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Multi-loop integrals

In recent years we have seen enormous progresses in the analytic understanding of
multi-loop integrals in massless theories
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Two-loop five-point integrals and amplitudes

%{> 4> Luo et al.: 1912.05778; Hua Xing Zhu, ...

Three-loop T MD PDFs

B
% Henn et al.: 1911.10174; Gang Yang, ...

Four-loop cusp anomalous dimensions :




Loop Integrals with massive particles

We are also interested in loop integrals with massive particles,
especially in electroweak physics




Loop Integrals with massive particles

The analytic structure quickly becomes complicated when mass scales are introduced
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» Given an integral family, how do we know which classes of functions will appear in the
results?

» What is a good functional basis (with nice analytic/algebraic/geometric/numeric
properties) to represent the results?

» How to organize the calculation procedure to naturally reflect these properties?

» After obtaining an analytic expression, how to efficiently evaluated it numerically?



Loop Integrals with massive particles

May be computed numerically (sector decomposition, auxiliary mass flow, ...)
See talk by Y. Q. Ma

But we’d like to push the analytic method to its limit. And there are many questions:

» Given an integral family, how do we know which classes of functions will appear in the
results?

» What is a good functional basis (with nice analytic/algebraic/geometric/numeric
properties) to represent the results?

» How to organize the calculation procedure to naturally reflect these properties?

» After obtaining an analytic expression, how to efficiently evaluated it numerically?

Let’s look at the simplest example: MPLs

5
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Multtiple polylogarithms (MPLs)

Generalization of logarithms and polylogarithms

¢ dt
G(ay,...,a,;7) = J G(a,,...,a,;!) Goncharov (1998)

Well-defined “transcendental weights” or “transcendentality”

Pure functions:

dG(al, coey an; Z) — Z G(ala ---»él\ia °°°9an; Z)dlog —
=1

diy1 — 4;

» Well-understood analytic structure (branch cuts): helps the analytic continuation to
different kinematic regions

» Many algebraic properties (shuflle, stuftle, symbols, Hopf, ...): helps to find the most

compact representation Gee 41k by Gang Yang

» Efficient numeric evaluation: helps to make phenomenological predictions :



MPLs from canonical differential equations

Henn: 1304.1806, 1412.2296

\p /
\‘ 1 I/) g1 =c(—5)tGo,1,0,2 5 x =1ls
S ’ I '
—_— 2 4 g2 :C(_S) SG1,0,2,07 amg(aj’ 6) — € ¢ | O g)(x, E)
l 3 ’\ g3 =ce(—s) stG1,1,1,1 / T
/72 Ps\ \
t “canonical basis” “e-form” simple poles



MPLs from canonical differential equations

Henn: 1304.1806, 1412.2296

\p /
\’ 1 1/) g1 =c(—5)tGo,1,0,2 5 x =1ls
] i i
—_— 2 4 g2 =c(—5)°5G1,0,2,0 0§ (z:€) = € 2 0 gz, e)
l 3 ’\ g3 =ce(—s)"stG11,1,1, / _x\lj— -
/72 P3\
t “canonical basis” “e-form” simple poles

e

Generic multivariate cases: d f(z, €) = edA(Z) f(z, €)



MPLs from canonical differential equations

Henn: 1304.1806, 1412.2296

\p /
\’ 1 1/) g1 =c(—5)tGo,1,0,2 5 x =1ls
S i
—_— 2 4 g2 =c(—5)°5G1,0,2,0 0§ (z:€) = € 2 0 gz, e)
l 3 ’\ g3 =ce(—s) stGi11, / _x\lj— -
/72 P3\
t “canonical basis” “e-form” simple poles

e

Generic multivariate cases: d f(z, €) = edA(Z) f(z, €)

flz.e) = Y €" f"()

n



MPLs from canonical DEs

Expansion coefficients in € consist of iterated integrals

<

f"(z) DJ dlog(an(zn))‘“J d log(az(@))J d log(ay(z))

<0 <0 £0

“Uniform transcendentality (UT)”

Therefore also the terms “UT integrals” and “UT basis”



MPLs from canonical DEs

Expansion coefficients in € consist of iterated integrals

<

f"(z) DJ dlog(an(zn))‘“J d log(az(@))J d log(ay(z))

<0 <0 £0

“Uniform transcendentality (UT)”

Therefore also the terms “UT integrals” and “UT basis”

In many cases can be converted to combinations of MPLs
(either by direct integration or by “bootstrapping”)



MPLs from canonical DEs

Expansion coefficients in € consist of iterated integrals

<

f"(z) DJ dlog(an(zn))‘“J d log(az(@))J d log(ay(z))

<0 <0 £0

“Uniform transcendentality (UT)”

Therefore also the terms “UT integrals” and “UT basis”

In many cases can be converted to combinations of MPLs
(either by direct integration or by “bootstrapping”)

Other benefits of having a UT basis:

» Even if no explicit form as MPLs, can be efficiently evaluated numerically

. : : Hidding: 2006.05510
» Amplitude coeflicients often take a simpler form

Boehm et al.: 2008.13194 8



How to find a canonical basis?

The traditional way: starting from the DEs
& - -
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Try to find a transformation matrix 7(x, €) such that f'(x,e) = T f is a canonical basis,

which means
T'AT - T 10T = e A(x)
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How to find a canonical basis?

The traditional way: starting from the DEs
0 - .
—f(x, €) = Alx, €) f(x, €)
0X

Try to find a transformation matrix 7(x, €) such that f'(x,e) = T f is a canonical basis,

which means
T'AT - T 10T = e A(x)

Algorithmic approach: Lee: 1411.0911

Prausa: 1701.00725; Gituliar, Magerya: 1701.04269;

Program packages: Meyer: 1705.06252

However, does not work well for irrational systems
(e.g., with algebraic extensions like square-roots)



Ul integrals and d-log integrands

It is believed that integrals with d-log integrands are canonical

J [G(Z)] ¢ /n\ d log ﬁ(z) Studied a lot in the context of / = 4 SYM
€ .
j=1

Arkani-Hamed et al., Bern et al., Drummond et al., Gehrmann et al., ...

weight O

An example: weight 1
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Ul integrals and d-log integrands

It is believed that integrals with d-log integrands are canonical

J [G(Z)] ¢ /n\ d log ﬁ(z) Studied a lot in the context of / = 4 SYM
€ .
j=1

Arkani-Hamed et al., Bern et al., Drummond et al., Gehrmann et al., ...

weight O

An example: weight 1

4g2jxﬁjzz dz, [Zz(x—zz)(l Z1)_€\ /

1
=1—¢elogx+¢€” (510g2x+ 2Li2(—x)> + .-

0 22 Jog 22— 4 21(z1 — 2)?

weight 2

We’d like to find d-log integrands which can be interpreted as Feynman integrals

Need to choose a concrete representation...

10



Baikov representation ., .. ...

Change of integration variables from momenta to propagators

(d—L—E-1)/2
ﬁ dk Hd G(z,, ... zN)]
id? | 7" z5 ¢ 2y .
i=1 L2 N Other uses of Baikov rep.:
. IBP reduction, deriving
Gram determinant . : .
differential equations, ...
9191 419 -t T4 9N
propagators :

det —Qz.' d1 —4> 4>

_qN.ql cooeo ceoo —qNoqN
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Baikov representation ., .. ...

Change of integration variables from momenta to propagators

(d—L—E—1)/2
ﬁ dk Hd G(z,, ... zN)]
id? | 7" z5 ¢ 2y .
i=1 L2 N Other uses of Baikov rep.:
. IBP reduction, deriving
Gram determinant . : .
differential equations, ...
9191 419 -t T4 9N
ropagators —q, - —q, - :
propag det 42. 91 —492° 49
_qN.ql coe coe —qNoqN

Looks d-logifd — L — E =1 —2¢ and all a, = 1, but this does not cover all situations!

We need a more generic form...
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Generalized loop-by-loop Baikov representation

L d 1 N G(zy, ..., 2y)]
[t |z | |

a) ,dp, ay,..-u9n
i1 {1 % {1 AN

- irreducible scalar product (ISP)

If some z; does not appear in the denominator, we can integrate over it to obtain a new

(d—L—E—1)/2

representation, e.g.:
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Generalized loop-by-loop Baikov representation

L d’k 1 N G(zy, ..., 2y)]
[t |z | |

aq 612. al,,. Ay
i1 {1 L2 {1 "TAN

- irreducible scalar product (ISP)

If some z; does not appear in the denominator, we can integrate over it to obtain a new

(d—L—-E-1)/2

representation, e.g.:

- 12— i loop-by-loop (LBL
J (az*+bz+c¢) ' "“dz ~ af (b2 — 4ac) Wome Eq}llvalent to the ?Op by-loop (LBL)
i Baikov representation

S L , _12—e b Generalized (LBL) representation, new
(az“+ bz+c) " "“zdz~a* (b — 4ac) — : : :
. a polynomial appears in denominator!
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Generalized loop-by-loop Baikov representation

L d 1 N G(zy, ..., 2y)]
[t |z | |

a) ,dp, ay,..-u9n
i1 {1 % {1 AN

- irreducible scalar product (ISP)

If some z; does not appear in the denominator, we can integrate over it to obtain a new

(d—L—E—1)/2

representation, e.g.:

4 12— Equivalent to the loop-by-loop (LBL
J (az* +bz+ ) '"fdz ~ af (b2 — 4ac) e, q, d , p-by-loop (LBL)
_ Baikov representation
%t _1n—e b Generalized (LBL) representation, new
J (az* + bz +¢)" " zdz ~ af (b2 — 4ac) ome Z — : ( ) .p :
_ a polynomial appears in denominator!

We will use this generalized form to look for d-log integrandes,
but how can we convert them back to Feynman integrals?



Geometric formulation of IBP equivalence

Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823
Baikov integrals are special cases of generalized hypergeometric integrals

I = J u(z) )

‘%/ ~

, , o r single-valued differential n-form
multivalued function vanishing

on the boundary 0¢
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Geometric formulation of IBP equivalence

Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823
Baikov integrals are special cases of generalized hypergeometric integrals

I = J u(z) )

‘%/ ~

, , o r single-valued differential n-form
multivalued function vanishing

on the boundary 0¢
covariant
Vo=d+oA  Gerivative
0= J d(u(z)5(2)) = [ u(z) V,,¢2)
€ / € w =dlogu  connection

(n — 1)-form
—— @(z) and @(z) + V ,5(2) are equivalent

(in the sense of integration)
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Iwisted cohomology

The covariant derivative V  creates a cochain complex of differential forms

QOM) 28 QI (M) 28 - Q"1 (M) 28 Q"(M) 5 0

Exact forms @: ¢ =V _¢& Closed forms ¢: V_ @ = 0
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Iwisted cohomology

The covariant derivative V  creates a cochain complex of differential forms

QOM) 28 QI (M) 28 - Q"1 (M) 28 Q"(M) 5 0
Exact forms @: ¢ =V _¢& Closed forms ¢: V_ @ = 0

The k-th twisted cohomology group

 ker(V,, : QM) - Q1L (M)) - {closed k-forms}
im(V,, : Q-1(M) - QkM))  {exact k-forms}

Hk

Hf) is a vector space whose elements (cocycles) are equivalence classes

(@] - p~@+ Vs
The same as IBP!
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Decomposition in cohomology group

The dimension of the vector space H, is

dim(H) = v = # of master integrals with a given

We may find a basis with v vectors  {e1|, (€3] ..., {€y|}

All vectors can be written as a linear combination

(p| = Z ci (e;]
1=1
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Decomposition in cohomology group

The dimension of the vector space H, is

dim(H) = v = # of master integrals with a given

We may find a basis with v vectors  {e1|, (€3] ..., {€y|}

All vectors can be written as a linear combination

(p| = Z ci (e;]
1=1

\

How to project out these coefficients?

We need something like an “inner-product”

15



Intersection numbers

To define an inner-product, introduce a dual vector space H"" with elements |@g)

—

Equivalence classes |PRr) : ®r ~ Pr + V_0 &R

The intersection numbers  cho, Matsumoto (1995)

1 1
(271’1)” la)(gOL) N PR = (27'[1)”

\

map to an equivalent, but compactly supported form

(PLIPR), = f Pr, A l_e(PR)

16



Decomposition via intersection numbers

1 Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823

Construct a dual basis of (e
<el‘d]> = 51] —> Ci = <§0‘dl>
V
or (| = Z (pld;) (e
1=1

Just like the decomposition in a usual vector space...
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Decomposition via intersection numbers

1 Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823

Construct a dual basis of (e
<el‘d]> = 51] —> Ci = <§0‘dl>
V
or (| = Z (pld;) (e
1=1

Just like the decomposition in a usual vector space...

Computing these inner-products is still a non-trivial task (skipped in this talk)

17



Application to generalized Baikov integrals

We identity

w =dlogu (2) /”\ gy
u(z) — H [GZ(Z)] —Yi—Pi€ Zfll .. .Z’?n Gfl oo G;}’/lm i1

/

polynomials resulting from

: . candidates for d-log integrands
integrating over some ISPs

Given a candidate ¢(z), we can convert it to Feynman integrals using

intersection theory, or by generalized IBP relations
Dlapa, Li, Zhang: 2103.04638

The remaining task is to construct enough n-forms

belonging to H, which lead to d-log integrals...

18



0 Nne- IOOP | nte g Id ls Chen, Jiang, Xu, LLY: 2008.03045

An arbitrary one-loop topology

# of independent external momenta: £ =n — 1

uz) ~ [G(z)] =B

(E=2)/2

Eeven: ¢(z) ~ [GQ)) /\ dlog(z)

A useful relation:

(E=3)/2 dz.
Eodd: 0@ ~yG® (G0 " \ — g 1- ﬁzgwl—wg Wz
- l _1 1\ L2 —X

Easy to verify that u(z)p(z) takes d-log form

19



Mutti-loop Integrals with maximal cuts

We now turn to multi-loop Baikov integrals

i Mg
Fo, .. a, 0..... O:/C U[Gz(z)} v 67’_ | z% Hdzk
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Mutti-loop Integrals with maximal cuts

i Mg
Foi. .a.0.. O:/C H[Gz(z)} i H;ﬁ Hdzk

- q Ahj=171 4k

For simplicity, we first consider maximal cuts

F;T;C.l.l’zm,@ ..... 0 = // _Hdzk- _H jjg X H [GZ(Z)} —vi—Bi€
LT 1L .

cut = integrate out using residues

Good things about maximal cuts:
» Determines the differential equations up to sub-topologies

» Helps to identify whether the integral family involves elliptic integrals

20



Un Ivarlate conStru Ctlon Chen, Jiang, Xu, LLY: 2008.03045

In the simplest cases, only one variable remains under maximal cuts

u(z) = H [G,-(Z)] b
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Un Ivarlate conStru Ctlon Chen, Jiang, Xu, LLY: 2008.03045

In the simplest cases, only one variable remains under maximal cuts

u(z) = H [Gi(z)] b

l

If all y/’s are integers, we can always factorize

€ 14
u(z) = T (= e i
j=0

...with distinguished roots ¢;

dim(H, ) =y w— neceds to construct v d-log integrals

R K ,
We choose:  ¢;(z) = - _OC. H(z —c;))%, (i=1,...,v)

21



Un Ivarlate conStru Ctlon Chen, Jiang, Xu, LLY: 2008.03045

If one of the y;’s is a half-integer

u(z) = % [(Z — o) (2 — 61)} “nhe H(z — cj)—%—ﬁf,-e
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Un Ivarlate conStru Ctlon Chen, Jiang, Xu, LLY: 2008.03045

If one of the y;’s is a half-integer

u(z) = % [(Z — o) (2 — 61)} “nhe H(z — cj)—%—ﬁf;e

j=2

dim(H,) = v w———- needs to construct v d-log integrals

. Ko z ,
¢1 (Z) — 1/2—~7 (Z — Cj)’yj
[(z—co)(z—cl)] / H

j=2
We choose:

| 74

e = o Vo) T )

Z — C; [(Z . C())(Z o Cl)] 1/2—vy1 s
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Un Ivarlate conStru Ctlon Chen, Jiang, Xu, LLY: 2008.03045

If one of the y;’s is a half-integer

u(z) = % [(Z — o) (2 — 61)} “nhe H(z — cj)—%—ﬁf;e

J=2

dim(H,) = v w———- needs to construct v d-log integrals

b1 (2) = & )}1/2— H(Z - Cj)%'

We choose:

| 74

ey = S0 Mozl .

Z — C; [(Z . C())(Z o Cl)] 1/2—v1 i

[t is easy to verify that u(z)gbj(z) are d-log integrands
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Un Ivarlate conStru Ctlon Chen, Jiang, Xu, LLY: 2008.03045

If one of the y;’s is a half-integer

u(z) = % [(Z — o) (2 — 61)} “nhe H(z — cj)—%—ﬁf,-e

J=2

dim(H,) = v w———- needs to construct v d-log integrals

b1 (2) = & )}1/2— H(Z - Cj)’yé

We choose:

| 74

ey = S0 Mozl .

Z — C; [(Z . C())(Z o Cl)] 1/2—v1 i

[t is easy to verify that u(z)¢j(z) are d-log integrands

Beyond these two cases, one expect appearance of elliptic integrals! ,



Massless double box on maximal cuts
Chen, Jiang, Xu, LLY: 2008.03045

/ L s +1) ‘
u(z) = —( ) 77176 (s + 2)f(t — 7)1 %€

a)=dlog(u)=< €, I+2 1+e¢
S+ Z I —Z Z a“

dim(H,) = 2
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Massless double box on maximal cuts
Chen, Jiang, Xu, LLY: 2008.03045

/ L s +1) )
u(z) = —( ) 7717 (s + )t — 7)1 7%

a)=dlog(u)=< €, I+2 1+e¢
S+ Z I —Z Z a“

dim(H,) = 2

( )
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Massless double box on maximal cuts e, e o, LLY: 20080304

/ u(z) = i ( s+ D) ) 7717 (s 4+ 2)(t — )~ 17%¢

1+2 1+
a)=dlog(u)=< S M €>dz
S+ 2 [ —Z Z

dim(H,) = 2
No half-integer powers: ¢, = s°zdz, ¢, = s*(t —2)dz

Pick two arbitrary master integrals:

El — F1,1,1,1,1,1,1,o,o» Ez — F1,2,1,1,1,1,1,0,o

14 2¢
——- ()| = dz, (| =

Z

dz
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Massless double box on maximal cuts e, e o, LLY: 20080304

/ Performing the decomposition gives

1 +3 (1 +
Il — S( 6) El | > ( 6) E2
2€ 2e(1 + 2¢)

1 + 3¢) + 2et (1 +
I, = s ( €) + 2¢ E, st(1 + €) E,
2€ 2¢(1 + 2¢)

Check the DEs (on maximal cuts)

_Z 1 0 ——
i Il — ¢ S S+t Il é Il — ¢ t(s+t) Il
S S8
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Multivariate construction

In the generic multivariate case, we perform the construction variable-by-variable

Many examples worked out:

Chen, Jiang, Xu, LLY: 2008.03045; Ma, Wang,
Xu, LLY, Zhou: 2105.06316; and work to appear

But there are still questions to be answered...
25



Beyond MPLs

[t is well-known that we need functions beyond MPLs, e.g.,
(integrals of) elliptic integrals in many realistic situations

* dt .
F(x: k) = J . /_
0 \/(1 — 12)(1 — k?12) h

X 1,242
E(x;k)=J V1 — k%t
0 v1-12

What is a good functional basis and how do we organize the calculation?

26



Elll ptl c M PLS Broedel et al.: 1809.10698; and many more references

A class of functions containing (integrals) of elliptic integrals, and sharing many important
features of ordinary MPLs

X
Esl el iekix,ad) = / dt U, (c1,t,a) Eq4( 2 o ek st, a)
0
Pure functions

d&, ~ Z (functions with lower weights) X (one-forms)

Shuftle algebra

Ex(Ar -+ Ay, @) Ea(Apyr -+ Apgi,@) = Y Ea(Ap(r) -+ Ag (ot T, @)
oeX(k,l)

And many more...

How do these functions arise from differential equations?
27



Elliptic canonical basis

In the elliptic cases, one may still find a basis which satisfy

4 = See, e.g., Weinzierl: 1912.02578
df(z, €) = € dAR) f(z, €) X

and references therein

where f(zZ, €) are non-algebraic combinations of Feynman integrals
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Elliptic canonical basis

In the elliptic cases, one may still find a basis which satisty

4 = See, e.g., Weinzierl: 1912.02578
df(z,€) = e dARz) f(z, €) -

and references therein

where f(zZ, €) are non-algebraic combinations of Feynman integrals

How can we construct such a basis? Our attempt: elliptic d-log forms

Look for combinations of dK(f;(z)) A d1og(f>(2)) A -+ and dE(f,(2)) A d1og(f>(2)) A -+
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Elliptic canonical basis

In the elliptic cases, one may still find a basis which satisty

4 = See, e.g., Weinzierl: 1912.02578
df(z,€) = e dARz) f(z, €) -

and references therein

where f(zZ, €) are non-algebraic combinations of Feynman integrals

How can we construct such a basis? Our attempt: elliptic d-log forms

Look for combinations of dK(f;(z)) A d1og(f>(2)) A -+ and dE(f,(2)) A d1og(f>(2)) A -+

Preliminary results for the kite integral —/ N
RN /_ Stay tuned...
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summary and outlook

» Constructive approach to find canonical bases for massive integrals (with many square-
roots)

» Future generalization to elliptic sectors
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summary and outlook

» Constructive approach to find canonical bases for massive integrals (with many square-
roots)

» Future generalization to elliptic sectors

Thank you!



