Calculation of master integrals for single top quark hadron production

Long-Bin Chen

In collaboration with Jian Wang
2020-05-16

Single top quark hadron production

Measurement of V_{tb}

arXiv:2105.04464 [pdf, other]
Single Top Quark Production with and without a Higgs Boson Qing-Hong Cao, Hao-ran Jiang, Guojin Zeng

QCD corrections:

Shouhua Zhu, Phys. Lett. B, 2002, 524:283-288. t W 1-loop QCD with K-factor 1.4~1.7
R. Schwienhorst, C.-P. Yuan, C. Muller, Q.-H. Cao, Phys. Rev. D, 2011, 83:034019.

Edmond L. Berger, Jun Gao, C.-P. Yuan, Hua Xing Zhu, Phys.Rev. D, 2016, 94:071501.
Edmond L. Berger, Jun Gao, and Hua Xing Zhu, JHEP, 2017, 11:158.
Najam ul Basat, Zhao Li, and Yefan Wang, arXiv:2102.08225.

The need for higher order QCD corrections

QED $\quad \alpha \sim O(0.01)$

QCD $\quad \alpha_{s} \sim O(0.1)\left(\mu \gg \wedge_{Q C D}\right)$

QED are more convergent
in perturbative expansion than QCD

For higher order corrections, one of the difficult parts is the calculation of multi-loop integrals.

Sample of two-loop Feynman diagrams for t+W hadron production

Sample of two-loop Feynman diagrams for single top quark hadron production (one massive propagator)

(1)

(2)

Scales: s, t, u, m_{W}, m_{t}

Sort the feynman diagrams by number of massive propagators

Sample of s-channel and t-channel two-loop diagrams

(1)

$$
I_{n_{1}, n_{2}, \ldots, n_{9}}=\int \mathcal{D}^{D} q_{1} \mathcal{D}^{D} q_{2} \frac{1}{D_{1}^{n_{1}} D_{2}^{n_{2}} D_{3}^{n_{3}} D_{4}^{n_{4}} D_{5}^{n_{5}} D_{6}^{n_{6}} D_{7}^{n_{7}} D_{8}^{n_{8}} D_{9}^{n_{9}}}
$$

$$
D_{1}=q_{1}^{2}, D_{2}=q_{2}^{2}, D_{3}=\left(q_{1}-k_{1}\right)^{2}, D_{4}=\left(q_{1}+k_{2}\right)^{2}, D_{5}=\left(q_{1}+q_{2}-k_{1}\right)^{2},
$$

$$
D_{6}=\left(q_{2}-k_{1}-k_{2}\right)^{2}, D_{7}=\left(q_{2}-k_{3}\right)^{2}-m_{t}^{2}
$$

$$
D_{8}=\left(q_{1}+k_{1}+k_{2}-k_{3}\right)^{2}-m_{t}^{2}, D_{9}=\left(q_{2}-k_{1}\right)^{2} .
$$

(2)

$$
\begin{align*}
& J_{n_{1}, n_{2}, \ldots, n_{9}}=\int \mathcal{D}^{D} q_{1} \mathcal{D}^{D} q_{2} \frac{1}{P_{1}^{n_{1}} P_{2}^{n_{2}} P_{3}^{n_{3}} P_{4}^{n_{4}} P_{5}^{n_{5}} P_{6}^{n_{6}} P_{7}^{n_{7}} P_{8}^{n_{8}} P_{9}^{n_{9}}} \\
& P_{1}=q_{1}^{2}, P_{2}=\left(q_{1}-q_{2}\right)^{2}, P_{3}=q_{2}^{2}, P_{4}=\left(q_{1}+k_{1}\right)^{2}, P_{5}=\left(q_{1}-q_{2}-k_{2}\right)^{2} \\
& P_{6}=\left(q_{2}+k_{1}+k_{2}\right)^{2}, P_{7}=\left(q_{2}+k_{1}+k_{2}-k_{3}\right)^{2}-m_{t}^{2} \\
& P_{8}=\left(q_{1}-k_{3}\right)^{2}, P_{9}=\left(q_{2}+k_{1}\right)^{2} .
\end{align*}
$$

Integrals Reduction: IBP (integration-by-parts)

$$
\begin{gathered}
F(a)=\int \frac{\mathrm{d}^{d} k}{\left(k^{2}-m^{2}\right)^{a}} . \\
\downarrow \\
\int \mathrm{d}^{d} k \frac{\partial}{\partial k} \cdot \frac{1}{\left(k^{2}-m^{2}\right)^{a}} \\
\downarrow
\end{gathered}=0, ~ \begin{gathered}
(d-2 a) F(a)-2 a m^{2} F(a+1)=0 . \\
\downarrow \\
F(a)=\frac{d-2 a+2}{2(a-1) m^{2}} F(a-1) .
\end{gathered}
$$

K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981)
P.A. Baikov, Phys. Lett. B 385, 404 (1996)
P.A. Baikov, Nucl. Instrum. Methods A 389, 347 (1997)
S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000)
S. Laporta, E. Remiddi, Phys. Lett. B 379, 283 (1996)

- Reduction Packages:

FIRE, Reduze, Kira…

FIRE5: a C++ implementation of Feynman Integral REduction
Alexander V. Smirnov (Moscow State U.) (Aug 11, 2014)
Published in: Comput.Phys.Commun. 189 (2015) 182-191 • e-Print: 1408.2372 [hep-ph]
pdf © DOI \quad cite

FIRE6: Feynman Integral REduction with Modular Arithmetic
A.V. Smirnov (Moscow State U. and KIT, Karlsruhe, TTP), F.S. Chuhareve (Moscow State U.) (Jan 23, 2019)
e-Print: 1901.07808 [hep-ph]
(3 pdf
(1) DOI
E cite

Differential Equations (DE):


```
x are Lorentz invariant kinematics
```

Differential equations method: New technique for massive Feynman diagrams calculation A.V. Kotikov (BITP, Kiev) (Jun, 1990)

Published in: Phys.Lett.B 254 (1991) 158-164
Differential equation method: The Calculation of N point Feynman diagrams A.V. Kotikov (BITP, Kiev) (1991)

Published in: Phys.Lett.B 267 (1991) 123-127, Phys.Lett.B 295 (1992) 409-409 (erratum)

Progress in DE method:

T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000)
T. Gehrmann, E. Remiddi, Nucl. Phys. B 601, 248 (2001)
T. Gehrmann, E. Remiddi, Nucl. Phys. B 601, 287 (2001)

Weight / Transcendentality

$\log [x]^{\wedge} n, \pi^{\wedge} n, \zeta(n), \operatorname{Lin}[x]$
Uninform weight-n.

Can be evaluated by
Feynman parameters

$$
\begin{aligned}
F\left(Q^{2} ; 1, \ldots, 1 ; d\right)= & \frac{\left(\mathrm{i} \pi^{d / 2} \mathrm{e}^{-\gamma \varepsilon}\right)^{2}}{\left(Q^{2}\right)^{2+2 \varepsilon}} \\
& \times\left(\frac{1}{\varepsilon^{4}}-\frac{\pi^{2}}{\varepsilon^{2}}-\frac{83 \zeta(3)}{3 \varepsilon}-\frac{59 \pi^{4}}{120}\right)+O(\varepsilon) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Based on MB } \\
& \text { representation } \\
& f(x, \varepsilon)=-\frac{4}{\varepsilon^{4}}+\frac{5 \ln x}{\varepsilon^{3}}-\left(2 \ln ^{2} x-\frac{5}{2} \pi^{2}\right) \frac{1}{\varepsilon^{2}} \\
& -\left(\frac{2}{3} \ln ^{3} x+\frac{11}{2} \pi^{2} \ln x-\frac{65}{3} \zeta(3)\right) \frac{1}{\varepsilon} \\
& +\frac{4}{3} \ln ^{4} x+6 \pi^{2} \ln ^{2} x-\frac{88}{3} \zeta(3) \ln x+\frac{29}{30} \pi^{4} \\
& -\left[2 \operatorname{Li}_{3}(-x)-2 \ln x \operatorname{Li}_{2}(-x)-\left(\ln ^{2} x+\pi^{2}\right) \ln (1+x)\right] \frac{2}{\varepsilon} \\
& -4\left[S_{2,2}(-x)-\ln x S_{1,2}(-x)\right]+44 \operatorname{Li}_{4}(-x) \\
& -4[\ln (1+x)+6 \ln x] \operatorname{Li}_{3}(-x) \\
& \text { Planar } \\
& +2\left(\ln ^{2} x+2 \ln x \ln (1+x)+\frac{10}{3} \pi^{2}\right) \operatorname{Li}_{2}(-x) \\
& +\left(\ln ^{2} x+\pi^{2}\right) \ln ^{2}(1+x) \\
& -\frac{2}{3}\left[4 \ln ^{3} x+5 \pi^{2} \ln x-6 \zeta(3)\right] \ln (1+x)+O(\varepsilon), \\
& \text { Analytical result for dimensionally regularized massless on shell double box }
\end{aligned}
$$

Multiloop integrals in dimensional regularization made simple Johannes M. Henn (Princeton, Inst. Advanced Study) (Apr 5, 2013) Published in: Phys.Rev.Lett. 110 (2013) 251601 • e-Print: 1304.1806 [hep-th]
Choosing canonical basis (basis with uniform transcendentality)

For random basis g, we may have:

$$
\partial_{x} \vec{g}(x ; \epsilon)=B(x, \epsilon) \vec{g}(x ; \epsilon)
$$

We can choose new basis f :

$$
\vec{f}=T \vec{g},
$$

$d \vec{f}(x, \epsilon)=\epsilon(d \tilde{A}) \vec{f}(x ; \epsilon)$

$$
\tilde{A}=\left[\sum_{k} A_{k} \log \alpha_{k}(x)\right] .
$$

Lectures on differential equations for Feynman integrals
Authors: Johannes M. Henn

Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form
 Oleksandr Gituliar (Hamburg U., Inst. Theor. Phys. II), Vitaly_Magerya (Novomoskovsk U.) (Jan 16, 2017)
 Published in: Comput.Phys.Commun. 219 (2017) 329-338 • e-Print: 1701.04269 [hep-ph]

How to Find Canonical Basis

Libra: a package for transformation of differential systems for multiloop integrals
Roman N. Lee (Novosibirsk, IYF) (Dec 1, 2020)
e-Print: 2012.00279 [hep-ph]

Constructing canonical Feynman integrals with intersection theory
Jiaqi Chen (Peking U. and Peking U., SKLNPT), Xuhang Jiang (Peking U., SKLNPT), Xiaofeng Xu (U. Bern (main)), Li Lin Yang (Zhejiang U., Inst. Mod. Phys.) (Aug 7, 2020)
Published in: Phys.Lett.B 814 (2021) 136085 • e-Print: 2008.03045 [hep-th]

Leading singularities in Baikov representation and Feynman integrals with uniform transcendental weight
Christoph Dlapa (Munich, Max Planck Inst.), Xiaodi Li (Zheijiang U.), Yang Zhang (PCFT, Hefei and Hefei, CUST) (Mar 8, 2021)
e-Print: 2103.04638 [hep-th]
H. Frellesvig, F. Gasparotto, S. Laporta, M. K. Mandal, P. Mastrolia, L. Mattiazzi, and S. Mizera, Decomposition of Feynman Integrals by Multivariate Intersection Numbers, arXiv:2008.04823.
C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP 04 (2017) 006, [arXiv:1611.01087].
C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295-312, [arXiv:1705.06252].
O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 329-338, [arXiv:1701.04269].
M. Prausa, epsilon: A tool to find a canonical basis of master integrals, Comput. Phys. Commun. 219 (2017) 361-376, [arXiv:1701.00725].

Choosing good integrals

M_{2}
M_{3}

M_{10}

M_{7}

M_{8}

M_{14}

Integrals for first family

$$
\begin{aligned}
& \mathrm{M}_{1}=\epsilon^{2} I_{0,0,0,1,2,0,2,0,0}, \quad \mathrm{M}_{2}=\epsilon^{2} I_{0,0,1,0,2,0,2,0,0}, \quad \mathrm{M}_{3}=\epsilon^{2} I_{0,0,2,0,2,0,1,0,0}, \\
& \mathrm{M}_{4}=\epsilon^{2} I_{0,0,1,0,2,2,0,0,0}, \\
& \mathrm{M}_{5}=\epsilon^{3} I_{0,0,1,0,2,1,1,1,0,0}, \quad \mathrm{M}_{6}=\epsilon^{2} I_{0,0,1,2,2,0,0,2,0,0}, \\
& \mathrm{M}_{7}=\epsilon^{3} I_{0,0,1,1,1,0,2,0,0}, \quad \mathrm{M}_{8}=\epsilon^{2} I_{0,0,0,1,1,1,0,3,0,0}, \quad \mathrm{M}_{9}=\epsilon^{2} I_{0,0,2,2,1,1,0,2,0,0}, \\
& \mathrm{M}_{10}=\epsilon^{3} I_{0,1,0,1,2,2,0,1,0,0}, \quad \mathrm{M}_{11}=\epsilon^{2} I_{0,1,0,1,2,0,2,2,0,0}, \quad \mathrm{M}_{12}=\epsilon^{2} I_{0,1,1,2,2,0,2,2,0,0}, \\
& \mathrm{M}_{13}=\epsilon^{2} I_{0,1,1,2,0,2,0,0,0}, \quad \mathrm{M}_{14}=\epsilon^{3} I_{0,1,1,2,0,0,1,1,0,0}, \quad \mathrm{M}_{15}=\epsilon^{4} I_{0,1,1,1,1,0,1,0,0,0} \text {, } \\
& \mathrm{M}_{16}=\epsilon^{2} I_{1,0,0,0,2,0,0,0,0}, \\
& \mathrm{M}_{17}=\epsilon^{2} I_{2,0,0,0,2,2,0,0,0}, \quad \mathrm{M}_{18}=\epsilon^{4} I_{1,0,1,0,1,1,1,0,0} \text {, } \\
& \mathrm{M}_{19}=\epsilon^{3} I_{1,0,1,0,1,1,2,0,0} \text {, } \\
& \mathrm{M}_{20}=\epsilon^{3} I_{1,0,1,1,1,0,0,2,0,0}, \quad \mathrm{M}_{21}=\epsilon^{2} I_{1,0,1,1,1,1,0,3,0,0} \text {, } \\
& \mathrm{M}_{22}=\epsilon^{3} I_{1,1,0,0,2,2,1,0,0}, \\
& \mathrm{M}_{23}=\epsilon^{3} I_{1,1,0,0,2,2,1,0,0,0}, \quad \mathrm{M}_{24}=\epsilon^{3}(1-2 \epsilon) I_{1,1,0,0,1,1,1,1,0,0}, \\
& \mathrm{M}_{25}=\epsilon^{3} I_{1,1,0,0,2,2,1,1,0,0} \text {, } \\
& \mathrm{M}_{26}=\epsilon^{4} I_{1,1,0,0,1,1,0,1,0,0}, \quad \mathrm{M}_{27}=\epsilon^{3} I_{1,1,0,1,1,0,2,0,0} \text {, } \\
& \mathrm{M}_{28}=\epsilon^{4} I_{1,1,1,1,1,0,0,0,0} \text {, } \\
& \mathrm{M}_{29}=\epsilon^{4} I_{1,1,1,1,1,1,1,1,0,0}, \quad \mathrm{M}_{30}=\epsilon^{4} I_{1,1,1,1,1,1,1,1,0,-1}, \\
& M_{31}=\epsilon^{4} I_{1,1,1,1,1,1,1,1,-1,0},
\end{aligned}
$$

Basis for first family:

$$
\begin{aligned}
& \mathrm{F}_{1}=m_{t}^{2} \mathrm{M}_{1}, \\
& \mathrm{~F}_{2}=m_{W}^{2} \mathrm{M}_{2}, \\
& \mathrm{~F}_{3}=\left(m_{W}^{2}-m_{t}^{2}\right) \mathrm{M}_{3}-2 m_{t}^{2} \mathrm{M}_{2}, \\
& \mathrm{~F}_{4}=(-s) \mathrm{M}_{4}, \\
& \mathrm{~F}_{5}=\sqrt{\left(s-\left(m_{W}-m_{t}\right)^{2}\right)\left(s-\left(m_{W}+m_{t}\right)^{2}\right)} \mathrm{M}_{5}, \\
& \mathrm{~F}_{6}=(-s) \mathrm{M}_{6}, \\
& \mathrm{~F}_{7}=\sqrt{\left(s-\left(m_{W}-m_{t}\right)^{2}\right)\left(s-\left(m_{W}+m_{t}\right)^{2}\right)} \mathrm{M}_{7}, \\
& \mathrm{~F}_{8}=m_{t}^{2} \sqrt{\left(s-\left(m_{W}-m_{t}\right)^{2}\right)\left(s-\left(m_{W}+m_{t}\right)^{2}\right)} \mathrm{M}_{8}, \\
& \mathrm{~F}_{9}=m_{W}^{2} s \mathrm{M}_{9}+m_{t}^{2}\left(m_{t}^{2}-m_{W}^{2}-s\right) \mathrm{M}_{8}+\frac{3}{2}\left(m_{t}^{2}-m_{W}^{2}-s\right) \mathrm{M}_{7}, \\
& \mathrm{~F}_{10}=\sqrt{\left(s-\left(m_{W}-m_{t}\right)^{2}\right)\left(s-\left(m_{W}+m_{t}\right)^{2}\right)} \mathrm{M}_{10}, \\
& \mathrm{~F}_{11}=m_{t}^{2}(-s) \mathrm{M}_{11}-\frac{3}{2}\left(m_{t}^{2}-m_{W}^{2}-s\right) \mathrm{M}_{10}, \\
& \mathrm{~F}_{12}=m_{W}^{2} s \mathrm{M}_{12}, \\
& \mathrm{~F}_{13}=s^{2} \mathrm{M}_{13}, \\
& \mathrm{~F}_{14}=s \sqrt{\left(s-\left(m_{W}-m_{t}\right)^{2}\right)\left(s-\left(m_{W}+m_{t}\right)^{2}\right)} \mathrm{M}_{14}, \\
& \mathrm{~F}_{15}=\sqrt{\left(s-\left(m_{W}-m_{t}\right)^{2}\right)\left(s-\left(m_{W}+m_{t}\right)^{2}\right)} \mathrm{M}_{15}, \\
& \mathrm{~F}_{16}=t \mathrm{M}_{16}, \\
& \mathrm{~F}_{17}=\left(t-m_{t}^{2}\right) \mathrm{M}_{17}-2 m_{t}^{2} \mathrm{M}_{16}, \\
& \mathrm{~F}_{18}=\left(m_{t}^{2}-m_{W}^{2}-s\right) \mathrm{M}_{18},
\end{aligned}
$$

Introduce new variables: $\quad s=m_{t}^{2} \frac{(x+z)(1+x z)}{x}, t=y m_{t}^{2}, m_{W}=z m_{t}$.

$$
\begin{gathered}
d \mathbf{F}(x, y, z ; \epsilon)=\epsilon(d \tilde{A}) \mathbf{F}(x, y, z ; \epsilon) \\
d \tilde{A}=\sum_{i=1}^{15} R_{i} d \log \left(l_{i}\right)
\end{gathered}
$$

For non-planar family (2)

$$
\begin{gathered}
d \mathbf{B}(x, y, z ; \epsilon)=\epsilon(d \tilde{C}) \mathbf{B}(x, y, z ; \epsilon), \\
d \tilde{C}=\sum_{i=1}^{17} Q_{i} d \log \left(l_{i}\right),
\end{gathered}
$$

Letters:

$$
\begin{array}{ll}
l_{1}=x, & l_{2}=x+1, \\
l_{3}=x-1, & l_{4}=x+z, \\
l_{5}=x z+1, & l_{6}=x+y z, \\
l_{7}=x z+y, & l_{8}=y, \\
l_{9}=y-1, & l_{10}=y-z^{2}, \\
l_{11}=z, & l_{12}=z^{2}-1, \\
l_{13}=x^{2} z+x y+x+z, & l_{14}=x^{2} z+x\left(y+z^{2}\right)+z, \\
l_{15}=x^{2} z+x\left(-y z^{2}+y+2 z^{2}\right)+z, & l_{16}=x^{2} z+x y+z, \\
l_{17}=x^{2} z^{3}+x y\left(z^{2}-1\right)+2 x z^{2}+z^{3} . &
\end{array}
$$

A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett. 5, (1998) 497-516, [arXiv:1105. 2076].

$$
\begin{aligned}
G_{a_{1}, a_{2}, \ldots, a_{n}}(x) & \equiv \int_{0}^{x} \frac{\mathrm{~d} t}{t-a_{1}} G_{a_{2}, \ldots, a_{n}}(t), \\
G_{\overrightarrow{0}_{n}}(x) & \equiv \frac{1}{n!} \ln ^{n} x . \\
G_{a_{1}, \ldots, a_{m}}(x) G_{b_{1}, \ldots, b_{n}}(x) & =\sum_{c \in a \amalg b} G_{c_{1}, c_{2}, \ldots, c_{m+n}}(x) .
\end{aligned}
$$

Numerical evaluation of multiple polylogarithms
Jens Vollinga (Mainz U., Inst. Phys.), Stefan Weinzierl (Mainz U., Inst. Phys.) (Oct, 2004)

> GINAC

Published in: Comput.Phys.Commun. 167 (2005) 177 • e-Print: hep-ph/0410259 [hep-ph]
handyG -Rapid numerical evaluation of generalised polylogarithms in Fortran
L-.-Nateroop (Zurich U.), A. Signer (Zurich U. and PSI, Villigen), Y. Ulrich (Zurich U. and PSI, Villigen) (Sep 4, 2019)
Published in: Comput.Phys.Commun. 253 (2020) 107165 • e-Print: 1909.01656 [hep-ph]

$$
F_{1}=-\frac{1}{4}-\frac{\pi^{2} \epsilon^{2}}{6}-2 \zeta(3) \epsilon^{3}-\frac{8 \pi^{4} \epsilon^{4}}{45}+O\left(\epsilon^{5}\right)
$$

$$
F_{24}=0 \text { at } x=1
$$

$$
\begin{aligned}
\frac{d F_{25}}{d x}=- & -\frac{\left(2 F_{16}+F_{17}-6\left(F_{22}-F_{23}-F_{24}+F_{25}\right)\right) \epsilon}{4\left(x+\frac{z}{y}\right)}-\frac{\left(2 F_{16}+F_{17}-6\left(F_{22}-F_{23}+F_{24}+F_{25}\right)\right) \epsilon}{4\left(x+\frac{y}{z}\right)}- \\
& \frac{\left(2 F_{16}+F_{17}+6\left(F_{22}-F_{23}-F_{24}+F_{25}\right)\right) \epsilon}{4(x+z)}-\frac{\left(2 F_{16}+F_{17}+6\left(F_{22}-F_{23}+F_{24}+F_{25}\right)\right) \epsilon}{4\left(x+\frac{1}{z}\right)}+\frac{\left(2 F_{16}+F_{17}\right) \epsilon}{2 x}
\end{aligned}
$$

Numerical check:

For $\left(s=-2, t=-1, m_{W}^{2}=-9, m_{t}=1\right)$, the analytic results gives

$$
\text { Analytic }: I_{30}=\frac{0.45675312}{\epsilon^{2}}+\frac{1.0750424}{\epsilon}+3.1672532,
$$

and FIESTA packages gives

$$
\begin{aligned}
\text { FIESTA }: I_{30} & =\frac{0.456753 \pm 0.000004}{\epsilon^{2}}+\frac{1.07504 \pm 0.000026}{\epsilon} \\
& +3.16726 \pm 0.000148 .
\end{aligned}
$$

Integrals beyond mutilple polylogarithms

Applying Maximal Cuts to obtain homogeneous solutions:
$\frac{2 K\left(-\frac{16 \mathrm{mt} \sqrt{-\mathrm{mt}^{2}}\left(\mathrm{mw}^{2}-t\right) \sqrt{-\mathrm{mt}^{2}\left(\mathrm{mt}^{2}+\mathrm{mw}^{2}-t-u\right)\left(\mathrm{mt}^{2} \mathrm{mw}^{2}-t u\right)}}{\mathrm{mt}^{8}-2\left(2 \mathrm{mw}^{2}-t+u\right) \mathrm{mt}^{6}+\left(-8 \mathrm{mw}^{4}+4(3 t+u) \mathrm{mw}^{2}-3 t^{2}+u^{2}\right) \mathrm{mt}^{4}-2 t u\left(-2 \mathrm{mw}^{2}+3 t+u\right) \mathrm{mt}^{2}-8 \sqrt{-\mathrm{mt}^{2}}\left(\mathrm{mw}^{2}-t\right) \sqrt{-\mathrm{mt}^{2}\left(\mathrm{mt}^{2}+\mathrm{mw}^{2}-t-u\right)\left(\mathrm{mt}^{2} \mathrm{mw}^{2}-t u\right)} \mathrm{mt}^{2}+t^{2} u^{2}}\right)}{\sqrt{\frac{\mathrm{mt}^{8}-2 \mathrm{mt}^{6}\left(2 \mathrm{mw}^{2}-t+u\right)+\mathrm{mt}^{4}\left(-8 \mathrm{mw}^{4}+4 \mathrm{mw}^{2}(3 t+u)-3 t^{2}+u^{2}\right)-2 \mathrm{mt}^{2} t u\left(-2 \mathrm{mw}^{2}+3 t+u\right)-8 \sqrt{-\mathrm{mt}^{2}} \mathrm{mt}^{2}\left(\mathrm{mw}^{2}-t\right) \sqrt{-\mathrm{mt}^{2}\left(\mathrm{mt}^{2}+\mathrm{mw}^{2}-t-u\right)\left(\mathrm{mt}^{2} \mathrm{mw}^{2}-t u\right)}+t^{2} u^{2}}{\mathrm{mt}^{2}\left(\mathrm{mw}^{2}-t\right)^{2}}}}$

$$
K(k)=\int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}
$$

Outlook

- Analytic calculation for several families could be achieved
- Full analytic calculation for all families is still very challenging
- Numerical way is promising see Ma's talk

Thanks!

