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FIG. 1: Integral topologies for massless five-particle
scattering at two loops.

pi are massless external momenta. We also introduce
the parity-odd invariant ε5 as

ε5 = tr
[
γ5/p1/p2/p3/p4

]
. (1)

We denote the loop momenta for the double-pentagon
family by k1 and k2, defined as shown in Fig. 1c.
The inverse propagators are

D1 = k21 , D2 = (−p1 + k1)2 ,

D3 = (−p1 − p2 + k1)2 , D4 = k22 ,

D5 = (p4 + p5 + k2)2 , D6 = (p5 + k2)2 ,

D7 = (k1 − k2)2 , D8 = (p3 + k1 − k2)2 ,

D9 = (p5 + k1)2 , D10 = (−p1 + k2)2 ,

D11 = (−p1 − p2 + k2)2 ,

(2)

where D9, D10 and D11 are irreducible scalar products
(ISPs).

LEADING SINGULARITIES AND UNIFORM
TRANSCENDENTAL WEIGHT INTEGRALS

The integrals of the double-pentagon family, shown in
Fig. 1c, can be related through integration-by-parts re-
lations [34–36] to a basis of 108 master integrals. Out of
these, 9 are in the so-called top sector, namely they have
all 8 possible propagators. Our goal is therefore to find
108 linearly independent UT integrals.
The integrals of the sub-topologies are already known,

because they are either sub-topologies of the penta-
box [9, 29] and of the hexa-box [30] families, or they
correspond to sectors with less than five external mo-
menta [37, 38]. In order to complete the UT basis, we
begin by searching for four-dimensional d log integrals,
which are closely related to UT integrals [24].
An #-loop four-dimensional d log integral is an integral

whose four-dimensional integrand Ω can be cast in the
form

Ω =
∑

I=(i1,...,i4!)

cI d logRi1 ∧ . . . ∧ d logRi4! , (3)

where the Q-valued constants cI are the leading singu-
larities of Ω.

In order to perform the loop integration in D = 4− 2ε
dimensions, where ε is the dimensional regulator, it is
necessary to clarify how the integrand is to be defined
away from four dimensions. For example, one may sim-
ply “upgrade” the loop momenta from 4-dimensional to
D-dimensional (abbreviated as 4d and Dd) ones. We
call this the “näıve upgrade” of a 4d integrand. While
this method is quite powerful in finding a UT basis,
and indeed it has already found many successful appli-
cations [23, 39], the freedom involved in the upgrade can
become important, especially for integrals with many
kinematic scales. We first review the four-dimensional
analysis, and then provide a method of fixing the free-
dom, while maintaining the advantages of the canonical
differential equations method.
In this Letter, we use two techniques to find 4d d log

integrals.
(1) The algorithm [25], which can decide if a given

rational integrand can be cast in d log form (3). Starting
from a generic ansatz for the numerator, this algorithm
can classify all possible 4d d log integrals in a given family.
(2) Using computational algebraic geometry, we con-

sider a generic ansatz for the numerator Neven =∑
α cαmα of the parity-even, or Nodd =

∑
α cαmα/ε5 of

the parity-odd d log integrals. Each cα is a polynomial in
sij , and mα is a monomial in the scalar products. By re-
quiring the 4d leading singularities of the ansatz to match
a given list of rational numbers, we can use the module
lift techniques [40] in computational algebraic geometry
to calculate all cα and to obtain a 4d d log basis. This
method usually needs only a very simple ansatz, and the
module lift can then be performed through the computer
algebra system Singular [41].
One interesting phenomenon is that, for the double-

pentagon family, the näıve upgrade of a 4d d log integral
is in general not UT. Let us take the 4d d log integrals
presented in Ref. [42] as examples. The sum of the first
and the fifth d log integral numerators for the double-
pentagon diagram in Ref. [42], which we denote by B1 +
B5, does not yield a UT integral after the näıve upgrade.
This can be assessed from the explicit computation of the
differential equation.
The obstruction of the näıve upgrade implies that, in

order to obtain UT integrals, we have to consider terms
in the integrands which vanish as D = 4. These terms
can be conveniently constructed from Gram determinants
involving the loop momenta k1 and k2,

Gij = G

(
ki, p1, p2, p3, p4
kj , p1, p2, p3, p4

)

, with i, j ∈ {1, 2} . (4)

An integrand whose numerator is proportional to a com-
bination of the different Gij explicitly vanishes in the
D → 4 limit. UT integral criteria based on 4d cuts or 4d
d log constructions can not detect these Gram determi-
nants, and may yield inaccurate answers on whether an
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pi are massless external momenta. We also introduce
the parity-odd invariant ε5 as

ε5 = tr
[
γ5/p1/p2/p3/p4

]
. (1)

We denote the loop momenta for the double-pentagon
family by k1 and k2, defined as shown in Fig. 1c.
The inverse propagators are

D1 = k21 , D2 = (−p1 + k1)2 ,
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D9 = (p5 + k1)2 , D10 = (−p1 + k2)2 ,
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where D9, D10 and D11 are irreducible scalar products
(ISPs).

LEADING SINGULARITIES AND UNIFORM
TRANSCENDENTAL WEIGHT INTEGRALS

The integrals of the double-pentagon family, shown in
Fig. 1c, can be related through integration-by-parts re-
lations [34–36] to a basis of 108 master integrals. Out of
these, 9 are in the so-called top sector, namely they have
all 8 possible propagators. Our goal is therefore to find
108 linearly independent UT integrals.
The integrals of the sub-topologies are already known,

because they are either sub-topologies of the penta-
box [9, 29] and of the hexa-box [30] families, or they
correspond to sectors with less than five external mo-
menta [37, 38]. In order to complete the UT basis, we
begin by searching for four-dimensional d log integrals,
which are closely related to UT integrals [24].
An #-loop four-dimensional d log integral is an integral

whose four-dimensional integrand Ω can be cast in the
form

Ω =
∑

I=(i1,...,i4!)

cI d logRi1 ∧ . . . ∧ d logRi4! , (3)

where the Q-valued constants cI are the leading singu-
larities of Ω.

In order to perform the loop integration in D = 4− 2ε
dimensions, where ε is the dimensional regulator, it is
necessary to clarify how the integrand is to be defined
away from four dimensions. For example, one may sim-
ply “upgrade” the loop momenta from 4-dimensional to
D-dimensional (abbreviated as 4d and Dd) ones. We
call this the “näıve upgrade” of a 4d integrand. While
this method is quite powerful in finding a UT basis,
and indeed it has already found many successful appli-
cations [23, 39], the freedom involved in the upgrade can
become important, especially for integrals with many
kinematic scales. We first review the four-dimensional
analysis, and then provide a method of fixing the free-
dom, while maintaining the advantages of the canonical
differential equations method.
In this Letter, we use two techniques to find 4d d log

integrals.
(1) The algorithm [25], which can decide if a given

rational integrand can be cast in d log form (3). Starting
from a generic ansatz for the numerator, this algorithm
can classify all possible 4d d log integrals in a given family.
(2) Using computational algebraic geometry, we con-

sider a generic ansatz for the numerator Neven =∑
α cαmα of the parity-even, or Nodd =

∑
α cαmα/ε5 of

the parity-odd d log integrals. Each cα is a polynomial in
sij , and mα is a monomial in the scalar products. By re-
quiring the 4d leading singularities of the ansatz to match
a given list of rational numbers, we can use the module
lift techniques [40] in computational algebraic geometry
to calculate all cα and to obtain a 4d d log basis. This
method usually needs only a very simple ansatz, and the
module lift can then be performed through the computer
algebra system Singular [41].
One interesting phenomenon is that, for the double-

pentagon family, the näıve upgrade of a 4d d log integral
is in general not UT. Let us take the 4d d log integrals
presented in Ref. [42] as examples. The sum of the first
and the fifth d log integral numerators for the double-
pentagon diagram in Ref. [42], which we denote by B1 +
B5, does not yield a UT integral after the näıve upgrade.
This can be assessed from the explicit computation of the
differential equation.
The obstruction of the näıve upgrade implies that, in

order to obtain UT integrals, we have to consider terms
in the integrands which vanish as D = 4. These terms
can be conveniently constructed from Gram determinants
involving the loop momenta k1 and k2,

Gij = G

(
ki, p1, p2, p3, p4
kj , p1, p2, p3, p4

)

, with i, j ∈ {1, 2} . (4)

An integrand whose numerator is proportional to a com-
bination of the different Gij explicitly vanishes in the
D → 4 limit. UT integral criteria based on 4d cuts or 4d
d log constructions can not detect these Gram determi-
nants, and may yield inaccurate answers on whether an
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FIG. 1: Representative cut diagram for the color
structure d

ABC
dABC = (N2

c
� 1)(N2

c
� 4)/Nc from

VRR (left) and RRR (right).

we use the method of Di↵erential Equations (DEs) [55–
57].

Note that up to this stage we have kept the rapidity
regulator ⌧ finite. The resulting MIs are functions of
z and ⌧ , and DEs in z and ⌧ can be constructed in the
standard way. The next step is to take the ⌧ ! 0 limit, as
in Eq. (7). We do so by expanding the DEs and the MIs
around ⌧ = 0 consistently, but keeping the full functional
dependence on z. We write a MI fi as a double series in
⌧ and ln ⌧ ,

fi(z, ⌧, ✏)
⌧!0
=

X

j

X

k=0

f
(j,k)
i

(z, ✏)⌧ j lnk ⌧ , (9)

Note that for individual diagram in Feynman gauge, the
result is absent of power-like singularity in ⌧ . However,
application of the generalized IBPs leads to power diver-
gence for individual MI. We found by observation that
only j � �1 is needed in Eq. (9), by checking explicitly
that terms with j = �2 and j = �3 vanish. In prin-
ciple we can also have terms like ⌧

✏ in the expansion.
However such terms can be discarded, because we can
always analytically continue to a region where ✏ > 0, and
take ⌧ ! 0, and then take ✏ ! 0. In practice we have
checked this by enlarging the ansatz in Eq. (9) by multi-
plying with ⌧

±n✏ for n = 0, . . . , 4. We found that when
substituting the MIs into the integrand, the coe�cients
for n = 1, . . . , 4 always vanish for each diagram. There-
fore these terms are spurious at the diagram level, and
we discard them in Eq. (9) to simplify our calculation.
We then substitute the double series in Eq. (9) into the
system of DEs, which are expanded in ⌧ , but with full
z dependence. By equating the ⌧

j lnk ⌧ coe�cient in the

DEs, we obtain a closed system of DEs in z for f
(j,k)
i

.
By considering the double series expansion, the number
of MIs are reduced to about 500 in total for VRR and
RRR.

The system of DEs in z can now be solved by the stan-
dard approach. They are most conveniently solved by
converting into the canonical form [57] by proper choice
of MIs [58–60]. For individual VRR or RRR, the alpha-
bet consist of five letters,

{z , 1� z , 1 + z , 2� z , z
2
� z + 1} . (10)

The DEs can be solved order-by-order in ✏ easily in terms
of Goncharov Polylogarithms. Remarkably, after sum-
ming the VRR and RRR contributions, and substituting
in the boundary constants determined below, the latter
two letters drop out from the sum. Therefore, Harmonic
Polylogarithms (HPLs) [61] are su�cient to describe the
final results.
The remaining task is to determine the boundary con-

stants for the DEs. To this end we consider the threshold
limit of the MIs, z ! 1. Following Ref. [36], we define
the so-called fully-di↵erential beam function [62],

bB(n,m)
q/i

(z,K+
,K
�
,K?) =

nY

j=0

R
d
d
lj

(2⇡)d

mY

r=0

R
d
d
kr

(2⇡)d�1
�+(k

2
r
)

· �
(d)(K �

mX

r=1

kr)µ
2✏(n+m)

|Sp
q i

(P, {l}, {k})|2 . (11)

The original eB is simply obtained by integrating the K
�

component,

eB(n,m)
q/i

(z, eK?) =
h
lim
⌧!0

| eK2
?|
�✏

Vd�2

Z 1

0
dK
�
e
�b0⌧ P ·K

P+

· bB(n,m)
q/i

(z, P+(1� z),K�, eK?)
i�����

⌧!1/⌫

. (12)

The advantage of having the fully-di↵erential function is
that now the threshold limit can be taken at the inte-
grand level. For that purpose, we adopt the strategy
of expansion by region [63]. For RRR, z ! 1 force
the leading region to be K

µ
! 0. VRR is more com-

plicated. Besides K
µ

! 0, we also need to consider
the scaling in the loop momentum, which can be either
soft or collinear [64]. Ultimately, expansion by region
relates all the boundary constants to those computed
for soft-virtual corrections to Higgs production at N3LO.
We have performed an independent calculation for these
constants, and found agreement with those in the litera-
ture [64–68].

THE RESULTS

We are ready to combine all the ingredients and present
the final results. The bare TMD beam function com-
puted in the last section contains poles in ✏ up to 1/✏6.
Using the known renormalization constant and the PDF
counter terms (which contain the famous three-loop split-
ting kernel [69, 70]), we find that all the poles can-
cel, and finite matching coe�cients can be extracted!
This provides a stringent check to our calculation. For
the convenience of reader, the relevant renormalization
counter terms are collected in the appendix. We refer to
Ref. [36, 37] for the detailed renormalization procedure.

Luo et al.: 1912.05778; Hua Xing Zhu, …
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pi are massless external momenta. We also introduce
the parity-odd invariant ε5 as

ε5 = tr
[
γ5/p1/p2/p3/p4

]
. (1)

We denote the loop momenta for the double-pentagon
family by k1 and k2, defined as shown in Fig. 1c.
The inverse propagators are

D1 = k21 , D2 = (−p1 + k1)2 ,

D3 = (−p1 − p2 + k1)2 , D4 = k22 ,

D5 = (p4 + p5 + k2)2 , D6 = (p5 + k2)2 ,

D7 = (k1 − k2)2 , D8 = (p3 + k1 − k2)2 ,

D9 = (p5 + k1)2 , D10 = (−p1 + k2)2 ,

D11 = (−p1 − p2 + k2)2 ,
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where D9, D10 and D11 are irreducible scalar products
(ISPs).

LEADING SINGULARITIES AND UNIFORM
TRANSCENDENTAL WEIGHT INTEGRALS

The integrals of the double-pentagon family, shown in
Fig. 1c, can be related through integration-by-parts re-
lations [34–36] to a basis of 108 master integrals. Out of
these, 9 are in the so-called top sector, namely they have
all 8 possible propagators. Our goal is therefore to find
108 linearly independent UT integrals.
The integrals of the sub-topologies are already known,

because they are either sub-topologies of the penta-
box [9, 29] and of the hexa-box [30] families, or they
correspond to sectors with less than five external mo-
menta [37, 38]. In order to complete the UT basis, we
begin by searching for four-dimensional d log integrals,
which are closely related to UT integrals [24].
An #-loop four-dimensional d log integral is an integral

whose four-dimensional integrand Ω can be cast in the
form

Ω =
∑

I=(i1,...,i4!)

cI d logRi1 ∧ . . . ∧ d logRi4! , (3)

where the Q-valued constants cI are the leading singu-
larities of Ω.

In order to perform the loop integration in D = 4− 2ε
dimensions, where ε is the dimensional regulator, it is
necessary to clarify how the integrand is to be defined
away from four dimensions. For example, one may sim-
ply “upgrade” the loop momenta from 4-dimensional to
D-dimensional (abbreviated as 4d and Dd) ones. We
call this the “näıve upgrade” of a 4d integrand. While
this method is quite powerful in finding a UT basis,
and indeed it has already found many successful appli-
cations [23, 39], the freedom involved in the upgrade can
become important, especially for integrals with many
kinematic scales. We first review the four-dimensional
analysis, and then provide a method of fixing the free-
dom, while maintaining the advantages of the canonical
differential equations method.
In this Letter, we use two techniques to find 4d d log

integrals.
(1) The algorithm [25], which can decide if a given

rational integrand can be cast in d log form (3). Starting
from a generic ansatz for the numerator, this algorithm
can classify all possible 4d d log integrals in a given family.
(2) Using computational algebraic geometry, we con-

sider a generic ansatz for the numerator Neven =∑
α cαmα of the parity-even, or Nodd =

∑
α cαmα/ε5 of

the parity-odd d log integrals. Each cα is a polynomial in
sij , and mα is a monomial in the scalar products. By re-
quiring the 4d leading singularities of the ansatz to match
a given list of rational numbers, we can use the module
lift techniques [40] in computational algebraic geometry
to calculate all cα and to obtain a 4d d log basis. This
method usually needs only a very simple ansatz, and the
module lift can then be performed through the computer
algebra system Singular [41].
One interesting phenomenon is that, for the double-

pentagon family, the näıve upgrade of a 4d d log integral
is in general not UT. Let us take the 4d d log integrals
presented in Ref. [42] as examples. The sum of the first
and the fifth d log integral numerators for the double-
pentagon diagram in Ref. [42], which we denote by B1 +
B5, does not yield a UT integral after the näıve upgrade.
This can be assessed from the explicit computation of the
differential equation.
The obstruction of the näıve upgrade implies that, in

order to obtain UT integrals, we have to consider terms
in the integrands which vanish as D = 4. These terms
can be conveniently constructed from Gram determinants
involving the loop momenta k1 and k2,

Gij = G

(
ki, p1, p2, p3, p4
kj , p1, p2, p3, p4

)

, with i, j ∈ {1, 2} . (4)

An integrand whose numerator is proportional to a com-
bination of the different Gij explicitly vanishes in the
D → 4 limit. UT integral criteria based on 4d cuts or 4d
d log constructions can not detect these Gram determi-
nants, and may yield inaccurate answers on whether an
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Figure 1. Sample four-loop diagrams contributing to different color structures in eq. (2.4). Dou-
ble lines denote the four light-like Wilson lines, and wavy lines represent gluons. Diagram (a)
contributes to Γ(4)

s or Γ(4)
f for a scalar or fermion in the loop, respectively; diagram (b) contributes

to Γ(4); diagram (c) contributes to Γ(4) and Γ(4)
g .

insertion. Section 3 is dedicated to the analytic calculation of the relevant three-loop

Feynman integrals. After reviewing the definitions in 3.1, we explain in section 3.2 our

method for choosing a basis of integrals possessing simple transcendental weight properties.

We make use of a convenient choice of loop variables to simplify this analysis. In section 3.3

we apply the differential equations method to compute all basis integrals. We present the

integrated results for F to three loops in section 4. In section 5, we derive general formulae

for performing the integration over the Lagrangian insertion, to extract the cusp anomalous

dimension at the next loop order. Section 6 contains the main results of this paper – the

expressions for the four-loop cusp anomalous dimension in N = 4 super Yang-Mills and in

QCD, for an arbitrary representation of the Wilson line. Finally, we conclude and give an

outlook in section 7.

2 Cusp anomalous dimension from a correlation function

The connection between infrared asymptotics of on-shell scattering amplitudes and form

factors and ultraviolet divergences of semi-infinite cusped Wilson loops has been previously

used to obtain the cusp anomalous dimension. In this paper, we follow another approach

to computing the cusp anomalous dimension that relies on the relation between off-shell

correlation functions of local operators and light-like Wilson loops.

2.1 The quartic Casimir terms in different gauge theories

As was mentioned above, the cusp anomalous dimension governs the ultraviolet divergences

of light-like Wilson loops. The simplest example of such an object is a null rectangular

Wilson loop

〈WA(x1, x2, x3, x4)〉 =
1

NA
〈trA P exp

(

i

∮

C
dx · A(x)

)

〉 , (2.1)

where the contour C is a rectangle with vertices located at four points xi that are light-like

separated, x2i,i+1 = 0 (with i = 1, . . . , 4 and i + 4 ≡ i). We took the representation to be

– 4 –

Four-loop cusp anomalous dimensions
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we use the method of Di↵erential Equations (DEs) [55–
57].

Note that up to this stage we have kept the rapidity
regulator ⌧ finite. The resulting MIs are functions of
z and ⌧ , and DEs in z and ⌧ can be constructed in the
standard way. The next step is to take the ⌧ ! 0 limit, as
in Eq. (7). We do so by expanding the DEs and the MIs
around ⌧ = 0 consistently, but keeping the full functional
dependence on z. We write a MI fi as a double series in
⌧ and ln ⌧ ,

fi(z, ⌧, ✏)
⌧!0
=

X

j

X

k=0

f
(j,k)
i

(z, ✏)⌧ j lnk ⌧ , (9)

Note that for individual diagram in Feynman gauge, the
result is absent of power-like singularity in ⌧ . However,
application of the generalized IBPs leads to power diver-
gence for individual MI. We found by observation that
only j � �1 is needed in Eq. (9), by checking explicitly
that terms with j = �2 and j = �3 vanish. In prin-
ciple we can also have terms like ⌧

✏ in the expansion.
However such terms can be discarded, because we can
always analytically continue to a region where ✏ > 0, and
take ⌧ ! 0, and then take ✏ ! 0. In practice we have
checked this by enlarging the ansatz in Eq. (9) by multi-
plying with ⌧

±n✏ for n = 0, . . . , 4. We found that when
substituting the MIs into the integrand, the coe�cients
for n = 1, . . . , 4 always vanish for each diagram. There-
fore these terms are spurious at the diagram level, and
we discard them in Eq. (9) to simplify our calculation.
We then substitute the double series in Eq. (9) into the
system of DEs, which are expanded in ⌧ , but with full
z dependence. By equating the ⌧

j lnk ⌧ coe�cient in the

DEs, we obtain a closed system of DEs in z for f
(j,k)
i

.
By considering the double series expansion, the number
of MIs are reduced to about 500 in total for VRR and
RRR.

The system of DEs in z can now be solved by the stan-
dard approach. They are most conveniently solved by
converting into the canonical form [57] by proper choice
of MIs [58–60]. For individual VRR or RRR, the alpha-
bet consist of five letters,

{z , 1� z , 1 + z , 2� z , z
2
� z + 1} . (10)

The DEs can be solved order-by-order in ✏ easily in terms
of Goncharov Polylogarithms. Remarkably, after sum-
ming the VRR and RRR contributions, and substituting
in the boundary constants determined below, the latter
two letters drop out from the sum. Therefore, Harmonic
Polylogarithms (HPLs) [61] are su�cient to describe the
final results.
The remaining task is to determine the boundary con-

stants for the DEs. To this end we consider the threshold
limit of the MIs, z ! 1. Following Ref. [36], we define
the so-called fully-di↵erential beam function [62],

bB(n,m)
q/i

(z,K+
,K
�
,K?) =

nY

j=0

R
d
d
lj

(2⇡)d

mY

r=0

R
d
d
kr

(2⇡)d�1
�+(k

2
r
)

· �
(d)(K �

mX

r=1

kr)µ
2✏(n+m)

|Sp
q i

(P, {l}, {k})|2 . (11)

The original eB is simply obtained by integrating the K
�

component,

eB(n,m)
q/i

(z, eK?) =
h
lim
⌧!0

| eK2
?|
�✏

Vd�2

Z 1

0
dK
�
e
�b0⌧ P ·K

P+

· bB(n,m)
q/i

(z, P+(1� z),K�, eK?)
i�����

⌧!1/⌫

. (12)

The advantage of having the fully-di↵erential function is
that now the threshold limit can be taken at the inte-
grand level. For that purpose, we adopt the strategy
of expansion by region [63]. For RRR, z ! 1 force
the leading region to be K

µ
! 0. VRR is more com-

plicated. Besides K
µ

! 0, we also need to consider
the scaling in the loop momentum, which can be either
soft or collinear [64]. Ultimately, expansion by region
relates all the boundary constants to those computed
for soft-virtual corrections to Higgs production at N3LO.
We have performed an independent calculation for these
constants, and found agreement with those in the litera-
ture [64–68].

THE RESULTS

We are ready to combine all the ingredients and present
the final results. The bare TMD beam function com-
puted in the last section contains poles in ✏ up to 1/✏6.
Using the known renormalization constant and the PDF
counter terms (which contain the famous three-loop split-
ting kernel [69, 70]), we find that all the poles can-
cel, and finite matching coe�cients can be extracted!
This provides a stringent check to our calculation. For
the convenience of reader, the relevant renormalization
counter terms are collected in the appendix. We refer to
Ref. [36, 37] for the detailed renormalization procedure.

Luo et al.: 1912.05778; Hua Xing Zhu, …
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Figure 1: Sample Feynman diagram contributing to gg → ZH at LO and NLO. Solid,
wavy, dashed and curly lines denote quarks, Z and Higgs bosons, and gluons, respectively.
Internal wavy lines can also represent Goldstone bosons.

produced via a s-channel Z or χ boson exchange. Both bottom and top quarks can be
present in the loop. In the case of the box diagrams the Higgs boson couples directly
to the quark running in the loop and thus only internal top quarks are present since we
neglect the bottom Yukawa coupling. The effect of a finite bottom quark mass on the LO
cross section is at the per mille level.

In the heavy-mt approximation the diagrams with internal top quarks reduce to vacuum
integrals. The massless triangle diagrams are computed with the help of simple form
factor-type integrals which can be expressed in terms on Γ functions (see, e.g., Appendix A
of Ref. [26]).

We perform the calculation for general Rξ gauge and check that the gauge parameter ξZ
present in the Z and χ boson propagators drops out in the result for the cross section. In
fact, it cancels between the diagrams with top and bottom quark triangles and a neutral
Goldstone boson or a Z boson in the s channel. Note, that for special choices of ξZ the
calculation can be significantly simplified. For example, in Landau gauge the massless
triangle contribution with virtual Z boson vanishes [11]. Note that due to Furry’s theorem
there is no contribution from the vector coupling of the Z. Altogether there are 16 LO
Feynman diagrams, all of them are individually finite.

We compute the LO amplitudes both in an expansion for large top quark mass including
terms up to order 1/m8

t , and without applying any approximation and keeping the full top
quark mass dependence. In the latter case we have reduced the tensor integrals to scalar
three- and four-point integrals which are evaluated using the LoopTools library [27, 28].
We want to mention that in the limit mt → ∞ the calculation is significantly simplified.
In particular, all top quark triangle contributions with a coupling of the Z boson vanish.

For the numerical results we use the following input values [29]

MZ = 91.1876 GeV ,
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A(1),1 A(1),Nl A(1),Nh

Figure 1: Sample Feynman diagrams corresponding to various internal flavour contribu-
tions at one loop as specified in Eq. (2.3). Red lines, black spiral lines and black lines
represent massless quarks, gluons and top quarks, respectively.

A(2),1 A(2),Nl A(2),Nh

A(2),N2
l A(2),NlNh A(2),N2

h

Figure 2: Sample Feynman diagrams corresponding to various internal flavour contribu-
tions at two loops as specified in Eq. (2.4). Red lines, black spiral lines and black lines
represent massless quarks, gluons and top quarks, respectively.

2 Leading colour t̄tgg amplitudes

We consider a scattering process involving a pair of top quarks and two gluons

0 ! t̄(p1) + t(p2) + g(p3) + g(p4),

where p
2
1 = p

2
2 = m

2
t and p

2
3 = p

3
4 = 0. The kinematic invariants for this process are the

top-quark mass mt, and the two Mandelstam variables

s = (p1 + p2)
2
, t = (p2 + p3)

2
. (2.1)

In this work we consider the leading colour contributions of the t̄tgg amplitude up to
two-loop level, where at two loops, only planar configurations arise. The colour decompo-
sition of the leading colour L-loop t̄tgg amplitude is given by

A
(L)(1t̄, 2t, 3g, 4g) = n

L
g
2
s


(T a3T

a4) ī1
i2

A
(L)(1t̄, 2t, 3g, 4g) + (3 $ 4)

�
, (2.2)

where n = m✏↵s/(4⇡), ↵s = g
2
s/(4⇡), m✏ = i

�
4⇡/m2

t

�✏
e
�✏�E , gs is the strong coupling

constant and (T a) j̄
i are the fundamental generators of SU(Nc).

– 3 –

We are also interested in loop integrals with massive particles, 
especially in electroweak physics 
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We derive an analytic representation of the ten-particle, two-loop double-box integral as an
elliptic integral over weight-three polylogarithms. To obtain this form, we first derive a four-fold,
rational (Feynman-)parametric representation for the integral, expressed directly in terms of
dual-conformally invariant cross-ratios; from this, the desired form is easily obtained. The essential
features of this integral are illustrated by means of a simplified toy model, and we attach the relevant
expressions for both integrals in ancillary files. We propose a normalization for such integrals that
renders all of their polylogarithmic degenerations pure, and we discuss the need for a new ‘sym-
bology’ of iterated elliptic/polylogarithmic integrals in order to bring them to a more canonical form.

INTRODUCTION

In recent years, our ability to compute scattering am-
plitudes has advanced enormously. Loop integrands for
scattering amplitudes are now known for a broad class of
theories, loop orders, and multiplicities (see e.g. [1–6]),
and substantial inroads have been made towards the de-
velopment of general loop integration technology [7–10].
Our understanding of the kinds of functions that result
from these integrations has also experienced remarkable
progress, especially in the case of (‘Goncharov’) hyper-
logarithms [11], which capture most of perturbation the-
ory at low orders and multiplicity [12–17]. However, as
exemplified by the two-dimensional sunrise integral with
massive propagators (see e.g. [18–23]), even the simplest
quantum field theories are known to encounter elliptic
and other non-polylogarithmic functions—for which the
powerful tools of symbology, Hopf algebras, coproducts,
etc. that have fueled such progress in the polylogarithmic
case remain to be fully developed (but see e.g. [24, 25]).

In this work, we study what is perhaps the sim-
plest non-polylogarithmic contribution to scattering am-
plitudes of massless particles in four dimensions: the el-
liptic double-box integral. This may be represented with
either a Feynman diagram or its dual graph, depicted by

I
ell
db ⌘ = . (1)

It may be viewed as a contribution to the ten-point am-
plitude in massless '4 theory—but it also plays a signifi-
cant role in (pure or supersymmetric) Yang-Mills and in-
tegrable fishnet theories [26–28]. In the context of planar
maximally supersymmetric Yang-Mills, it is the sole di-
agram contributing to a particular helicity configuration
[30], making it the entire amplitude in that case—and the
same is true for the integrable fishnet theories. Consid-
erations of maximal cuts and di↵erential equations have
led some authors to conjecture [29–32] that (1) could be
written schematically in the form

I
ell
db ⇠

Z
d↵p
Q(↵)

�
Li3(· · · )+ . . .

�
, (2)

where Q(↵) is an irreducible quartic in ↵, and thus en-
codes an elliptic curve. This form is attractive because it
relates (1) to well-known functions while manifesting its
ellipticity.
In this Letter, we realize such a representation ex-

plicitly by direct integration of Feynman parameters,
without resorting to an ansatz or to solving di↵erential
equations. Specifically, we follow the strategy described
in ref. [10] to obtain a manifestly dual-conformally in-
variant, rational four-fold (Feynman-)parametric integral
representation of Ielldb, and carry out three of the integra-
tions to obtain the desired form (2). In what follows, we
outline the steps involved, and describe how (2) may be
brought into a more canonical form with a normalization
suggested by its degenerations. As we will see, this form
points to the need for a ‘symbology’ for mixed iterated
elliptic/polylogarithmic integrals. For the sake of clarity
and illustration, we first consider a simpler toy model of
I
ell
db restricted to a particular three-dimensional subspace
of ten-particle kinematics that nevertheless preserves all
of its essential structure. The full case of I

ell
db will be

described subsequently.

ELLIPTIC TOY MODEL

Our toy model depends symmetrically on only three
cross-ratios. This is most directly described in terms of
(the dual-momentum coordinates of) six massless par-
ticles, but it can also be obtained from I

ell
db through a

(maximal) sequence of constraints preserving ellipticity.

(Dual-Conformal) Loop Integration

via Feynman Parameterization

In dual-momentum x-coordinates, the momentum of
the a

th external particle is defined as the di↵erence
pa⌘ (xa+1�xa) (with cyclic labeling understood). In
terms of these coordinates, we may define

(a, b)=(b, a)⌘ (xa�xb)
2=(pa+ . . .+pb�1)

2
. (3)

(‘(a, b)’ is more frequently denoted ‘x2
ab’.) Each loop mo-

mentum `i may be represented by a dual point x`i , and
inverse propagators expressed as (`i, a)⌘(x`i�xa)2.
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dual-conformally invariant cross-ratios; from this, the desired form is easily obtained. The essential
features of this integral are illustrated by means of a simplified toy model, and we attach the relevant
expressions for both integrals in ancillary files. We propose a normalization for such integrals that
renders all of their polylogarithmic degenerations pure, and we discuss the need for a new ‘sym-
bology’ of iterated elliptic/polylogarithmic integrals in order to bring them to a more canonical form.

INTRODUCTION

In recent years, our ability to compute scattering am-
plitudes has advanced enormously. Loop integrands for
scattering amplitudes are now known for a broad class of
theories, loop orders, and multiplicities (see e.g. [1–6]),
and substantial inroads have been made towards the de-
velopment of general loop integration technology [7–10].
Our understanding of the kinds of functions that result
from these integrations has also experienced remarkable
progress, especially in the case of (‘Goncharov’) hyper-
logarithms [11], which capture most of perturbation the-
ory at low orders and multiplicity [12–17]. However, as
exemplified by the two-dimensional sunrise integral with
massive propagators (see e.g. [18–23]), even the simplest
quantum field theories are known to encounter elliptic
and other non-polylogarithmic functions—for which the
powerful tools of symbology, Hopf algebras, coproducts,
etc. that have fueled such progress in the polylogarithmic
case remain to be fully developed (but see e.g. [24, 25]).

In this work, we study what is perhaps the sim-
plest non-polylogarithmic contribution to scattering am-
plitudes of massless particles in four dimensions: the el-
liptic double-box integral. This may be represented with
either a Feynman diagram or its dual graph, depicted by

I
ell
db ⌘ = . (1)

It may be viewed as a contribution to the ten-point am-
plitude in massless '4 theory—but it also plays a signifi-
cant role in (pure or supersymmetric) Yang-Mills and in-
tegrable fishnet theories [26–28]. In the context of planar
maximally supersymmetric Yang-Mills, it is the sole di-
agram contributing to a particular helicity configuration
[30], making it the entire amplitude in that case—and the
same is true for the integrable fishnet theories. Consid-
erations of maximal cuts and di↵erential equations have
led some authors to conjecture [29–32] that (1) could be
written schematically in the form

I
ell
db ⇠

Z
d↵p
Q(↵)

�
Li3(· · · )+ . . .

�
, (2)

where Q(↵) is an irreducible quartic in ↵, and thus en-
codes an elliptic curve. This form is attractive because it
relates (1) to well-known functions while manifesting its
ellipticity.
In this Letter, we realize such a representation ex-

plicitly by direct integration of Feynman parameters,
without resorting to an ansatz or to solving di↵erential
equations. Specifically, we follow the strategy described
in ref. [10] to obtain a manifestly dual-conformally in-
variant, rational four-fold (Feynman-)parametric integral
representation of Ielldb, and carry out three of the integra-
tions to obtain the desired form (2). In what follows, we
outline the steps involved, and describe how (2) may be
brought into a more canonical form with a normalization
suggested by its degenerations. As we will see, this form
points to the need for a ‘symbology’ for mixed iterated
elliptic/polylogarithmic integrals. For the sake of clarity
and illustration, we first consider a simpler toy model of
I
ell
db restricted to a particular three-dimensional subspace
of ten-particle kinematics that nevertheless preserves all
of its essential structure. The full case of I

ell
db will be

described subsequently.

ELLIPTIC TOY MODEL

Our toy model depends symmetrically on only three
cross-ratios. This is most directly described in terms of
(the dual-momentum coordinates of) six massless par-
ticles, but it can also be obtained from I

ell
db through a

(maximal) sequence of constraints preserving ellipticity.

(Dual-Conformal) Loop Integration

via Feynman Parameterization

In dual-momentum x-coordinates, the momentum of
the a

th external particle is defined as the di↵erence
pa⌘ (xa+1�xa) (with cyclic labeling understood). In
terms of these coordinates, we may define

(a, b)=(b, a)⌘ (xa�xb)
2=(pa+ . . .+pb�1)

2
. (3)

(‘(a, b)’ is more frequently denoted ‘x2
ab’.) Each loop mo-

mentum `i may be represented by a dual point x`i , and
inverse propagators expressed as (`i, a)⌘(x`i�xa)2.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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INTRODUCTION

In recent years, our ability to compute scattering am-
plitudes has advanced enormously. Loop integrands for
scattering amplitudes are now known for a broad class of
theories, loop orders, and multiplicities (see e.g. [1–6]),
and substantial inroads have been made towards the de-
velopment of general loop integration technology [7–10].
Our understanding of the kinds of functions that result
from these integrations has also experienced remarkable
progress, especially in the case of (‘Goncharov’) hyper-
logarithms [11], which capture most of perturbation the-
ory at low orders and multiplicity [12–17]. However, as
exemplified by the two-dimensional sunrise integral with
massive propagators (see e.g. [18–23]), even the simplest
quantum field theories are known to encounter elliptic
and other non-polylogarithmic functions—for which the
powerful tools of symbology, Hopf algebras, coproducts,
etc. that have fueled such progress in the polylogarithmic
case remain to be fully developed (but see e.g. [24, 25]).

In this work, we study what is perhaps the sim-
plest non-polylogarithmic contribution to scattering am-
plitudes of massless particles in four dimensions: the el-
liptic double-box integral. This may be represented with
either a Feynman diagram or its dual graph, depicted by

I
ell
db ⌘ = . (1)

It may be viewed as a contribution to the ten-point am-
plitude in massless '4 theory—but it also plays a signifi-
cant role in (pure or supersymmetric) Yang-Mills and in-
tegrable fishnet theories [26–28]. In the context of planar
maximally supersymmetric Yang-Mills, it is the sole di-
agram contributing to a particular helicity configuration
[30], making it the entire amplitude in that case—and the
same is true for the integrable fishnet theories. Consid-
erations of maximal cuts and di↵erential equations have
led some authors to conjecture [29–32] that (1) could be
written schematically in the form

I
ell
db ⇠

Z
d↵p
Q(↵)

�
Li3(· · · )+ . . .

�
, (2)

where Q(↵) is an irreducible quartic in ↵, and thus en-
codes an elliptic curve. This form is attractive because it
relates (1) to well-known functions while manifesting its
ellipticity.
In this Letter, we realize such a representation ex-

plicitly by direct integration of Feynman parameters,
without resorting to an ansatz or to solving di↵erential
equations. Specifically, we follow the strategy described
in ref. [10] to obtain a manifestly dual-conformally in-
variant, rational four-fold (Feynman-)parametric integral
representation of Ielldb, and carry out three of the integra-
tions to obtain the desired form (2). In what follows, we
outline the steps involved, and describe how (2) may be
brought into a more canonical form with a normalization
suggested by its degenerations. As we will see, this form
points to the need for a ‘symbology’ for mixed iterated
elliptic/polylogarithmic integrals. For the sake of clarity
and illustration, we first consider a simpler toy model of
I
ell
db restricted to a particular three-dimensional subspace
of ten-particle kinematics that nevertheless preserves all
of its essential structure. The full case of I

ell
db will be

described subsequently.

ELLIPTIC TOY MODEL

Our toy model depends symmetrically on only three
cross-ratios. This is most directly described in terms of
(the dual-momentum coordinates of) six massless par-
ticles, but it can also be obtained from I

ell
db through a

(maximal) sequence of constraints preserving ellipticity.

(Dual-Conformal) Loop Integration

via Feynman Parameterization

In dual-momentum x-coordinates, the momentum of
the a

th external particle is defined as the di↵erence
pa⌘ (xa+1�xa) (with cyclic labeling understood). In
terms of these coordinates, we may define

(a, b)=(b, a)⌘ (xa�xb)
2=(pa+ . . .+pb�1)

2
. (3)

(‘(a, b)’ is more frequently denoted ‘x2
ab’.) Each loop mo-

mentum `i may be represented by a dual point x`i , and
inverse propagators expressed as (`i, a)⌘(x`i�xa)2.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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(e) (f) (g)

Figure 1: Sample Feynman diagram contributing to gg → ZH at LO and NLO. Solid,
wavy, dashed and curly lines denote quarks, Z and Higgs bosons, and gluons, respectively.
Internal wavy lines can also represent Goldstone bosons.

produced via a s-channel Z or χ boson exchange. Both bottom and top quarks can be
present in the loop. In the case of the box diagrams the Higgs boson couples directly
to the quark running in the loop and thus only internal top quarks are present since we
neglect the bottom Yukawa coupling. The effect of a finite bottom quark mass on the LO
cross section is at the per mille level.

In the heavy-mt approximation the diagrams with internal top quarks reduce to vacuum
integrals. The massless triangle diagrams are computed with the help of simple form
factor-type integrals which can be expressed in terms on Γ functions (see, e.g., Appendix A
of Ref. [26]).

We perform the calculation for general Rξ gauge and check that the gauge parameter ξZ
present in the Z and χ boson propagators drops out in the result for the cross section. In
fact, it cancels between the diagrams with top and bottom quark triangles and a neutral
Goldstone boson or a Z boson in the s channel. Note, that for special choices of ξZ the
calculation can be significantly simplified. For example, in Landau gauge the massless
triangle contribution with virtual Z boson vanishes [11]. Note that due to Furry’s theorem
there is no contribution from the vector coupling of the Z. Altogether there are 16 LO
Feynman diagrams, all of them are individually finite.

We compute the LO amplitudes both in an expansion for large top quark mass including
terms up to order 1/m8

t , and without applying any approximation and keeping the full top
quark mass dependence. In the latter case we have reduced the tensor integrals to scalar
three- and four-point integrals which are evaluated using the LoopTools library [27, 28].
We want to mention that in the limit mt → ∞ the calculation is significantly simplified.
In particular, all top quark triangle contributions with a coupling of the Z boson vanish.

For the numerical results we use the following input values [29]

MZ = 91.1876 GeV ,
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We derive an analytic representation of the ten-particle, two-loop double-box integral as an
elliptic integral over weight-three polylogarithms. To obtain this form, we first derive a four-fold,
rational (Feynman-)parametric representation for the integral, expressed directly in terms of
dual-conformally invariant cross-ratios; from this, the desired form is easily obtained. The essential
features of this integral are illustrated by means of a simplified toy model, and we attach the relevant
expressions for both integrals in ancillary files. We propose a normalization for such integrals that
renders all of their polylogarithmic degenerations pure, and we discuss the need for a new ‘sym-
bology’ of iterated elliptic/polylogarithmic integrals in order to bring them to a more canonical form.

INTRODUCTION

In recent years, our ability to compute scattering am-
plitudes has advanced enormously. Loop integrands for
scattering amplitudes are now known for a broad class of
theories, loop orders, and multiplicities (see e.g. [1–6]),
and substantial inroads have been made towards the de-
velopment of general loop integration technology [7–10].
Our understanding of the kinds of functions that result
from these integrations has also experienced remarkable
progress, especially in the case of (‘Goncharov’) hyper-
logarithms [11], which capture most of perturbation the-
ory at low orders and multiplicity [12–17]. However, as
exemplified by the two-dimensional sunrise integral with
massive propagators (see e.g. [18–23]), even the simplest
quantum field theories are known to encounter elliptic
and other non-polylogarithmic functions—for which the
powerful tools of symbology, Hopf algebras, coproducts,
etc. that have fueled such progress in the polylogarithmic
case remain to be fully developed (but see e.g. [24, 25]).

In this work, we study what is perhaps the sim-
plest non-polylogarithmic contribution to scattering am-
plitudes of massless particles in four dimensions: the el-
liptic double-box integral. This may be represented with
either a Feynman diagram or its dual graph, depicted by

I
ell
db ⌘ = . (1)

It may be viewed as a contribution to the ten-point am-
plitude in massless '4 theory—but it also plays a signifi-
cant role in (pure or supersymmetric) Yang-Mills and in-
tegrable fishnet theories [26–28]. In the context of planar
maximally supersymmetric Yang-Mills, it is the sole di-
agram contributing to a particular helicity configuration
[30], making it the entire amplitude in that case—and the
same is true for the integrable fishnet theories. Consid-
erations of maximal cuts and di↵erential equations have
led some authors to conjecture [29–32] that (1) could be
written schematically in the form

I
ell
db ⇠

Z
d↵p
Q(↵)

�
Li3(· · · )+ . . .

�
, (2)

where Q(↵) is an irreducible quartic in ↵, and thus en-
codes an elliptic curve. This form is attractive because it
relates (1) to well-known functions while manifesting its
ellipticity.
In this Letter, we realize such a representation ex-

plicitly by direct integration of Feynman parameters,
without resorting to an ansatz or to solving di↵erential
equations. Specifically, we follow the strategy described
in ref. [10] to obtain a manifestly dual-conformally in-
variant, rational four-fold (Feynman-)parametric integral
representation of Ielldb, and carry out three of the integra-
tions to obtain the desired form (2). In what follows, we
outline the steps involved, and describe how (2) may be
brought into a more canonical form with a normalization
suggested by its degenerations. As we will see, this form
points to the need for a ‘symbology’ for mixed iterated
elliptic/polylogarithmic integrals. For the sake of clarity
and illustration, we first consider a simpler toy model of
I
ell
db restricted to a particular three-dimensional subspace
of ten-particle kinematics that nevertheless preserves all
of its essential structure. The full case of I

ell
db will be

described subsequently.

ELLIPTIC TOY MODEL

Our toy model depends symmetrically on only three
cross-ratios. This is most directly described in terms of
(the dual-momentum coordinates of) six massless par-
ticles, but it can also be obtained from I

ell
db through a

(maximal) sequence of constraints preserving ellipticity.

(Dual-Conformal) Loop Integration

via Feynman Parameterization

In dual-momentum x-coordinates, the momentum of
the a

th external particle is defined as the di↵erence
pa⌘ (xa+1�xa) (with cyclic labeling understood). In
terms of these coordinates, we may define

(a, b)=(b, a)⌘ (xa�xb)
2=(pa+ . . .+pb�1)

2
. (3)

(‘(a, b)’ is more frequently denoted ‘x2
ab’.) Each loop mo-

mentum `i may be represented by a dual point x`i , and
inverse propagators expressed as (`i, a)⌘(x`i�xa)2.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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Figure 1: Sample Feynman diagram contributing to gg → ZH at LO and NLO. Solid,
wavy, dashed and curly lines denote quarks, Z and Higgs bosons, and gluons, respectively.
Internal wavy lines can also represent Goldstone bosons.

produced via a s-channel Z or χ boson exchange. Both bottom and top quarks can be
present in the loop. In the case of the box diagrams the Higgs boson couples directly
to the quark running in the loop and thus only internal top quarks are present since we
neglect the bottom Yukawa coupling. The effect of a finite bottom quark mass on the LO
cross section is at the per mille level.

In the heavy-mt approximation the diagrams with internal top quarks reduce to vacuum
integrals. The massless triangle diagrams are computed with the help of simple form
factor-type integrals which can be expressed in terms on Γ functions (see, e.g., Appendix A
of Ref. [26]).

We perform the calculation for general Rξ gauge and check that the gauge parameter ξZ
present in the Z and χ boson propagators drops out in the result for the cross section. In
fact, it cancels between the diagrams with top and bottom quark triangles and a neutral
Goldstone boson or a Z boson in the s channel. Note, that for special choices of ξZ the
calculation can be significantly simplified. For example, in Landau gauge the massless
triangle contribution with virtual Z boson vanishes [11]. Note that due to Furry’s theorem
there is no contribution from the vector coupling of the Z. Altogether there are 16 LO
Feynman diagrams, all of them are individually finite.

We compute the LO amplitudes both in an expansion for large top quark mass including
terms up to order 1/m8

t , and without applying any approximation and keeping the full top
quark mass dependence. In the latter case we have reduced the tensor integrals to scalar
three- and four-point integrals which are evaluated using the LoopTools library [27, 28].
We want to mention that in the limit mt → ∞ the calculation is significantly simplified.
In particular, all top quark triangle contributions with a coupling of the Z boson vanish.

For the numerical results we use the following input values [29]

MZ = 91.1876 GeV ,

3

m1

m2

m
 :  polylogarithmicm1 = m2 = 0
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We derive an analytic representation of the ten-particle, two-loop double-box integral as an
elliptic integral over weight-three polylogarithms. To obtain this form, we first derive a four-fold,
rational (Feynman-)parametric representation for the integral, expressed directly in terms of
dual-conformally invariant cross-ratios; from this, the desired form is easily obtained. The essential
features of this integral are illustrated by means of a simplified toy model, and we attach the relevant
expressions for both integrals in ancillary files. We propose a normalization for such integrals that
renders all of their polylogarithmic degenerations pure, and we discuss the need for a new ‘sym-
bology’ of iterated elliptic/polylogarithmic integrals in order to bring them to a more canonical form.

INTRODUCTION

In recent years, our ability to compute scattering am-
plitudes has advanced enormously. Loop integrands for
scattering amplitudes are now known for a broad class of
theories, loop orders, and multiplicities (see e.g. [1–6]),
and substantial inroads have been made towards the de-
velopment of general loop integration technology [7–10].
Our understanding of the kinds of functions that result
from these integrations has also experienced remarkable
progress, especially in the case of (‘Goncharov’) hyper-
logarithms [11], which capture most of perturbation the-
ory at low orders and multiplicity [12–17]. However, as
exemplified by the two-dimensional sunrise integral with
massive propagators (see e.g. [18–23]), even the simplest
quantum field theories are known to encounter elliptic
and other non-polylogarithmic functions—for which the
powerful tools of symbology, Hopf algebras, coproducts,
etc. that have fueled such progress in the polylogarithmic
case remain to be fully developed (but see e.g. [24, 25]).

In this work, we study what is perhaps the sim-
plest non-polylogarithmic contribution to scattering am-
plitudes of massless particles in four dimensions: the el-
liptic double-box integral. This may be represented with
either a Feynman diagram or its dual graph, depicted by

I
ell
db ⌘ = . (1)

It may be viewed as a contribution to the ten-point am-
plitude in massless '4 theory—but it also plays a signifi-
cant role in (pure or supersymmetric) Yang-Mills and in-
tegrable fishnet theories [26–28]. In the context of planar
maximally supersymmetric Yang-Mills, it is the sole di-
agram contributing to a particular helicity configuration
[30], making it the entire amplitude in that case—and the
same is true for the integrable fishnet theories. Consid-
erations of maximal cuts and di↵erential equations have
led some authors to conjecture [29–32] that (1) could be
written schematically in the form

I
ell
db ⇠

Z
d↵p
Q(↵)

�
Li3(· · · )+ . . .

�
, (2)

where Q(↵) is an irreducible quartic in ↵, and thus en-
codes an elliptic curve. This form is attractive because it
relates (1) to well-known functions while manifesting its
ellipticity.
In this Letter, we realize such a representation ex-

plicitly by direct integration of Feynman parameters,
without resorting to an ansatz or to solving di↵erential
equations. Specifically, we follow the strategy described
in ref. [10] to obtain a manifestly dual-conformally in-
variant, rational four-fold (Feynman-)parametric integral
representation of Ielldb, and carry out three of the integra-
tions to obtain the desired form (2). In what follows, we
outline the steps involved, and describe how (2) may be
brought into a more canonical form with a normalization
suggested by its degenerations. As we will see, this form
points to the need for a ‘symbology’ for mixed iterated
elliptic/polylogarithmic integrals. For the sake of clarity
and illustration, we first consider a simpler toy model of
I
ell
db restricted to a particular three-dimensional subspace
of ten-particle kinematics that nevertheless preserves all
of its essential structure. The full case of I

ell
db will be

described subsequently.

ELLIPTIC TOY MODEL

Our toy model depends symmetrically on only three
cross-ratios. This is most directly described in terms of
(the dual-momentum coordinates of) six massless par-
ticles, but it can also be obtained from I

ell
db through a

(maximal) sequence of constraints preserving ellipticity.

(Dual-Conformal) Loop Integration

via Feynman Parameterization

In dual-momentum x-coordinates, the momentum of
the a

th external particle is defined as the di↵erence
pa⌘ (xa+1�xa) (with cyclic labeling understood). In
terms of these coordinates, we may define

(a, b)=(b, a)⌘ (xa�xb)
2=(pa+ . . .+pb�1)

2
. (3)

(‘(a, b)’ is more frequently denoted ‘x2
ab’.) Each loop mo-

mentum `i may be represented by a dual point x`i , and
inverse propagators expressed as (`i, a)⌘(x`i�xa)2.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.
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Figure 1: Sample Feynman diagram contributing to gg → ZH at LO and NLO. Solid,
wavy, dashed and curly lines denote quarks, Z and Higgs bosons, and gluons, respectively.
Internal wavy lines can also represent Goldstone bosons.

produced via a s-channel Z or χ boson exchange. Both bottom and top quarks can be
present in the loop. In the case of the box diagrams the Higgs boson couples directly
to the quark running in the loop and thus only internal top quarks are present since we
neglect the bottom Yukawa coupling. The effect of a finite bottom quark mass on the LO
cross section is at the per mille level.

In the heavy-mt approximation the diagrams with internal top quarks reduce to vacuum
integrals. The massless triangle diagrams are computed with the help of simple form
factor-type integrals which can be expressed in terms on Γ functions (see, e.g., Appendix A
of Ref. [26]).

We perform the calculation for general Rξ gauge and check that the gauge parameter ξZ
present in the Z and χ boson propagators drops out in the result for the cross section. In
fact, it cancels between the diagrams with top and bottom quark triangles and a neutral
Goldstone boson or a Z boson in the s channel. Note, that for special choices of ξZ the
calculation can be significantly simplified. For example, in Landau gauge the massless
triangle contribution with virtual Z boson vanishes [11]. Note that due to Furry’s theorem
there is no contribution from the vector coupling of the Z. Altogether there are 16 LO
Feynman diagrams, all of them are individually finite.

We compute the LO amplitudes both in an expansion for large top quark mass including
terms up to order 1/m8

t , and without applying any approximation and keeping the full top
quark mass dependence. In the latter case we have reduced the tensor integrals to scalar
three- and four-point integrals which are evaluated using the LoopTools library [27, 28].
We want to mention that in the limit mt → ∞ the calculation is significantly simplified.
In particular, all top quark triangle contributions with a coupling of the Z boson vanish.

For the numerical results we use the following input values [29]

MZ = 91.1876 GeV ,

3

m1

m2

m
 :  polylogarithmicm1 = m2 = 0
 :  ellipticm1 ≠ 0, m2 = 0
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The Elliptic Double-Box Integral: Massless Amplitudes Beyond Polylogarithms
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We derive an analytic representation of the ten-particle, two-loop double-box integral as an
elliptic integral over weight-three polylogarithms. To obtain this form, we first derive a four-fold,
rational (Feynman-)parametric representation for the integral, expressed directly in terms of
dual-conformally invariant cross-ratios; from this, the desired form is easily obtained. The essential
features of this integral are illustrated by means of a simplified toy model, and we attach the relevant
expressions for both integrals in ancillary files. We propose a normalization for such integrals that
renders all of their polylogarithmic degenerations pure, and we discuss the need for a new ‘sym-
bology’ of iterated elliptic/polylogarithmic integrals in order to bring them to a more canonical form.

INTRODUCTION

In recent years, our ability to compute scattering am-
plitudes has advanced enormously. Loop integrands for
scattering amplitudes are now known for a broad class of
theories, loop orders, and multiplicities (see e.g. [1–6]),
and substantial inroads have been made towards the de-
velopment of general loop integration technology [7–10].
Our understanding of the kinds of functions that result
from these integrations has also experienced remarkable
progress, especially in the case of (‘Goncharov’) hyper-
logarithms [11], which capture most of perturbation the-
ory at low orders and multiplicity [12–17]. However, as
exemplified by the two-dimensional sunrise integral with
massive propagators (see e.g. [18–23]), even the simplest
quantum field theories are known to encounter elliptic
and other non-polylogarithmic functions—for which the
powerful tools of symbology, Hopf algebras, coproducts,
etc. that have fueled such progress in the polylogarithmic
case remain to be fully developed (but see e.g. [24, 25]).

In this work, we study what is perhaps the sim-
plest non-polylogarithmic contribution to scattering am-
plitudes of massless particles in four dimensions: the el-
liptic double-box integral. This may be represented with
either a Feynman diagram or its dual graph, depicted by

I
ell
db ⌘ = . (1)

It may be viewed as a contribution to the ten-point am-
plitude in massless '4 theory—but it also plays a signifi-
cant role in (pure or supersymmetric) Yang-Mills and in-
tegrable fishnet theories [26–28]. In the context of planar
maximally supersymmetric Yang-Mills, it is the sole di-
agram contributing to a particular helicity configuration
[30], making it the entire amplitude in that case—and the
same is true for the integrable fishnet theories. Consid-
erations of maximal cuts and di↵erential equations have
led some authors to conjecture [29–32] that (1) could be
written schematically in the form

I
ell
db ⇠

Z
d↵p
Q(↵)

�
Li3(· · · )+ . . .

�
, (2)

where Q(↵) is an irreducible quartic in ↵, and thus en-
codes an elliptic curve. This form is attractive because it
relates (1) to well-known functions while manifesting its
ellipticity.
In this Letter, we realize such a representation ex-

plicitly by direct integration of Feynman parameters,
without resorting to an ansatz or to solving di↵erential
equations. Specifically, we follow the strategy described
in ref. [10] to obtain a manifestly dual-conformally in-
variant, rational four-fold (Feynman-)parametric integral
representation of Ielldb, and carry out three of the integra-
tions to obtain the desired form (2). In what follows, we
outline the steps involved, and describe how (2) may be
brought into a more canonical form with a normalization
suggested by its degenerations. As we will see, this form
points to the need for a ‘symbology’ for mixed iterated
elliptic/polylogarithmic integrals. For the sake of clarity
and illustration, we first consider a simpler toy model of
I
ell
db restricted to a particular three-dimensional subspace
of ten-particle kinematics that nevertheless preserves all
of its essential structure. The full case of I

ell
db will be

described subsequently.

ELLIPTIC TOY MODEL

Our toy model depends symmetrically on only three
cross-ratios. This is most directly described in terms of
(the dual-momentum coordinates of) six massless par-
ticles, but it can also be obtained from I

ell
db through a

(maximal) sequence of constraints preserving ellipticity.

(Dual-Conformal) Loop Integration

via Feynman Parameterization

In dual-momentum x-coordinates, the momentum of
the a

th external particle is defined as the di↵erence
pa⌘ (xa+1�xa) (with cyclic labeling understood). In
terms of these coordinates, we may define

(a, b)=(b, a)⌘ (xa�xb)
2=(pa+ . . .+pb�1)

2
. (3)

(‘(a, b)’ is more frequently denoted ‘x2
ab’.) Each loop mo-

mentum `i may be represented by a dual point x`i , and
inverse propagators expressed as (`i, a)⌘(x`i�xa)2.
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in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.

Simplest non-polylogarithmic 
massive integral 

(a) (b) (c) (d)

(e) (f) (g)

Figure 1: Sample Feynman diagram contributing to gg → ZH at LO and NLO. Solid,
wavy, dashed and curly lines denote quarks, Z and Higgs bosons, and gluons, respectively.
Internal wavy lines can also represent Goldstone bosons.

produced via a s-channel Z or χ boson exchange. Both bottom and top quarks can be
present in the loop. In the case of the box diagrams the Higgs boson couples directly
to the quark running in the loop and thus only internal top quarks are present since we
neglect the bottom Yukawa coupling. The effect of a finite bottom quark mass on the LO
cross section is at the per mille level.

In the heavy-mt approximation the diagrams with internal top quarks reduce to vacuum
integrals. The massless triangle diagrams are computed with the help of simple form
factor-type integrals which can be expressed in terms on Γ functions (see, e.g., Appendix A
of Ref. [26]).

We perform the calculation for general Rξ gauge and check that the gauge parameter ξZ
present in the Z and χ boson propagators drops out in the result for the cross section. In
fact, it cancels between the diagrams with top and bottom quark triangles and a neutral
Goldstone boson or a Z boson in the s channel. Note, that for special choices of ξZ the
calculation can be significantly simplified. For example, in Landau gauge the massless
triangle contribution with virtual Z boson vanishes [11]. Note that due to Furry’s theorem
there is no contribution from the vector coupling of the Z. Altogether there are 16 LO
Feynman diagrams, all of them are individually finite.

We compute the LO amplitudes both in an expansion for large top quark mass including
terms up to order 1/m8

t , and without applying any approximation and keeping the full top
quark mass dependence. In the latter case we have reduced the tensor integrals to scalar
three- and four-point integrals which are evaluated using the LoopTools library [27, 28].
We want to mention that in the limit mt → ∞ the calculation is significantly simplified.
In particular, all top quark triangle contributions with a coupling of the Z boson vanish.

For the numerical results we use the following input values [29]

MZ = 91.1876 GeV ,

3

m1

m2

m
 :  polylogarithmicm1 = m2 = 0
 :  ellipticm1 ≠ 0, m2 = 0
 :  ???m1, m2 ≠ 0
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Loop integrals with massive particles

5

May be computed numerically (sector decomposition, auxiliary mass flow, …)
See talk by Y. Q. Ma

But we’d like to push the analytic method to its limit. And there are many questions:

➤ Given an integral family, how do we know which classes of functions will appear in the 
results? 

➤ What is a good functional basis (with nice analytic/algebraic/geometric/numeric 
properties) to represent the results? 

➤ How to organize the calculation procedure to naturally reflect these properties? 
➤ After obtaining an analytic expression, how to efficiently evaluated it numerically?

Let’s look at the simplest example: MPLs
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Multiple polylogarithms (MPLs)

6

Generalization of logarithms and polylogarithms

G(a1, …, an; z) = ∫
z

0

dt
t − a1

G(a2, …, an; t) Goncharov (1998)

Well-defined “transcendental weights” or “transcendentality”

dG(a1, …, an; z) =
n

∑
i=1

G(a1, …, ̂ai, …, an; z) d log
ai−1 − ai

ai+1 − ai

Pure functions:

➤ Well-understood analytic structure (branch cuts): helps the analytic continuation to 
different kinematic regions 

➤ Many algebraic properties (shuffle, stuffle, symbols, Hopf, …): helps to find the most 
compact representation 

➤ Efficient numeric evaluation: helps to make phenomenological predictions
See talk by Gang Yang



MPLs from canonical differential equations

7

Figure 1. One-loop box integral family considered in the main text.

3 Integral families and differential equations: an invitation

In this section we explain the following concepts: Given a Feynman graph (and correspond-
ing Feynman integral), we define a family of Feynman integrals associated to it. This family
consists of, roughly speaking, all Feynman graphs with the same propagator structure, but
arbitrary powers of the propagators. This includes cases with fewer propagators, i.e. sub-
graphs. We derive linear identities between elements of such family, which imply the notion
of a basis. Finally, we explain how to derive differential equations in the external invariants
for the basis integrals.

3.1 Integral families and basis

To illustrate the ideas we will proceed with the example of the one-loop box integral con-
sidered in eq. (2.2). The first step consists in generalizing it to arbitrary (integer) powers
of the propagators,

Ga1,a2,a3,a4(D; s, t) =

Z
d
D
y

i⇡D/2

4Y

i=1

1

[�(y � yi)2]ai
, (3.1)

see Fig. 1. We recall that due to the on-shell conditions, we have y212 = y
2
23 = y

2
34 = y

2
41 = 0,

and the integral depends on s = y
2
13 and t = y

2
24 (and on the dimension D).

For positive ai, this is a box integral, with propagators raised to general powers. If one
of the ai is zero, we have a triangle integral, etc. Negative values of the ai correspond to
numerator factors. We call the set of G for arbitrary integer powers of the ai an integral
family (associated to the box diagram). We will see presently that this notion is useful to
understand the structure of the differential equations satisfied by this integral.

The integrals in a given family are in general not independent. There are linear relations
that have a very simple origin, namely integration by parts (IBP) relations [18]. These
identities follow from the fact that total derivatives vanish in dimensional regularization.2

2
Of course it is also possible to work with IBP identities that include boundary terms.

– 7 –

s

t

It is clear that one obtains integrals within the same family of integrals. The fact that there
is a basis means that we can rewrite the result of the differentiation as a linear combination
of basis integrals. In other words, we have

@s
~f(s, t; ✏) = As(s, t, ✏)~f(s, t; ✏) , (3.9)

@t
~f(s, t; ✏) = At(s, t, ✏)~f(s, t; ✏) . (3.10)

where As and At are N by N matrices, with N being the number of basis integrals ~f . By
construction, they contain only rational functions of s, t, ✏ as entries.

In other words, Feynman integrals satisfy first-order systems of (partial) differential
equations. The matrices Ai can be computed algorithmically, as outlined in this section.

Example: Differential equations for the family of one-loop 2 ! 2 integrals.

We already saw that in this example there are three basis integrals. Integral reduction
suggests the following basis choice,

f1 =G0,1,0,1 ,

f2 =G1,0,1,0 , (3.11)
f3 =G1,1,1,1 .

With this choice, we find the following matrices in eq. (3.9),

As =

0

B@
0 0 0

0 �
✏
s 0

�2(1�2✏)
st(s+t)

2(1�2✏)
s2(s+t) �

s+t+✏t
s(s+t)

1

CA , At =

0

B@
�

✏
t 0 0

0 0 0
�2(1�2✏)
t2(s+t)

�2(1�2✏)
st(s+t) �

s+✏s+t
t(s+t)

1

CA . (3.12)

We can make the following observations.

• Computing sAs+tAt = diag(�✏,�✏,�2�✏), the scaling dimensions of the integrals are
correctly reproduced. We can set them to zero by choosing appropriate dimensional
normalization factors, so that we only have one non-trivial variables x = t/s.

• The equations for the bubble integrals f1 and f2 are trivial, and indeed being single-
scale integrals, their functional dependence follows from dimensional analysis.

• The equations have the singular points s = 0, t = 0, s = 1, t = 1, and s = �t (i.e.
u = 0). The latter singularity may be surprising for planar integrals, and as we will
see occurs only after analytic continuation.

As a preview of the general method to be discussed in the following sections, let us
make the following educated basis choice (to be justified later),

g1 =c(�s)✏tG0,1,0,2 ,

g2 =c(�s)✏sG1,0,2,0 , (3.13)
g3 =c✏(�s)✏stG1,1,1,1 ,

– 10 –

with c = ✏e
✏�E being a normalization factor, and with �E being Euler’s constant. The gi

are chosen to be dimensionless, such that they depend on x and ✏ only. Implementing the
derivative @s as explained above, and using the chain rule, we find

@x~g(x; ✏) = ✏


a

x
+

b

1 + x

�
~g(x, ✏) , (3.14)

where

a =

0

B@
�1 0 0

0 0 0

�2 0 �1

1

CA , b =

0

B@
0 0 0

0 0 0

2 2 1

1

CA . (3.15)

The system (3.14) can be solved easily in an expansion in ✏. One sets

~g =
X

k�0

✏
k
~g
(k)(x) , (3.16)

and plugging this into eq. (3.14) it becomes clear that at each order in ✏, the r.h.s. of that
equation is known and can be integrated.

Let us discuss the boundary conditions for the equations. As already discussed, the
bubble integrals are trivially known: a short calculation using the formulas of section 2
shows that they are given by

Ga1,0,a2,0 = (�s)D/2�a�(a�D/2)�(D/2� a1)�(D/2� a2)

�(a1)�(a2)�(D � a)
, (3.17)

with a = a1 + a2. In application to our case, we have

g1 = x
✏
g2 , g2 = �e

✏�E �
2(1� ✏)�(1 + ✏)

�(1� 2✏)
. (3.18)

Finally, we need a boundary condition for g3. We can use the fact that planar integrals
should not have u-channel singularities, which implies that g3 should stay finite as x ! �1,
despite the presence of the matrix b in eq. (3.14).

This fixes the solution to all orders in the ✏ expansion. The first few orders are given
by

g3 =4 + ✏ [�2 log x] + ✏
2


�
4⇡2

3

�
+ ✏

3


7⇡2

6
log x+

1

3
log3 x� ⇡

2 log(1 + x)

� log2 x log(1 + x)� 2 log xLi2(�x) + 2Li3(�x)�
34

3
⇣3

�
+O(✏4) , (3.19)

where Lin is a polylogarithm, defined by

Li1(x) = � log(1� x) , x @xLin(x) = Lin�1(x) , n > 1 , (3.20)

and Lin(0) = 0. In section 5 we will discuss a more general class of functions that is useful
for writing the solutions to such differential equations.

– 11 –

“canonical basis” “ -form”ϵ

x = t/s

simple poles

Henn: 1304.1806, 1412.2296
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Figure 1. One-loop box integral family considered in the main text.

3 Integral families and differential equations: an invitation

In this section we explain the following concepts: Given a Feynman graph (and correspond-
ing Feynman integral), we define a family of Feynman integrals associated to it. This family
consists of, roughly speaking, all Feynman graphs with the same propagator structure, but
arbitrary powers of the propagators. This includes cases with fewer propagators, i.e. sub-
graphs. We derive linear identities between elements of such family, which imply the notion
of a basis. Finally, we explain how to derive differential equations in the external invariants
for the basis integrals.

3.1 Integral families and basis

To illustrate the ideas we will proceed with the example of the one-loop box integral con-
sidered in eq. (2.2). The first step consists in generalizing it to arbitrary (integer) powers
of the propagators,

Ga1,a2,a3,a4(D; s, t) =

Z
d
D
y

i⇡D/2

4Y

i=1

1

[�(y � yi)2]ai
, (3.1)

see Fig. 1. We recall that due to the on-shell conditions, we have y212 = y
2
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2
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2
41 = 0,

and the integral depends on s = y
2
13 and t = y

2
24 (and on the dimension D).

For positive ai, this is a box integral, with propagators raised to general powers. If one
of the ai is zero, we have a triangle integral, etc. Negative values of the ai correspond to
numerator factors. We call the set of G for arbitrary integer powers of the ai an integral
family (associated to the box diagram). We will see presently that this notion is useful to
understand the structure of the differential equations satisfied by this integral.

The integrals in a given family are in general not independent. There are linear relations
that have a very simple origin, namely integration by parts (IBP) relations [18]. These
identities follow from the fact that total derivatives vanish in dimensional regularization.2

2
Of course it is also possible to work with IBP identities that include boundary terms.
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s
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It is clear that one obtains integrals within the same family of integrals. The fact that there
is a basis means that we can rewrite the result of the differentiation as a linear combination
of basis integrals. In other words, we have

@s
~f(s, t; ✏) = As(s, t, ✏)~f(s, t; ✏) , (3.9)

@t
~f(s, t; ✏) = At(s, t, ✏)~f(s, t; ✏) . (3.10)

where As and At are N by N matrices, with N being the number of basis integrals ~f . By
construction, they contain only rational functions of s, t, ✏ as entries.

In other words, Feynman integrals satisfy first-order systems of (partial) differential
equations. The matrices Ai can be computed algorithmically, as outlined in this section.

Example: Differential equations for the family of one-loop 2 ! 2 integrals.

We already saw that in this example there are three basis integrals. Integral reduction
suggests the following basis choice,

f1 =G0,1,0,1 ,

f2 =G1,0,1,0 , (3.11)
f3 =G1,1,1,1 .

With this choice, we find the following matrices in eq. (3.9),

As =

0

B@
0 0 0

0 �
✏
s 0

�2(1�2✏)
st(s+t)

2(1�2✏)
s2(s+t) �

s+t+✏t
s(s+t)

1

CA , At =

0

B@
�

✏
t 0 0

0 0 0
�2(1�2✏)
t2(s+t)

�2(1�2✏)
st(s+t) �

s+✏s+t
t(s+t)

1

CA . (3.12)

We can make the following observations.

• Computing sAs+tAt = diag(�✏,�✏,�2�✏), the scaling dimensions of the integrals are
correctly reproduced. We can set them to zero by choosing appropriate dimensional
normalization factors, so that we only have one non-trivial variables x = t/s.

• The equations for the bubble integrals f1 and f2 are trivial, and indeed being single-
scale integrals, their functional dependence follows from dimensional analysis.

• The equations have the singular points s = 0, t = 0, s = 1, t = 1, and s = �t (i.e.
u = 0). The latter singularity may be surprising for planar integrals, and as we will
see occurs only after analytic continuation.

As a preview of the general method to be discussed in the following sections, let us
make the following educated basis choice (to be justified later),

g1 =c(�s)✏tG0,1,0,2 ,

g2 =c(�s)✏sG1,0,2,0 , (3.13)
g3 =c✏(�s)✏stG1,1,1,1 ,

– 10 –

with c = ✏e
✏�E being a normalization factor, and with �E being Euler’s constant. The gi

are chosen to be dimensionless, such that they depend on x and ✏ only. Implementing the
derivative @s as explained above, and using the chain rule, we find

@x~g(x; ✏) = ✏


a

x
+

b

1 + x

�
~g(x, ✏) , (3.14)

where

a =

0

B@
�1 0 0

0 0 0

�2 0 �1

1

CA , b =

0

B@
0 0 0

0 0 0

2 2 1

1

CA . (3.15)

The system (3.14) can be solved easily in an expansion in ✏. One sets

~g =
X

k�0

✏
k
~g
(k)(x) , (3.16)

and plugging this into eq. (3.14) it becomes clear that at each order in ✏, the r.h.s. of that
equation is known and can be integrated.

Let us discuss the boundary conditions for the equations. As already discussed, the
bubble integrals are trivially known: a short calculation using the formulas of section 2
shows that they are given by

Ga1,0,a2,0 = (�s)D/2�a�(a�D/2)�(D/2� a1)�(D/2� a2)

�(a1)�(a2)�(D � a)
, (3.17)

with a = a1 + a2. In application to our case, we have

g1 = x
✏
g2 , g2 = �e

✏�E �
2(1� ✏)�(1 + ✏)

�(1� 2✏)
. (3.18)

Finally, we need a boundary condition for g3. We can use the fact that planar integrals
should not have u-channel singularities, which implies that g3 should stay finite as x ! �1,
despite the presence of the matrix b in eq. (3.14).

This fixes the solution to all orders in the ✏ expansion. The first few orders are given
by

g3 =4 + ✏ [�2 log x] + ✏
2


�
4⇡2

3

�
+ ✏

3


7⇡2

6
log x+

1

3
log3 x� ⇡

2 log(1 + x)

� log2 x log(1 + x)� 2 log xLi2(�x) + 2Li3(�x)�
34

3
⇣3

�
+O(✏4) , (3.19)

where Lin is a polylogarithm, defined by

Li1(x) = � log(1� x) , x @xLin(x) = Lin�1(x) , n > 1 , (3.20)

and Lin(0) = 0. In section 5 we will discuss a more general class of functions that is useful
for writing the solutions to such differential equations.
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Figure 1. One-loop box integral family considered in the main text.

3 Integral families and differential equations: an invitation
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ing Feynman integral), we define a family of Feynman integrals associated to it. This family
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sidered in eq. (2.2). The first step consists in generalizing it to arbitrary (integer) powers
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Ga1,a2,a3,a4(D; s, t) =

Z
d
D
y

i⇡D/2

4Y

i=1

1

[�(y � yi)2]ai
, (3.1)

see Fig. 1. We recall that due to the on-shell conditions, we have y212 = y
2
23 = y

2
34 = y

2
41 = 0,

and the integral depends on s = y
2
13 and t = y

2
24 (and on the dimension D).

For positive ai, this is a box integral, with propagators raised to general powers. If one
of the ai is zero, we have a triangle integral, etc. Negative values of the ai correspond to
numerator factors. We call the set of G for arbitrary integer powers of the ai an integral
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The integrals in a given family are in general not independent. There are linear relations
that have a very simple origin, namely integration by parts (IBP) relations [18]. These
identities follow from the fact that total derivatives vanish in dimensional regularization.2

2
Of course it is also possible to work with IBP identities that include boundary terms.
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and plugging this into eq. (3.14) it becomes clear that at each order in ✏, the r.h.s. of that
equation is known and can be integrated.

Let us discuss the boundary conditions for the equations. As already discussed, the
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2(1� ✏)�(1 + ✏)
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. (3.18)

Finally, we need a boundary condition for g3. We can use the fact that planar integrals
should not have u-channel singularities, which implies that g3 should stay finite as x ! �1,
despite the presence of the matrix b in eq. (3.14).

This fixes the solution to all orders in the ✏ expansion. The first few orders are given
by

g3 =4 + ✏ [�2 log x] + ✏
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and Lin(0) = 0. In section 5 we will discuss a more general class of functions that is useful
for writing the solutions to such differential equations.
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simple poles

Henn: 1304.1806, 1412.2296

Generic multivariate cases: d ⃗f(z, ϵ) = ϵ dA(z) ⃗f(z, ϵ)
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n

ϵn ⃗f (n)(z)
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z

z0

d log(αn(zn))⋯∫
z3
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d log(α2(z2))∫
z2

z0

d log(α1(z1))

Expansion coefficients in  consist of iterated integralsϵ

“Uniform transcendentality (UT)”

Therefore also the terms “UT integrals” and “UT basis”
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⃗f (n)(z) ⊃ ∫
z

z0

d log(αn(zn))⋯∫
z3

z0

d log(α2(z2))∫
z2

z0

d log(α1(z1))

Expansion coefficients in  consist of iterated integralsϵ

“Uniform transcendentality (UT)”

Therefore also the terms “UT integrals” and “UT basis”

In many cases can be converted to combinations of MPLs 
(either by direct integration or by “bootstrapping”)

➤ Even if no explicit form as MPLs, can be efficiently evaluated numerically 
➤ Amplitude coefficients often take a simpler form 

Hidding: 2006.05510

Other benefits of having a UT basis:

Boehm et al.: 2008.13194
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The traditional way: starting from the DEs
∂
∂x

⃗f(x, ϵ) = A(x, ϵ) ⃗f(x, ϵ)

Try to find a transformation matrix  such that  is a canonical basis, 
which means

T(x, ϵ) ⃗f ′ (x, ϵ) = T ⃗f

T−1AT − T−1∂xT = ϵ Ã(x)
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How to find a canonical basis?
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The traditional way: starting from the DEs
∂
∂x

⃗f(x, ϵ) = A(x, ϵ) ⃗f(x, ϵ)

Try to find a transformation matrix  such that  is a canonical basis, 
which means

T(x, ϵ) ⃗f ′ (x, ϵ) = T ⃗f

T−1AT − T−1∂xT = ϵ Ã(x)

Algorithmic approach: Lee: 1411.0911

Program packages: Prausa: 1701.00725; Gituliar, Magerya: 1701.04269; 
Meyer: 1705.06252

However, does not work well for irrational systems 
(e.g., with algebraic extensions like square-roots)
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It is believed that integrals with d-log integrands are canonical

∫𝒞
[G(z)]ϵ

n

⋀
j=1

d log fj(z)

4ϵ2 ∫
x

0

dz2

z2 ∫
z2

0

dz1

z2 − z1 [ z2(x − z2)(1 + z1)
z1(z1 − z2)2 ]

ϵ

= 1 − ϵ log x + ϵ2 ( 1
2

log2 x + 2Li2(−x)) + ⋯

An example:

Studied a lot in the context of  SYM 
Arkani-Hamed et al., Bern et al., Drummond et al., Gehrmann et al., …

𝒩 = 4

weight 1

weight 2

weight 0
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It is believed that integrals with d-log integrands are canonical

∫𝒞
[G(z)]ϵ

n

⋀
j=1

d log fj(z)

4ϵ2 ∫
x

0

dz2

z2 ∫
z2

0

dz1

z2 − z1 [ z2(x − z2)(1 + z1)
z1(z1 − z2)2 ]

ϵ

= 1 − ϵ log x + ϵ2 ( 1
2

log2 x + 2Li2(−x)) + ⋯

An example:

Studied a lot in the context of  SYM 
Arkani-Hamed et al., Bern et al., Drummond et al., Gehrmann et al., …

𝒩 = 4

weight 1

weight 2

weight 0

Need to choose a concrete representation…

We’d like to find d-log integrands which can be interpreted as Feynman integrals 



Baikov representation

11

∫ [
L

∏
i=1

ddki

iπd/2 ] 1
za1
1 za2

2 ⋯zaN
N

∝ ∫𝒞 [
N

∏
n=1

dzn] [G(z1, …, zN)](d−L−E−1)/2

za1
1 ⋯zaN

N

Change of integration variables from momenta to propagators

propagators

Gram determinant

det

−q1 ⋅ q1 −q1 ⋅ q2 ⋯ −q1 ⋅ qN
−q2 ⋅ q1 −q2 ⋅ q2 ⋮

⋮ ⋱ ⋮
−qN ⋅ q1 ⋯ ⋯ −qN ⋅ qN

Baikov: hep-ph/9611449

Other uses of Baikov rep.: 
IBP reduction, deriving 
differential equations, …
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−q2 ⋅ q1 −q2 ⋅ q2 ⋮

⋮ ⋱ ⋮
−qN ⋅ q1 ⋯ ⋯ −qN ⋅ qN

Looks d-log if  and all , but this does not cover all situations!d − L − E = 1 − 2ϵ an = 1

We need a more generic form…

Baikov: hep-ph/9611449

Other uses of Baikov rep.: 
IBP reduction, deriving 
differential equations, …
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If some  does not appear in the denominator, we can integrate over it to obtain a new 
representation, e.g.: 
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irreducible scalar product (ISP)
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If some  does not appear in the denominator, we can integrate over it to obtain a new 
representation, e.g.: 
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Generalized (LBL) representation, new 
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We will use this generalized form to look for d-log integrands, 
but how can we convert them back to Feynman integrals?
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Baikov integrals are special cases of generalized hypergeometric integrals

I = ∫𝒞
u(z) φ(z)

multivalued function vanishing 
on the boundary ∂𝒞

single-valued differential -formn

 and  are equivalent 
(in the sense of integration)
φ(z) φ(z) + ∇ωξ(z)

0 = ∫𝒞
d(u(z)ξ(z)) = ∫𝒞

u(z)∇ωξ(z)
∇ω ≡ d + ω ∧

ω ≡ d log u connection

covariant 
derivative

-form(n − 1)

Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823
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Ω0(M) ∇ω Ω1(M) ∇ω ⋯Ωn−1(M) ∇ω Ωn(M) ∇ω 0

The covariant derivative  creates a cochain complex of differential forms∇ω

Exact forms : φ φ = ∇ωξ Closed forms : φ ∇ωφ = 0

The -th twisted cohomology groupk

Hk
ω =

ker(∇ω : Ωk(M) → Ωk+1(M))
im(∇ω : Ωk−1(M) → Ωk(M))

=
{closed -forms}k
{exact -forms}k

 is a vector space whose elements (cocycles) are equivalence classesHk
ω

The same as IBP!

়࿄Ц ۚ ࿄ ۠ ࿄ Ҭ ٜᆘྼ
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Decomposition in cohomology group
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The dimension of the vector space  isHn
ω

# of master integrals with a given dim(Hn
ω) = ν = ω

We may find a basis with  vectorsν Ь়ംႲЦ И ়ംႳЦ И Н И ়ംᆌЦЭ

<latexit sha1_base64="OfwubIuZrFuP56Yeo3wNXwxUjzc="></latexit>

All vectors can be written as a linear combination

়࿄Ц Ҳ ᆌٯᅎႽႲ ഀᅎ ়ംᅎЦ
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How to project out these coefficients?
We need something like an “inner-product”
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To define an inner-product, introduce a dual vector space  with elementsHn*
ω Ц࿄ᄼু

<latexit sha1_base64="84s8g8okNkhTQQrr3b4A4O6FL8w="></latexit>

Equivalence classes Ц࿄ᄼু ۚ ࿄ᄼ ۠ ࿄ᄼ Ҭ ٜႼᆘྼᄼ

<latexit sha1_base64="jRMwqUMFgTSa+pLJ0kdLvEmCulI="></latexit>

The intersection numbers Cho, Matsumoto (1995)

়࿄ᄶЦ࿄ᄼুᆘ Ҳ ѲШѳ྾ആЩᅕ ڣ ཙᆘШ࿄ᄶЩ ڜ ࿄ᄼ Ҳ ѲШѳ྾ആЩᅕ ࿄ᄶڣ ڜ ཙႼᆘШ࿄ᄼЩ

<latexit sha1_base64="Hd5k4Y+J0LctggIBcuYK6ZFdefE="></latexit>

map to an equivalent, but compactly supported form
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Construct a dual basis of ়ംᅎЦ

<latexit sha1_base64="Sf2WwbdkpoOCOtRY2BX3gZL4Ans="></latexit>

়ംᅎЦ ᅐഁু Ҳ ྲᅎᅐ

<latexit sha1_base64="Ur+r/8Dpt+CIE+jzeyxVIOEi3nI="></latexit>

ഀᅎ Ҳ ়࿄Цഁᅎু

<latexit sha1_base64="uf8MU/XUqiRQ5g72xkYewU2eciw="></latexit>

়࿄Ц Ҳ ᆌٯᅎႽႲ ়࿄Цഁᅎু ়ംᅎЦ

<latexit sha1_base64="wt8SlY+3S/qZ9ud3F1JY8sdBCqs="></latexit>

or

Just like the decomposition in a usual vector space…

Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823
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or

Just like the decomposition in a usual vector space…

Computing these inner-products is still a non-trivial task (skipped in this talk)

Frellesvig et al.: 1901.11510, 1907.02000, 2008.04823
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u(z) = ∏
i

[Gi(z)]−γi−βiϵ
φ(z) =

f(z)
za1
1 ⋯zan

n Gb1
1 ⋯Gbm

m

n

⋀
j=1

dzj

We identify

polynomials resulting from 
integrating over some ISPs

ω = d log u

candidates for d-log integrands

Given a candidate , we can convert it to Feynman integrals using 
intersection theory, or by generalized IBP relations

φ(z)

The remaining task is to construct enough -forms 
belonging to  which lead to d-log integrals…

n
Hn

ω

Dlapa, Li, Zhang: 2103.04638
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,

Figure 1. The n-point, all-mass integral and its dual-momentum space representation.

(We will have more to say about other space-time signatures in section 2.3.) Notice

that we have decorated I
0
n with a superscript ‘0’ to emphasize that we will soon have

reason to change its normalization.

In order to manifest momentum conservation and the invariance of (1.1) under

translations of the loop momentum `, we introduce dual-momentum coordinates {xi}
such that pi=:(xi+1 � xi), with cyclic indexing understood. In terms of these coordi-

nates, it is easy to see that consecutive sums of external momenta appearing in the

propagators of (1.1) become squared di↵erences:

I
0
n =

Z
d
n
`

1⇥
(`� (x1 � x1))2 +m2

1
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⇤
· · ·

⇥
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⇤
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Z
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1⇥
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1
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⇤
· · ·

⇥
(x`� xn)2 +m2
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⇤
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Z
d
n
x`

1�
x2
`1 +m2

1

��
x2
`2 +m2

2

�
· · ·

�
x2
`n +m2

n

� , (1.2)

where in the second step we defined the dual loop-momentum variable x` according

to `=:x` � x1 and in the last step we introduced the familiar notation for dual-

momentum Mandelstam invariants, x2
ij := (xj � xi)2.

Introducing Feynman parameters in the canonical way (and doing the standard

translations and rescalings), it is not hard to express (1.2) as

I
0
n = �(n)

1Z

0

⇥
d
n�1

~↵
⇤Z

d
n
x`

1⇥
x2
` +F

⇤n = ⇡
n/2�(n/2)

1Z

0

⇥
d
n�1

~↵
⇤ 1

F
n
2
, (1.3)

where F is the second Symanzik polynomial

F :=
hX

i

↵
2
im

2
i

i
+
X

i<j

↵i↵j

�
x
2
ij +m

2
i +m

2
j

�
(1.4)

and we have used
⇥
d
n�1

~↵
⇤
to denote the canonical volume form on the projective

space RP
n�1 of Feynman parameters

– 4 –

An arbitrary one-loop topology

# of independent external momenta: E = n − 1

u(z) ∼ [G(z)](2−E)/2−ϵ

φ(z) ∼ [G(z)](E−2)/2
E+1

⋀
i=1

d log(zi) even:E

φ(z) ∼ G(0)[G(z)](E−3)/2
E+1

⋀
i=1

dzi

zi
 odd:E

Easy to verify that  takes d-log formu(z)φ(z)

where ~0n represents n consecutive zeros. The above product of E+1 factors has
the property that the i-th factor only depends on zj for j � i. This property
allows us to rewrite it as

u(z)'(z) =


G(z)

K

��✏ E+1̂

i=1

d log fi(zi, . . . , zE+1) , (33)

where the function fi satisfies

@

@zi
log fi(zi, . . . , zE+1) =

1

zi

s
G(~0i, zi+1, . . . , zE+1)

G(~0i�1, zi, . . . , zE+1)
. (34)

We now exploit the fact that the Gram determinants of one-loop integrals
are quadratic polynomials of zi. The di↵erential equations satisfied by fi can
then be easily solved using that

@

@x
log

1�
q

x2(x1�x)
x1(x2�x)

1 +
q

x2(x1�x)
x1(x2�x)

=

p
x1x2

x

p
(x1 � x)(x2 � x)

, (35)

up to an irrelevant phase.
After constructing all the d log-form integrals, we now need to convert them

to Feynman integrals. This can be achieved using the intersection theory. How-
ever, at one loop it turns out to be easier. For the even-E case, the d log-form
integral is just the integral F1,...,1 in spacetime dimension E + 2� 2✏, i.e.,

p
KF

(E+2�2✏)
1,...,1 =

1

(4⇡)E/2�(1� ✏)

Z 
G(z)

K

��✏ E+1Y

i=1

d log(zi) . (36)

The above integral can then be expressed by the d-dimensional ones via dimen-
sional recurrence relations [50]. Similarly, for the odd-E case, the d log-form
integral corresponds to the integral in E + 1� 2✏ dimensions:

p
G(0)F (E+1�2✏)

1,...,1 =
1

(4⇡)E/2�(1/2� ✏)

Z
K✏

p
G(0)

⇥
G(z)

⇤�1/2�✏
E+1Y

i=1

dzi

zi
.

(37)

Therefore, the canonical basis for one-loop Feynman integrals with arbitrary
internal masses and external momenta can be fully constructed using the above
procedure. We note that the canonical integrals given here are the same as the
D-dimensional D-gon integrals studied in [51] (see also [34]).

7.2. More results of two-loop maximally cut integrals

Here we give more results for two-loop canonical integrals in the maximally
cut case. We first introduce the concept of cuts in the Baikov representation. We
consider an integral family defined by N independent propagators. Belonging

16

A useful relation:

Chen, Jiang, Xu, LLY: 2008.03045
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We now turn to multi-loop Baikov integrals

to this integral family we pick a topology defined by m propagators. Typically
we have m < N , and to construct the Baikov representation one often needs to
introduce more than m Baikov variables zi. Therefore, in general the Baikov
representation in the loop-by-loop construction takes the form

Fa1,...,am,0,...,0 =

Z

C

Y

i

⇥
Gi(z)

⇤��i��i✏
� mY

j=1

dzj

z
aj

j

�Y

k

dzk , (38)

where the ISPs zk’s are taken from a subset of {zm+1, . . . , zN}.
Cutting a Baikov variable zj (j  m) for the integral in Eq. (38) amounts

to changing the integration domain of zj to an infinitesimal closed contour
around the pole zj = 0. The maximally cut version of Eq. (38), where all zj ’s
(j = 1, . . . ,m) are cut, is then given by

F
m-cut
a1,...,am,0,...,0 =

Z

C0

Y

k

dzk

� mY

j=1

I

zj=0

dzj

z
aj

j

�
⇥

Y

i

⇥
Gi(z)

⇤��i��i✏
, (39)

where the integration domain C0 for the ISPs is determined after integrating out
zj (j = 1, . . . ,m). The integrations over zj ’s can be performed using the residue
theorem, giving rise to

F
m-cut
a1,...,am,0,...,0 =

Z

C0

Y

k

dzk

�
'̂(z0)

Y

i

Gi,0(z
0)��i��i✏ , (40)

where z0 is the collection of the ISPs {zk}, '̂(z0) is a rational function deter-
mined by the residues of the integrand in Eq. (39) at zj = 0, and

Gi,0(z
0) ⌘ Gi(z)

���
z1=···=zm=0

. (41)

The maximally cut integrals are of interest on their own. The cut integrals
satisfy the same di↵erential equations as the uncut ones [45–47]. After impos-
ing the maximal cut, all integrals with fewer propagators drop out from the
di↵erential equations due to the fact that at least one of the residues at zj = 0
vanishes. As a result, only the “homogeneous” part of the di↵erential equations
remain. Therefore, constructing d log-form integrals in the type of Eq. (40)
helps to transform the homogeneous part of the di↵erential equations into the
✏-form, which serves as the first (and very often the most di�cult) step towards
a full canonical basis.

After imposing the maximal cuts, there are 3 possibilities: 1) there is no
extra ISP left to integrate over; 2) there is exactly one extra ISP left (the
univariate case); 3) there are more than one extra ISPs left (the multivariate
case). The first case is easy to deal with. There is only one master integral
for this top topology, resembling the one-loop case. The homogeneous part of
its di↵erential equation can be easily turned into the ✏-form by multiplying a
suitable factor. One can also study the inhomogeneous part by cutting on fewer

17
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Good things about maximal cuts: 
➤ Determines the differential equations up to sub-topologies 
➤ Helps to identify whether the integral family involves elliptic integrals
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If all ’s are integers, we can always factorizeγi

is applicable, e.g., when considering the maximally cut integrals in the Baikov
representation [45–47].

The univariate integrals take the form of Eq. (4) where the collection z con-
tains only a single variable z, with u(z) given by Eq. (5). We now need to
construct possible single-valued 1-forms �(z) which take the form of Eq. (6).
Note that depending on the values of �i’s, this is not always possible. In partic-
ular, if more than one �i’s are half-integers, or if some �i is a half-integer and the
corresponding polynomial Gi(z) has more than two distinct roots, the integral
is an elliptic integral and is beyond the scope of the current work. Therefore we
only need to consider two cases: 1) all �i’s are integers; and 2) there is exact one
half-integer �i and the corresponding Gi(z) has two (or fewer) distinct roots.

In the case when all �i’s are integers, one can always factorize u(z) into the
form

u(z) =
K✏

1
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(z � cj)
��0

j��0
j✏ , (8)

where K0 is an algebraic function and K1 is a rational function of the external
momenta, respectively; cj is a root of one of the polynomials Gi(z) in Eq. (5);
�
0
j and �

0
j are integers. The connection w = d log(u) has ⌫ critical points where

w = 0, which means that there exist ⌫ independent integrals [40, 48]. We can
construct ⌫ nonequivalent 1-forms �(z) = �̂(z)dz with

�̂i(z) =
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(z � cj)
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which give the canonical basis we desired.
On the other hand, if one of the �i’s is a half-integer, without loss of gener-

ality, we may write
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where �1 is a half-integer. Again the connection w = d log(u) has ⌫ critical
points and we need to construct ⌫ d log-form integrals. For that we use the
identities
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up to irrelevant phases. We can then construct the following �̂(z):
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5

…with distinguished roots cj

In the simplest cases, only one variable remains under maximal cuts

Chen, Jiang, Xu, LLY: 2008.03045
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If one of the ’s is a half-integerγi

is applicable, e.g., when considering the maximally cut integrals in the Baikov
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where i = 2, . . . , ⌫.
It is instructive to see how the above generic d log-form integrals look like

in practice, and how they can be related to Feynman integrals. For that we use
the two-loop four-scale triangle integrals from [9] as a concrete example in the
following. More examples can be found in the Supplemental Materials.

The integral family is defined by the propagators
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where the external momenta satisfy p
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2
2 and (p1 + p2)2 = s. We

consider integrals in the sector {1, 1, 1, 1, 1, 0, 0}. The 6th propagator z is an
irreducible scalar product (ISP) for constructing the Baikov representation for
this topology. After imposing the maximal cuts, the corresponding u(z) is given
by
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The connection w = d log(u) has 4 critical points and we need to construct
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We now need to convert these 1-forms to (maximally cut) Feynman integrals.
For that we choose the basis F1,1,1,1,1,0,0, F2,1,1,1,1,0,0, F1,2,1,1,1,0,0 and F1,1,1,2,1,0,0.
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ê1(z) = 1 , ê2(z) =
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�̂1(z) =
p
� , �̂4(z) =

p
�

p
c0c1

z
,

�̂2,3(z) =
p
�

p
(c0 � c2,3)(c1 � c2,3)

z � c2,3
. (17)

We now need to convert these 1-forms to (maximally cut) Feynman integrals.
For that we choose the basis F1,1,1,1,1,0,0, F2,1,1,1,1,0,0, F1,2,1,1,1,0,0 and F1,1,1,2,1,0,0.
Their corresponding cocycles are hei| = êi(z)dz with

ê1(z) = 1 , ê2(z) =
2✏

z
, ê3(z) =

✏m
2
2(z + 4m2 �m

2
2)

m2z2
,

ê4(z) = ✏
m

2
2(s+m

2
1 �m

2
2) + z(s�m

2
1 +m

2
2)

s(z � c2)(z � c3)
. (18)

6

We choose: 

It is easy to verify that  are d-log integrandsu(z)ϕj(z)
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If one of the ’s is a half-integerγi

is applicable, e.g., when considering the maximally cut integrals in the Baikov
representation [45–47].

The univariate integrals take the form of Eq. (4) where the collection z con-
tains only a single variable z, with u(z) given by Eq. (5). We now need to
construct possible single-valued 1-forms �(z) which take the form of Eq. (6).
Note that depending on the values of �i’s, this is not always possible. In partic-
ular, if more than one �i’s are half-integers, or if some �i is a half-integer and the
corresponding polynomial Gi(z) has more than two distinct roots, the integral
is an elliptic integral and is beyond the scope of the current work. Therefore we
only need to consider two cases: 1) all �i’s are integers; and 2) there is exact one
half-integer �i and the corresponding Gi(z) has two (or fewer) distinct roots.

In the case when all �i’s are integers, one can always factorize u(z) into the
form

u(z) =
K✏

1

K0

⌫Y

j=0

(z � cj)
��0

j��0
j✏ , (8)

where K0 is an algebraic function and K1 is a rational function of the external
momenta, respectively; cj is a root of one of the polynomials Gi(z) in Eq. (5);
�
0
j and �

0
j are integers. The connection w = d log(u) has ⌫ critical points where

w = 0, which means that there exist ⌫ independent integrals [40, 48]. We can
construct ⌫ nonequivalent 1-forms �(z) = �̂(z)dz with

�̂i(z) =
K0

z � ci

⌫Y

j=0

(z � cj)
�0
j , (i = 1, . . . , ⌫) , (9)

which give the canonical basis we desired.
On the other hand, if one of the �i’s is a half-integer, without loss of gener-

ality, we may write

u(z) =
K✏

1

K0

⇥
(z � c0)(z � c1)

⇤��1��1✏
⌫Y

j=2

(z � cj)
��0

j��0
j✏ , (10)

where �1 is a half-integer. Again the connection w = d log(u) has ⌫ critical
points and we need to construct ⌫ d log-form integrals. For that we use the
identities

@

@x
log

1 +
q

(x2�c)(x1�x)
(x1�c)(x2�x)

1�
q

(x2�c)(x1�x)
(x1�c)(x2�x)

=

p
(x1 � c)(x2 � c)

(x� c)
p

(x� x1)(x� x2)
,

@

@x
log

1 +
q

(x1�x)
(x2�x)

1�
q

(x1�x)
(x2�x)

=
1p

(x� x1)(x� x2)
, (11)

up to irrelevant phases. We can then construct the following �̂(z):

�̂1(z) =
K0

⇥
(z � c0)(z � c1)

⇤1/2��1

⌫Y

j=2

(z � cj)
�0
j , (12)
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dim(Hω) = ν needs to construct  d-log integralsν

is applicable, e.g., when considering the maximally cut integrals in the Baikov
representation [45–47].

The univariate integrals take the form of Eq. (4) where the collection z con-
tains only a single variable z, with u(z) given by Eq. (5). We now need to
construct possible single-valued 1-forms �(z) which take the form of Eq. (6).
Note that depending on the values of �i’s, this is not always possible. In partic-
ular, if more than one �i’s are half-integers, or if some �i is a half-integer and the
corresponding polynomial Gi(z) has more than two distinct roots, the integral
is an elliptic integral and is beyond the scope of the current work. Therefore we
only need to consider two cases: 1) all �i’s are integers; and 2) there is exact one
half-integer �i and the corresponding Gi(z) has two (or fewer) distinct roots.

In the case when all �i’s are integers, one can always factorize u(z) into the
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where K0 is an algebraic function and K1 is a rational function of the external
momenta, respectively; cj is a root of one of the polynomials Gi(z) in Eq. (5);
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j and �
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w = 0, which means that there exist ⌫ independent integrals [40, 48]. We can
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On the other hand, if one of the �i’s is a half-integer, without loss of gener-
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where �1 is a half-integer. Again the connection w = d log(u) has ⌫ critical
points and we need to construct ⌫ d log-form integrals. For that we use the
identities
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up to irrelevant phases. We can then construct the following �̂(z):

�̂1(z) =
K0

⇥
(z � c0)(z � c1)

⇤1/2��1

⌫Y
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(z � cj)
�0
j , (12)

5�̂i(z) =
K0

z � ci

p
(c0 � ci)(c1 � ci)

⇥
(z � c0)(z � c1)

⇤1/2��1

⌫Y

j=2

(z � cj)
�0
j ,

where i = 2, . . . , ⌫.
It is instructive to see how the above generic d log-form integrals look like

in practice, and how they can be related to Feynman integrals. For that we use
the two-loop four-scale triangle integrals from [9] as a concrete example in the
following. More examples can be found in the Supplemental Materials.

The integral family is defined by the propagators

{k21 �m
2
, (k1 � k2)

2
, (k1 + p2)

2 �m
2
, (k2 � p1)

2 �m
2
,

(k2 + p2)
2 �m

2
, z ⌘ k

2
2 �m

2
, (k1 � p1)

2 �m
2} , (13)

where the external momenta satisfy p
2
1 = m

2
1, p

2
2 = m

2
2 and (p1 + p2)2 = s. We

consider integrals in the sector {1, 1, 1, 1, 1, 0, 0}. The 6th propagator z is an
irreducible scalar product (ISP) for constructing the Baikov representation for
this topology. After imposing the maximal cuts, the corresponding u(z) is given
by

u(z) =
1p
�

✓
�

sm2

◆✏

z
�2✏

⇥
(z � c0)(z � c1)

⇤�1/2+✏⇥
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⇤�✏
, (14)

where the 4 roots are

c0,1 = m2(m2 ± 2m) ,
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s(m2
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2s
, (15)

with � ⌘ �(s,m2
1,m

2
2) being the Källén function

�(x, y, z) = x
2 + y

2 + z
2 � 2xy � 2yz � 2zx . (16)

The connection w = d log(u) has 4 critical points and we need to construct
4 independent canonical master integrals. According to Eq. (12), we have
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,
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We now need to convert these 1-forms to (maximally cut) Feynman integrals.
For that we choose the basis F1,1,1,1,1,0,0, F2,1,1,1,1,0,0, F1,2,1,1,1,0,0 and F1,1,1,2,1,0,0.
Their corresponding cocycles are hei| = êi(z)dz with

ê1(z) = 1 , ê2(z) =
2✏

z
, ê3(z) =
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2
2(z + 4m2 �m

2
2)

m2z2
,

ê4(z) = ✏
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2
2(s+m

2
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2) + z(s�m

2
1 +m

2
2)

s(z � c2)(z � c3)
. (18)

6

We choose: 

It is easy to verify that  are d-log integrandsu(z)ϕj(z)

Beyond these two cases, one expect appearance of elliptic integrals!
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u(z) =
1
s2 ( t(s + t)

s2 )
ϵ

z−1−ϵ(s + z)ϵ(t − z)−1−2ϵ

ω = d log(u) = ( ϵ
s + z

+
1 + 2ϵ
t − z

−
1 + ϵ

z ) dz

dim(Hω) = 2
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Massless double box on maximal cuts

23

u(z) =
1
s2 ( t(s + t)

s2 )
ϵ

z−1−ϵ(s + z)ϵ(t − z)−1−2ϵ

ω = d log(u) = ( ϵ
s + z

+
1 + 2ϵ
t − z

−
1 + ϵ

z ) dz

dim(Hω) = 2

No half-integer powers: ϕ1 = s2zdz , ϕ2 = s2(t − z)dz
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Massless double box on maximal cuts

23

u(z) =
1
s2 ( t(s + t)

s2 )
ϵ

z−1−ϵ(s + z)ϵ(t − z)−1−2ϵ

ω = d log(u) = ( ϵ
s + z

+
1 + 2ϵ
t − z

−
1 + ϵ

z ) dz

dim(Hω) = 2

No half-integer powers: ϕ1 = s2zdz , ϕ2 = s2(t − z)dz

E1 = F1,1,1,1,1,1,1,0,0 , E2 = F1,2,1,1,1,1,1,0,0

়ംႲЦ Ҳ ഁജ И ়ംႳЦ Ҳ Ѳ Ҭ ѳ࿉ജ ഁജ
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Pick two arbitrary master integrals:
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I1 = −
s(1 + 3ϵ)

2ϵ
E1 +

st(1 + ϵ)
2ϵ(1 + 2ϵ)

E2

I2 =
s(1 + 3ϵ) + 2ϵt

2ϵ
E1 −

st(1 + ϵ)
2ϵ(1 + 2ϵ)

E2

Performing the decomposition gives 

Check the DEs (on maximal cuts)
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In the generic multivariate case, we perform the construction variable-by-variable

V

Z

H

Q

Chen, Jiang, Xu, LLY: 2008.03045; Ma, Wang, 
Xu, LLY, Zhou: 2105.06316; and work to appear

Many examples worked out:

But there are still questions to be answered…
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It is well-known that we need functions beyond MPLs, e.g., 
(integrals of) elliptic integrals in many realistic situations

A(1),1 A(1),Nl A(1),Nh

Figure 1: Sample Feynman diagrams corresponding to various internal flavour contribu-
tions at one loop as specified in Eq. (2.3). Red lines, black spiral lines and black lines
represent massless quarks, gluons and top quarks, respectively.

A(2),1 A(2),Nl A(2),Nh

A(2),N2
l A(2),NlNh A(2),N2

h

Figure 2: Sample Feynman diagrams corresponding to various internal flavour contribu-
tions at two loops as specified in Eq. (2.4). Red lines, black spiral lines and black lines
represent massless quarks, gluons and top quarks, respectively.

2 Leading colour t̄tgg amplitudes

We consider a scattering process involving a pair of top quarks and two gluons

0 ! t̄(p1) + t(p2) + g(p3) + g(p4),

where p
2
1 = p

2
2 = m

2
t and p

2
3 = p

3
4 = 0. The kinematic invariants for this process are the

top-quark mass mt, and the two Mandelstam variables

s = (p1 + p2)
2
, t = (p2 + p3)

2
. (2.1)

In this work we consider the leading colour contributions of the t̄tgg amplitude up to
two-loop level, where at two loops, only planar configurations arise. The colour decompo-
sition of the leading colour L-loop t̄tgg amplitude is given by

A
(L)(1t̄, 2t, 3g, 4g) = n

L
g
2
s


(T a3T

a4) ī1
i2

A
(L)(1t̄, 2t, 3g, 4g) + (3 $ 4)

�
, (2.2)

where n = m✏↵s/(4⇡), ↵s = g
2
s/(4⇡), m✏ = i

�
4⇡/m2

t

�✏
e
�✏�E , gs is the strong coupling

constant and (T a) j̄
i are the fundamental generators of SU(Nc).

– 3 –

F(x; k) = ∫
x

0

dt

(1 − t2)(1 − k2t2)

E(x; k) = ∫
x

0

1 − k2t2

1 − t2

3

in turn, has sparked a lot of activity in recent years in trying to uncover the mathematics of elliptic
Feynman integrals [12, 18–33]

The most prominent elliptic Feynman integral is the so-called sunrise integral, i.e., the two-loop integral
with three massive propagators. It had been observed already fifteen years ago that the maximal cut of
this integral can be expressed in terms of complete elliptic integrals of the first kind [21]. The result for
the full (uncut) integral, however, remained mysterious for more than a decade. In a landmark paper
Bloch and Vanhove have shown that the sunrise integral with three equal masses in two dimensions can
naturally be written in terms of a generalization of the dilogarithm to an elliptic curve [23]. The latter is
a special case of a more general class of functions, called elliptic multiple polylogarithms (eMPLs) [34–36],
and they have recently appeared also in the context of superstring amplitudes at one-loop [37–39]. The
result of ref. [23] has sparked a wealth of new results and representations for the sunrise integral, including
also higher-order terms in dimensional regularization and results in four space-time dimensions [12, 24–
31]. A common feature of these results is that most of them require the introduction of a new elliptic
generalization of MPLs, whose relationship to the eMPLs that have appeared in pure mathematics and
string theory is often unclear. This is somewhat disconcerting, because in the non-elliptic case it was
precisely the realisation that ordinary MPLs constitute the right class of functions with beautiful algebraic
properties that was at the heart of a lot of progress in multi-loop computations.

In the present paper, we try to close this gap, and we introduce a class of functions that are defined
as iterated integrals on an elliptic curve. The ensuing functions have at most logarithmic singularities
– thereby constituting a genuine generalization of polylogarithms to elliptic curves. We discuss how one
can easily compute the sunrise integral in term of these functions, and we present analytic results for all
the master integrals of the sunrise topology in d = 2 ≠ 2‘ dimensions. In particular, we present for the
first time an analytic expression for the second master integral in the case of three unequal masses. In a
companion paper [40], we study in detail some of the properties of our functions. In particular, we show
that they are equivalent to the eMPLs introduced in the mathematics literature. As such, our functions
genuinely deserve being called elliptic multiple polylogarithms as well. At the same time, this shows how
the sunrise integral is connected to the eMPLs that have appeared in mathematics and string theory.

The outline of the paper is as follows: after providing a lightning overview of some background on
the sunrise integrals in section II, we will jump into the evaluation of the first master integral for the
equal-mass sunrise integral in section III. This integral will serve as our prime example of how eMPLs
naturally arise in the context of the sunrise integrals. After this first encounter with iterated integrals
on elliptic curves, we will discuss and compute the second master integral for the equal-mass sunrise
integral in section IV. We will collect structural results of the first sections, including the complete set
of integration kernels that define eMPLs, in a brief summary section V. In section VI, we will apply our
new language to the more complex scenario of sunrise integrals with three di�erent masses. In particular,
we will discuss the unitary cut of the sunrise integral as well as the unequal-mass master integrals for the
sunrise topology from dispersion relations. In section VII we draw our conclusion.

II. THE SUNRISE INTEGRAL: OVERVIEW

The most popular example of a family of Feynman integrals that cannot be computed in terms of
multiple polylogarithms are the sunrise integrals, which have received a lot of attention over the last few
years. The sunrise integrals can be represented by the following graph,

m1

m2

m3

p

and the corresponding family of Feynman integrals reads

S‹1‹2‹3(S, m2
1, m2

2, m2
3) =

⁄
Ddk1 Ddk2

(k2
1 ≠ m2

1)‹1(k2
2 ≠ m2

2)‹2((k1 ≠ k2 + p)2 ≠ m2
3)‹3

, (II.1)

where the integration measure is defined as
⁄

Ddk © e“E‘

⁄ ddk

i fid/2 , (II.2)

“E = ≠�Õ(1) is the Euler-Mascheroni constant and ‹i œ Z denote the multiplicities of the propagators. We
work in dimensional regularization in d = d0 ≠2‘ dimensions, where d0 is even. We define S = ≠s = ≠p2,
and the quantities ki and mi denote the loop momenta and the masses of the propagators respectively.

What is a good functional basis and how do we organize the calculation?
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Broedel et al.: 1809.10698; and many more references

A class of functions containing (integrals) of elliptic integrals, and sharing many important 
features of ordinary MPLs

Pure functions

roots, the original integrand is a purely rational object. Hence, the final analytic

result including square roots must be independent of the choice of the branch of the

root. This implies that the pure function part must have definite ‘parity’ with respect

to the operation of changing the sign of the root. For example, we see that the one-

loop bubble integral in eq. (2.7) is independent of the sign of the square root, and

both the algebraic prefactor and the pure function part are odd functions. In the case

of eMPLs, changing the sign of the square root corresponds to the operation (x, y) $

(x,�y). Since (x, y) = ((z,~a), c4 0(z,~a)), this operation corresponds on the torus

to changing the sign of z. We would thus like to have a basis of pure functions that

have definite parity under this operation. The basis e� does not have this property,

and we prefer to work with an alternative basis that makes this symmetry manifest.

2. From the mathematical point of view, elliptic curves and the functions associated

to them are most naturally studied in terms of complex tori and the coordinate z.

Feynman integrals, however, are more naturally expressed in terms of the variables

(x, y), because these variables are more directly related to the kinematics of the

process under consideration. We would therefore like to have a basis of pure eMPLs

formulated directly in terms of the variables (x, y).

4.2 Pure elliptic multiple polylogarithms

In this section we introduce a new class of iterated integrals on the elliptic curve defined

by the polynomial equation y
2 = P4(x) with the following properties:

1. They form a basis for the space of all eMPLs.

2. They are pure.

3. They have definite parity.

4. They manifestly contain ordinary MPLs.

The definition reads

E4(
n1 ... nk
c1 ... ck ;x,~a) =

Z x

0
dt n1(c1, t,~a) E4(

n2 ... nk
c2 ... ck ; t,~a) , (4.7)

with ni 2 Z and ci 2
bC. Equation (4.7) is of course equivalent to the di↵erential equation,

@xE4(
n1 ... nk
c1 ... ck ;x,~a) =  n1(c1, x,~a) E4(

n2 ... nk
c2 ... ck ;x,~a) . (4.8)

The length and the weight are specified in analogy with the case of the E4 functions in

eq. (3.24). The integration kernels are defined implicitly through the identity (for n � 0)

dx ±n(c, x,~a) (4.9)

= dzx

h
g
(n)(zx � zc, ⌧)± g

(n)(zx + zc, ⌧)� �±n,1

⇣
g
(1)(zx � z⇤, ⌧) + g

(1)(zx + z⇤, ⌧)
⌘i

.

It is easy to check that the class of functions defined in this way satisfies the four properties

outlined above: First, there is a one-to-one map between the kernels  ±n and the functions

– 15 –

F(
p
↵(�)|�) and E(

p
↵(�)|�) in terms of ⌧ and its derivative. Substituting these results

into eq. (4.14), we are left with

G⇤(~a) = �
�(�� 1)↵0(�)p
↵(1� ↵)(1� ↵�)

�
↵(�� 1)p

↵(1� ↵)(1� ↵�)
� 2 b�(�� 1)!1⌧

0(�) (4.19)

where 0 indicates the derivative with respect to �, and we suppressed the dependence of ↵

on �. It is very easy to compute ⌧
0(�) as

⌧
0(�) = i

d

d�

K(1� �)

K(�)
=

i⇡

(�� 1)�!
2
1

(4.20)

such that the expression above becomes

G⇤(~a) =
(1� �) [�↵

0(�) + ↵]p
↵(1� ↵)(1� ↵�)

� b
2⇡i

!1
. (4.21)

Let us make some comments about eq. (4.21). First, we stress that eq. (4.21) is only valid

when the branch points are real and the branches of the square root are chosen according

to eq. (3.4). In other cases the formula holds up to a sign and complex conjugation, see

Appendix A. Second, eq. (4.21) assumes that ↵ and � are not independent, and that in

addition z⇤ takes the special form in eq. (4.16). Once the exact relation between ↵ and �

is known (which of course depends on the problem considered), eq. (4.21) becomes explicit

and can be used to derive the expression for G⇤(~a). In physics applications, both ↵ and

� are usually algebraic functions of the external kinematics, in which case G⇤(~a) reduces

to an (explicitly computable) algebraic function of the external kinematic data, up to the

term proportional to i⇡/!1. We will see an explicit example of this in the next section,

when we discuss results for some Feynman integrals that evaluate to pure combinations of

elliptic polylogarithms.

4.4 Properties of pure eMPLs

Before we discuss examples of Feynman integrals that can be expressed in terms of the

pure basis of eMPLs defined in the previous subsection, we summarise here some of their

properties. Most of these properties are inherited from the corresponding properties of the

E4 and e� functions, but we collect them here for completeness.

Shu✏e algebra. Just like ordinary MPLs (and iterated integrals in general), the E4

functions form a shu✏e algebra,

E4(A1 · · ·Ak;x,~a) E4(Ak+1 · · ·Ak+l;x,~a) =
X

�2⌃(k,l)

E4(A�(1) · · ·A�(k+l);x,~a) , (4.22)

with Ai = ( ni
ci ).

Rescaling of arguments. Just like ordinary MPLs, the E4 functions are invariant under

a simultaneous rescaling of the arguments (cf. eq. (2.3)),

E4(
n1 ... nk
p c1 ... p ck ; p x, p~a) = E4(

n1 ... nk
c1 ... ck ;x,~a) , p, ck 6= 0 . (4.23)

– 18 –

Shuffle algebra

How do these functions arise from differential equations?

(functions with lower weights)  (one-forms)dℰ4 ∼ ∑ ×

And many more…
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See, e.g., Weinzierl: 1912.02578 
and references thereind ⃗f(z, ϵ) = ϵ dA(z) ⃗f(z, ϵ)

In the elliptic cases, one may still find a basis which satisfy

where  are non-algebraic combinations of Feynman integrals⃗f(z, ϵ)
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See, e.g., Weinzierl: 1912.02578 
and references thereind ⃗f(z, ϵ) = ϵ dA(z) ⃗f(z, ϵ)

In the elliptic cases, one may still find a basis which satisfy

where  are non-algebraic combinations of Feynman integrals⃗f(z, ϵ)

How can we construct such a basis? Our attempt: elliptic d-log forms
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Preliminary results for the kite integral

Stay tuned…
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Thank you!


