHCb 8 TeV Z rapidity
- 249 1603.01803 CMS W lepton asymmetry at 8 TeV
- 250 1511.08039 LHCb Z (W) muon rapidity at 8 TeV
- 253 1512.02192 ATLAS 7 TeV Z p_T
- 542 1406.0324 CMS incl. jet at 7 TeV with R=0.7
- 544 1410.8857 ATLAS incl. jet at 7 TeV with R=0.6
- 545 1609.05331 CMS incl. jet at 8 TeV with R=0.7
- 573 1703.01630 CMS 8 TeV $t\bar{t} (p_T, y_t)$ double diff. distributions
- 580 1511.04716 ATLAS 8 TeV $t\bar{t} p_T$ and $m_{t\bar{t}}$ diff. distributions
- 248 1612.03016 ATLAS 7 TeV Z and W rapidity \rightarrow CT18Z PDFs

(PRD, arXiv: 1912.10053, T.- J. Hou et al.)

Theory calculations @NNLO

Obs.	Expt.	fast table	NLO code	K-factors	R,F scales
Inclusive jet	ATL 7 CMS 7/8	APPLgrid fastNLO	NLOJet++	NNLOJet	$\mathrm{p_{T}}, \mathrm{p_{T}^{1}}$
p_{T}^{Z}	ATL 8	APPLgrid	MCFM	NNLOJet	$\sqrt{Q^2 + p_{T,Z}^2}$
W/Z rapidity W asymmetry	LHCb 7/8 ATL 7 CMS 8	APPLgrid	MCFM/aMCfast	FEWZ/MCFM	$M_{W,Z}$
DY (low,high mass)	ATL 7/8 CMS 8	APPLgrid	MCFM/aMCfast	FEWZ/MCFM	Q_{11}
tī	ATL 8 CMS 8		$\frac{\mathrm{H_T}}{4}$, $\frac{\mathrm{m_T}}{2}$		

- For Drell-Yan data and jet data, NNLO prediction are down by using NLO prediction from applgrid/fastNLO times NNLO/NLO K-factor.
- For $t\bar{t}$ data, NNLO prediction are down by using NNLO prediction from fastNLO directly.

the MC integration of NNLO cross sections.

Non-perturbative forms of PDFs in CT18 at $Q_0 = 1.3$ GeV

- CT18 sample result of exploring various non-perturbative parametrization forms at $Q_0 = 1.3$ GeV.
- There is no data to constrain very large and very small x region.

Non-perturbative forms of PDFs in CT18 at $Q_0 = 1.3$ GeV

In CT18, 6 d.o.f of partons are parametrized at $Q_0 = m_c = 1.3 \text{ GeV}$ $\gg \Lambda_{QCD}$,

$$g, u^{\nu}, d^{\nu}, \bar{u}, \bar{d}, s.$$

Where $\bar{s}(x) \equiv s(x)$ is assumed, and $u = u^v + \bar{u}$ and $d = d^v + \bar{d}$. Heavier parton, like c, b and t, are generated through PDF evolution. The functional form for the 6 parton flavors is

$$f^{i}(x, Q = Q_{0}) = a_{0}^{i} x^{a_{1}^{i} - 1} (1 - x)^{a_{2}^{i}} P^{i}(x)$$

x → 0: fⁱ ∝ x<sup>aⁱ₁-1</sub>, Regge-like behavior
 x → 1: fⁱ ∝ (1-x)^{aⁱ₂}, quark counting rules
 Pⁱ(x; a₃, a₄, ...): affects intermediate x. In CT18, Bernstein polynomial is applied.
</sup>

Requirements for PDF parametrization

Valence quark number sum rule

$$\int_0^1 [u(x) - \bar{u}(x)] dx = 2, \quad \int_0^1 [d(x) - \bar{d}(x)] dx = 1$$
$$\int_0^1 [s(x) - \bar{s}(x)] dx = 0$$

Momentum sum rule

$$\sum_{a=q,\bar{q},g} \int_0^1 x f_{a/p}(x,Q) dx = 1$$

In total, there are 29 shape parameters used in CT18. As a result, the full CT18 global fit yields $\chi^2 = 4292$, with a total of 3681 data points, and $\chi^2/N_{pt} = 1.17$.

Gottfried sum rule

Gottfried sum rule (1967) was originally obtain by assuming \bar{u} and \bar{d} to be the same, which leads to

$$S_G = \int_0^1 \frac{dx}{x} \left[F_2^p(x) - F_2^n(x) \right] = \frac{1}{3}, \quad \text{with } \bar{d}(x) \equiv \bar{u}(x)$$

New Muon Collaboration (NMC – PRL 66, 2712 (1991), PRD 50, R1 (1994)), $\mu + p(n) \rightarrow \mu + X$, obtained

$$S_G = 0.235 \pm 0.026$$
 ($Q = 2 \text{GeV}$)

Gottfried sum rule

The correct expression of sum rule is,

$$S_G = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left(\bar{d}(x) - \bar{u}(x) \right) + O(\alpha_s^2).$$

Hence, NMC data gives

$$\int_0^1 dx \left(\bar{d}(x) - \bar{u}(x) \right) = 0.147 \pm 0.039, \quad \text{at } Q = 2 \text{ GeV}$$

The following experiments like HERMES (PLB387, 419 (1996)) and E866 (PRD64, 052002 (2001)) also shown preference of \bar{u}/\bar{d} flavor asymmetry.

Experiment	$\langle Q^2 angle$ (GeV ²)	$\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$
NMC/DIS	4.0	0.147 ± 0.039
HERMES/SIDIS	2.3	0.16 ± 0.03
FNAL E866/DY	54.0	0.118 ± 0.012

What is the origin of $\int dx \left(\bar{d}(x) - \bar{u}(x) \right) \neq 0$?

Hadronic tensor in Euclidean path-integral formalism

Define $u^{\nu} \equiv u^{\nu+cs} - \bar{u}^{cs}$, which is equivalent to defining $u^{cs} \equiv \bar{u}^{cs}$. Hence,

$$\begin{array}{rcl} u-\bar{u} &\equiv & (u^{v+cs}+u^{ds})-(\bar{u}^{cs}+\bar{u}^{ds})=u^v+(u^{ds}-\bar{u}^{ds}) \\ &\neq & u^v, \quad \text{unless } u^{ds}=\bar{u}^{ds} \end{array}$$

Similarly, $d^{v} \equiv d^{v+cs} - \bar{d}^{cs}$.

Hadronic tensor in Euclidean path-integral formalism versus Quasi-PDF from Lattice QCD

13i27

Quasi PDF results from LP3 and ETMC - connected insertion calculation

Where

$$q(x > 0) = q^{v+cs}(x), \qquad q(x < 0) = -\bar{q}^{cs}$$

Parton degrees of freedom are the same as in hadronic tensor - K.F. Liu, PRD, arXiv:2007.15075

Lattice input to global fitting of PDFs

Lattice result from overlap on $N_f = 2 + 1$ DWF on 4 lattices, with one at physical pion mass (J. Liang et al., χ QCD,PRD,arXiv:1901.07526)

This is the only Lattice data used in the CT18CS analysis.

Strategy for global analysis in CT18CS

In CT18CS, the non-perturbative PDFs parametrized at $Q_0 = 1.3$ GeV are :

$$g, u^{v}, d^{v}, \overline{u}^{cs}, \overline{d}^{cs}, s^{ds}.$$

In this analysis,

- Disconnected Sea (DS) components:
 - Similar to CT18 fit, we assume $\bar{s}(x) = s(x)$. Hence, $s^{ds}(x) = \bar{s}^{ds}(x)$.
 - Likewise, we also assume $u^{ds}(x) = \overline{u}^{ds}(x)$ and $d^{ds}(x) = \overline{d}^{ds}(x)$ for simplicity.
 - Assuming isospin symmetry for *u* and *d* quark PDF

This leads to

$$u^{ds} = \bar{u}^{ds} = d^{ds} = \bar{d}^{ds} = Rs = R\bar{s},$$

With 1/R = 0.822 at $Q_0 = 1.3$ GeV.

Parton degrees of freedom at $Q_0 = 1.3 \text{ GeV}$

Connected Sea (CS) components: We define $u^{cs} \equiv \bar{u}^{cs}$ and $d^{cs} \equiv \bar{d}^{cs}$. They will be separately determined by the global fit, though with the same a_1 and a_2 components.

The physical parton degrees of freedom used in CT18CS are then:

In CT18

$$g = g_{par}$$

$$u^{v} = u^{v}_{par}$$

$$d^{v} = d^{v}_{par}$$

$$\bar{u} = \bar{u}^{cs} + \bar{u}^{ds} = \bar{u}_{par} + Rs_{par}$$

$$\bar{d} = \bar{d}^{cs} + \bar{d}^{ds} = \bar{d}_{par} + Rs_{par}$$

$$s = \bar{s} = s_{par}$$
In CT18CS

Both CT18 and CT18CS have 6 independent non-perturbative PDF functions, hence 6 parton degrees of freedom, at Q_0 scale. The PDFs f(x, Q) at $Q > Q_0$ are obtained by applying DGLAP evolution equations, as in CT18.

Global Analysis - CT18

The global analysis of CT18 has already included the data of NMC and E866, and thus reflect the $\bar{u} \neq \bar{d}$.

ID#	Experimental data set	N_{pt}	χ^2	χ^2/N_{pt}	S_E	
160	HERAI+II 1 fb ⁻¹ , H1 and ZEUS NC and CC $e^{\pm}p$ reduced cross sec. comb. [27]	1120	1408(1378)	1.3(1.2)	5.7(5.1)	0.2
101	BCDMS F_2^p [65]	337	374 (384)	1.1(1.1)	1.4(1.8)	(d-u)(x,Q) at Q =1.3 GeV 90%C.L.
102	BCDMS F ^d ₂	250	280 (287)	1.1(1.1)	1.3(1.6)	CT18NNLO
104	NMC F_2^d/F_2^p (67)	123	126 (116)	1.0(0.9)	0.2(-0.4)	0.1 -
108^{+}	CDHSW F ₂ ^p [68]	85	85.6 (86.8)	1.0(1.0)	0.1(0.2)	
109^{\dagger}	CDHSW F_3^p [68]	96	86.5 (85.6)	0.9(0.9)	-0.7(-0.7)	
110	CCFR F_2^p [69]	69	78.8(76.0)	1.1(1.1)	0.9(0.6)	i ĭ 0.0
111	$CCFR xF_3^p$ [70]	86	33.8(31.4)	0.4(0.4)	-5.2(-5.6)	
124	NuTeV vµµ SIDIS [71	38	18.5(30.3)	0.5(0.8)	-2.7(-0.9)	x(a-u)
125	NuTeV $\bar{\nu}\mu\mu$ SIDIS [71]	33	38.5(56.7)	1.2(1.7)	0.7(2.5)	-0.1
126	CCFR $\nu \mu \mu$ SIDIS [72]	40	29.9(35.0)	0.7(0.9)	-1.1(-0.5)	
127	CCFR pµµ SIDIS [72]	38	19.8(18.7)	0.5(0.5)	-2.5(-2.7)	
145	H1 σ_{r}^{b} [73]	10	6.8(7.0)	0.7(0.7)	-0.6(-0.6)	0.2
147	Combined HERA charm production [74	47	58.3(56.4)	1.2(1.2)	1.1(1.0)	$10^{-6} 10^{-6} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 0.2 0.5 0.9$
169	H1 FL [30	9	17.0(15.4)	1.9(1.7)	1.7(1.4)	х
201	E605 Drell-Yan process	119	103.4(102.4)	0.9(0.9)	-1.0(-1.1)) 2.5
203	E866 Drell-Yan process $\sigma_{pd}/(2\sigma_{pp})$ \leftarrow $E\delta 00$ [76]	15	16.1(17.9)	1.1(1.2)	0.3(0.6)	(d/u)(x,Q) at Q =1.3 GeV 90%C.L.
204	E866 Drell-Yan process $Q^3 d^2 \sigma_{pp}/(dQ dx_F)$ [77]	184	244 (240)	1.3(1.3)	2.9(2.7)	CT18NNLO
225	CDF Run-1 electron A_{ch} , $p_{T\ell} > 25$ GeV [78]	11	9.0(9.3)	0.8(0.8)	-0.3(-0.2)	2.0
227	CDF Run-2 electron A_{ch} , $p_{T\ell} > 25$ GeV [79]	11	13.5(13.4)	1.2(1.2)	0.6(0.6)	
234	DØ Run-2 muon A_{ch} , $p_{T\ell} > 20 \text{ GeV}$ [80]	9	9.1(9.0)	1.0(1.0)	0.2(0.1)	ių 1.5
260	DØ Run-2 Z rapidity [81	28	16.9(18.7)	0.6(0.7)	-1.7(-1.3)	
261	CDF Run-2 Z rapidity [82	29	48.7(61.1)	1.7(2.1)	2.2(3.3)	≥ 10
266	CMS 7 TeV 4.7 fb ⁻¹ , muon A_{ch} , $p_{T\ell} > 35$ GeV [83]	11	7.9(12.2)	0.7(1.1)	-0.6(0.4)	
267	CMS 7 TeV 840 pb ⁻¹ , electron A_{ch} , $p_{T\ell} > 35$ GeV [84]	11	11.8(16.1)	1.1(1.5)	0.3(1.1)	
$268^{\ddagger\ddagger}$	ATLAS 7 TeV 35 pb^{-1} W/Z cross sec., A _{ch} [85]	41	44.4 (50.6)	1.1(1.2)	0.4(1.1)	0.5
281	DØ Run-2 9.7 fb ⁻¹ electron A_{ch} , $p_{T\ell} > 25$ GeV [86]	13	22.8(20.5)	1.8(1.6)	1.7(1.4)	
504	CDF Run-2 inclusive jet production [87	72	122 (117)	1.7(1.6)	3.5(3.2)	
514	DØ Run-2 inclusive jet production [88	110	113.8 (115.2)	1.0(1.0)	0.3(0.4)	$0.0 - 6 - 10^{-4} - 10^{-3} - 10^{-2} - 10^{-1} - 0.2 - 0.5 - 0.9$

E906/SeaQuest

Small-*x* behavior of CT18CS PDFs

The non-perturbative PDF functions are chosen so that

- We scan the a_1 parameter of \bar{u}^{cs} and \bar{d}^{cs} , and choose $a_1 = 1.0$ as CT18CS, where most of data are well fitted.
- The SeaQuest data was not included in the global fit.
- CT18CS has total $\chi^2 = 4299$ for $N_{pt} = 3681$. CT18 has total $\chi^2 = 4292$, only lower by 7 units.

CT18CS PDFs

With the input of $\bar{u}^{ds} = \bar{d}^{ds} = Rs^{ds}$ from lattice QCD, and considering the scenario of small-*x* behavior, we obtain the CT18CS at $Q_0 = 1.3$ GeV scale.

CT18CS PDFs

|ロト・(聞) ・ (目) ・ (目) - (日) ・ (日)

CT18CS PDFs

The $\langle x \rangle$ Moment of CT18CS at 1.3 GeV

The $\langle x \rangle$ moment of CT18CS at 1.3 GeV:

 u^{v+cs} d^{v+cs} \bar{u}^{cs} \bar{d}^{cs} $2u^{ds}(2d^{ds})$ $2s^{ds}$ gluon 0.335 0.157 0.013 0.021 0.038 0.026 0.386

More direct comparison between global analysis and lattice calculation can be done one by one, instead of being limited to u - d and s.

$$\begin{array}{c|cccc} \mu = 2.0 \text{ GeV} & \mu = 1.3 \text{ GeV} \\ \hline & \text{CT18} & \text{Lattice} & \text{CT18CS} \\ \hline & \langle x \rangle_{u^+ - d^+} & 0.156(7) & 0.184(32) & 0.172 \\ \hline & \langle x \rangle_{s^+} & 0.033(9) & 0.092(41) & 0.026 \end{array}$$

$$u^{+} - d^{+} = (u + \bar{u}) - (d + \bar{d}) = (u^{v+cs} + u^{ds} + \bar{u}^{cs} + \bar{u}^{ds}) - (d^{v+cs} + d^{ds} + \bar{d}^{cs} + \bar{d}^{ds})$$

$$\xrightarrow{CT18CS} (u^{v+cs} - d^{v+cs}) + (\bar{u}^{cs} - \bar{d}^{cs})$$

$$s^{+} = s + \bar{s} = s^{ds} + \bar{s}^{ds} \xrightarrow{CT18CS} 2s^{ds}$$

Allow direct comparison between lattice calculations and global analysis for each parton degree of freedom.

Summary

- With the input from lattice QCD, $\frac{1}{R} \equiv \frac{\langle x \rangle_{s+\bar{s}}}{\langle x \rangle_{\bar{u}+\bar{d}}(DI)}$, we consider global analysis with the connected sea parton degrees of freedom taken into account, which are respondsible for $\bar{u} \neq \bar{d}$, as suggested by data.
- The result of global analysis, the CT18CS, is found to be compatible with CT18.
- The CT18CS allows to provide direct comparison between lattice calculations and global analysis for each parton degree of freedom.

4 □ > 4 ☐ > 4 ≧ > 4 ≧ > 4 ≧ > ≧ 9 Q (* 26/27

Hadronic tensor in Euclidean path-integral formalism

DIS in Minkowski space

(Laplace

$$\frac{d^2 \sigma}{dE' d\omega} = \frac{\alpha^2}{q^4} \frac{E'}{E} l^{\mu\nu} W_{\mu\nu}$$

$$\begin{split} W_{\mu\nu}(\vec{q},\vec{p},\nu) &= \frac{1}{\pi} \text{Im} T_{\mu\nu} = \langle N(\vec{p}) | \int \frac{d^4x}{4\pi} e^{iq\cdot x} J_{\mu}(x) J_{\nu}(0) | N(\vec{p}) \rangle_{spin \ ave.} \\ &= \frac{1}{2} \sum_n \int \prod_{i=1}^n \left[\frac{d^3 p_i}{(2\pi)^3 2E_{pi}} \right] (2\pi)^3 \delta^4(p_n - p - q) \langle N(\vec{p}) | J_{\mu}(0) | n \rangle \langle n | J_{\nu}(0) | N(\vec{p}) \rangle_{spin \ ave.} \end{split}$$

Euclidean path-integral (K.F. Liu and S.J. Dong, PRL 72, 1790 (1994), K.F. Liu, PRD 62, 074501 (2000))

$$\begin{split} \widetilde{W}_{\mu\nu}(\vec{q},\vec{p},\tau) \\ &= \frac{1}{4\pi} \sum_{n} \frac{2m_{N}}{E_{n}} \delta(\vec{p}_{n} - \vec{p} - \vec{q}) < N(\vec{p}) |J_{\mu}|n > < n|J_{\nu}|N(\vec{p}) >_{spin\,ave.} e^{-(E_{n} - E_{p})\tau} \\ &= < N(\vec{p}) |\sum_{\vec{x}} \frac{e^{-i\vec{q}\cdot\vec{x}}}{4\pi} J_{\mu}(\vec{x},\tau) J_{\nu}(0,0)|N(\vec{p}) >_{spin\,ave.} \\ \\ &\text{Inverse problem} \\ (\text{Laplace transform}) \qquad D(\tau) = \int K(\tau,\nu) \rho(\nu) d\nu, \\ &D(\tau) = \widetilde{W}_{\mu\nu}(\tau), \quad K(\tau,\nu) = e^{-\nu\tau}, \quad \rho(\nu) = W_{\mu\nu}(q^{2},\nu) \end{split}$$

PDF on Lattice: Quasi-PDF

Problem: No light-cone direction on Euclidean lattice.

Alternative approach: spatial separation ↓ *boost* light-like separation

Strange quark and antiquark Quasi-PDFs

- Not a valence quark of the nucleon.
- Only disconnected contribution $\langle N | \bar{\psi}(z) \Gamma W(z,0) \psi(0) | N \rangle$ on Lattice.

Disconnected insertion diagrams are more difficult to calculate on Lattice. The first attempt was done in arXiv: 2005.01124 (by Rui Zhang, Huey-Wen Lin and Boram Yoon)

