Some results of one-loop reduction

Bo Feng
based on work with Binhong Wang, Tingfei Li, Xiaodi Li

May 14-17, 2021, Shanghai

Contents

(3) Tadpole

Contents

(9) Motivation
(2) Higher poles
(3) Tadpole

Contents

(2) Higher poles
(3) Tadpole

- The perturbative calculation of scattering amplitude is crucial for higher energy physics. using Feynman diagrams.
- The tradition way to do the calculation is to use the Feynman diagrams, but it is well known now, this method is not efficient in many situations.
- In last thirty years, various techniques have been developed to speed the computation. Now one-loop computation is considered as solved problem and the frontier is the two loop and higher, as we will hear a lot in this workshop.
- However, in this talk, I will discuss some problems left in the one-loop calculation.

Some efficient one-loop computation algorithms:

- OPP method: [Ossola, Papadopoulos, Pittau, 2006]
- Unitarity cut method: [Bern, Dixon, Dunbar , Kosower, 1994] [Britto, Buchbinder, Cachazo, B.F, 2005] [C. Anastasiou, R. Britto, B.F, Z. Kunszt, P. Mastrolia, 2006]
- Forde's method:
[D. Forde, 2007]
- Generalized OPP method: [R.K. Ellis, W.T. Giele, Z. Kunszt, 2007]
- ACK method: [N. Arkani-Hammed, F. Cachazo, J. Kaplan, 2008]
- For one-loop computation, the well established method is the reduction method.
- Now we are all known that the reduction can be divided into two categories: the reduction at the integrand level and the reduction at the integral level.
- The reduction at the integrand level is nothing, but division and separation of polynomial, for which the powerful mathematical tool is the "computational algebraic geometry".
- One well known algorithm for reduction at the integrand level is the OPP method.
- OPP method has the advantage that it is easy to be implemented into program, both numerically and analytically.
- The disadvantage of OPP method is that we need to compute coefficients of spurious terms, although they do not contribute at the integral level. For practical applications, it is not a big problem since for the renormalizable theories, the spurious terms are not so much.
- However, from theoretical point of view, it is not satisfied, since the number of spurious terms increasing with the increasing of power of ℓ in numerator. Thus for arbitrary higher and higher power in numerator, there are more and more terms to be calculated, and the efficiency will be lost.
- For the reduction at the integral level, the typical algorithm is the celebrating PV-reduction method.
- For this method, we need to calculate the coefficients of masters only and the spurious terms will never show up.
- Although the algorithm of the original PV-reduction method is clear, its implement is not so easy.
- A better realization of reduction at the integral level is the Unitarity cut method.

PV reduction

- The mast basis are given by

tadpole

bubble

triangle

box

pentagon
- For massless inner line, there is no tadpole and massless bubble.

Unitary cut

Some facts regarding the one-loop amplitudes:

- The singular behavior of one-loop amplitudes is much more complicated than the tree-level: we have branch cuts as well as higher dimension singular surface.
- Under the expansion into basis, all branch cuts are given by scalar basis while coefficients are rational functions.
- Applying above observation we have unitarity cut method: taking imaginary part at both sides $\operatorname{Im}(I)=\sum_{i} c_{i} \operatorname{Im}\left(I_{i}\right)$ and comparing both sides we can get c_{i} if each $\operatorname{Im}\left(l_{i}\right)$ is unique.

Unitary cut

- The good point for this method is that the input is the multiplication of on-shell tree-level amplitudes of both sides. Especially when we combine the BCFW recursion relation.
- The difficulty is how to evaluate $\operatorname{Im}(I)$? This is solved by holomorphic anomaly: reducing integration into reading out residues of poles
[Cachazo, Svrcek, Witten, 2004] [Britto, Buchbinder, Cachazo, Feng, 2005]
- Current status: Now we have well defined algebraic steps to extract coefficients from tree-level input.
- Example: Triangle
$\operatorname{Tri}\left[K_{s}, K\right]$

$$
\begin{aligned}
= & \frac{1}{2} \frac{\left(K^{2}\right)^{N+1}}{(-\beta \sqrt{1-u})^{N+1}\left(\sqrt{-4 q_{s}^{2} K^{2}}\right)^{N+1}} \frac{1}{(N+1)!\left\langle P_{s, 1} P_{s, 2}\right\rangle^{N+1}} \\
& \frac{d^{N+1}}{d \tau^{N+1}}\left(\frac{\langle\ell| K \mid \ell]^{N+1}}{\left(K^{2}\right)^{N+1}} \mathcal{T}^{(N)}(\widetilde{\ell}) \cdot D_{s}(\tilde{\ell}) \left\lvert\,\left\{\begin{array}{lll}
\mid \ell \ell & \rightarrow & \left.\left|Q_{s}(u)\right| \ell\right\rangle \\
|\ell\rangle & \rightarrow & \left|P_{s, 1}-\tau P_{s, 2}\right\rangle
\end{array}\right.\right.\right. \\
& \left.+\left\{P_{s, 1} \leftrightarrow P_{s, 2}\right\}\right)\left.\right|_{\tau \rightarrow 0}
\end{aligned}
$$

- Advantage: (1) we can get the wanted coefficients without calculating the spurious terms; (2) we can deal with arbitrary higher power in numerator.

However, there are some unsatisfied parts of unitarity cut method. In this talk we will discuss following two aspects:

- (A) The unitarity cut for higher poles
- (B) The tadpole coefficients

We consider the reduction of

$$
\mathcal{M}[\ell] \equiv \int \frac{d^{D} \ell}{(2 \pi)^{D / 2}} \frac{\mathcal{N}[\ell]}{\prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-m_{j}^{2}+i \epsilon\right)^{a_{j}}}, \quad a_{i} \geq 1
$$

- By general theory, we know that

$$
\operatorname{Im}(\mathcal{M}[\ell])=\sum_{t} c_{t} \operatorname{Im}\left(\mathcal{I}_{t}[\ell]\right)
$$

- The $\operatorname{Im}\left(\mathcal{I}_{t}[\ell]\right)$ is known, so we need to find $\operatorname{Im}(\mathcal{M}[\ell])$

To use the unitarity cut method, we use a trick by noticing that

$$
\begin{aligned}
& \int \frac{d^{D} \ell}{(2 \pi)^{D / 2}} \frac{\mathcal{N}[\ell]}{\prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-m_{j}^{2}+i \epsilon\right)^{a_{i}}} \\
= & \left.\left\{\prod_{j=1}^{n} \frac{1}{\left(a_{j}-1\right)!} \frac{d^{a_{j}-1}}{d \eta_{j}^{a_{j}-1}} \int \frac{d^{D} \ell}{(2 \pi)^{D / 2}} \frac{\mathcal{N}[\ell]}{\prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-m_{j}^{2}-\eta_{j}+i \epsilon\right)}\right\}\right|_{\eta_{j} \rightarrow 0}
\end{aligned}
$$

thus
$\operatorname{Re}[L]+\operatorname{ilm}[L]=\left.\left\{\prod_{j=1}^{n} \frac{1}{\left(a_{j}-1\right)!} \frac{d^{a_{j}-1}}{d \eta_{j}^{a_{j}-1}}(\operatorname{Re}[R]+i / m[R])\right\}\right|_{\eta_{j} \rightarrow 0}$

Since the η_{i} 's are real numbers, we have

$$
\begin{aligned}
& \operatorname{Re}[L]+i \operatorname{lm}[L]=\left.\left\{\prod_{j=1}^{n} \frac{1}{\left(a_{j}-1\right)!} \frac{d^{a_{j}-1}}{d \eta_{j}^{a_{j}-1}} R e[R]\right\}\right|_{\eta_{j} \rightarrow 0} \\
& +\left.i\left\{\prod_{j=1}^{n} \frac{1}{\left(a_{j}-1\right)!} \frac{d^{a_{j}-1}}{d \eta_{j}^{a_{j}-1}} \operatorname{Im}[R]\right\}\right|_{\eta_{j} \rightarrow 0}
\end{aligned}
$$

so finally

$$
\operatorname{Im}[L]=\left.\left\{\prod_{j=1}^{n} \frac{1}{\left(a_{j}-1\right)!} \frac{d^{a_{j}-1}}{d \eta_{j}^{a_{j}-1}} \operatorname{Im}[R]\right\}\right|_{\eta_{j} \rightarrow 0}
$$

- For general $\mathcal{N}[\ell]$, we know the expansion

$$
\operatorname{Im}[R]=\sum_{t} c_{t} \operatorname{Im}\left(\mathcal{I}_{t}[\ell]\right)
$$

- The action of $\frac{d}{d \eta}$ will act on both c_{t} and $\operatorname{Im}\left(\mathcal{I}_{t}[\ell]\right)$.
- Since the analytic function c_{t} 's are known, the unknown piece is the action of $\frac{d}{d \eta}$ on $I m\left(\mathcal{I}_{t}[\ell]\right)$ and its expansion. In another words, we just need to consider the reduction of general power with $\mathcal{N}[\ell]=1$ for $n \leq 5$.

Example I: bubble

$$
\int \frac{d^{4-2 \epsilon} p}{(2 \pi)^{4-2 \epsilon}} \frac{1}{\left(p^{2}-M_{1}^{2}\right)^{a}\left((p-K)^{2}-M_{2}^{2}\right)^{b}}
$$

- The imaginary part is given by

$$
\mathcal{C}\left[\mathcal{I}_{2}\right]=\left(K^{2}\right)^{-1+\epsilon} \Delta^{\frac{1}{2}-\epsilon} \int_{0}^{1} \mathrm{~d} u u^{-1-\epsilon} \sqrt{1-u}
$$

where

$$
\begin{aligned}
& \Delta\left[K ; M_{1}, M_{2}\right]=\left(K^{2}\right)^{2}+\left(M_{1}^{2}\right)^{2}+\left(M_{2}^{2}\right)^{2} \\
& -2 M_{1}^{2} M_{2}^{2}-2 K^{2} M_{1}^{2}-2 K^{2} M_{2}^{2}
\end{aligned}
$$

- By our trick

$$
\mathcal{C}\left[I_{2}(n+1, m+1)\right]=\frac{1}{m!n!}\left(\frac{\partial}{\partial M_{2}^{2}}\right)^{m}\left(\frac{\partial}{\partial M_{1}^{2}}\right)^{n} \mathcal{C}\left[I_{2}(1,1)\right]
$$

thus

$$
c_{2 \rightarrow 2}(n+1, m+1)=\frac{1}{m!n!\Delta^{\frac{1}{2}-\epsilon}}\left(\frac{\partial}{\partial M_{2}^{2}}\right)^{m}\left(\frac{\partial}{\partial M_{1}^{2}}\right)^{n} \Delta^{\frac{1}{2}-\epsilon}
$$

Recurrence relation:

$$
\begin{aligned}
& I_{3}\left(1,1, n_{3}\right)=\frac{1}{\left(n_{3}-1\right)!} \frac{d^{n_{3}-1}}{d\left(m_{1}^{2}\right)^{n_{3}-1}} I_{3}(1,1,1) \\
= & \frac{1}{\left(n_{3}-1\right)} \frac{d}{d\left(m_{1}^{2}\right)} \frac{1}{\left(n_{3}-2\right)!} \frac{d^{n_{3}-2}}{d\left(m_{1}^{2}\right)^{n_{3}-2}} I_{3}(1,1,1) \\
= & \frac{1}{\left(n_{3}-1\right)} \frac{d}{d\left(m_{1}^{2}\right)} l_{3}\left(1,1, n_{3}-1\right) \\
= & \frac{1}{\left(n_{3}-1\right)} \frac{d}{d\left(m_{1}^{2}\right)}\left\{c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right) \mathcal{I}_{3}\right. \\
& \left.+\sum_{i=1}^{3} c_{3 \rightarrow 2 ; i}\left(1,1, n_{3}-1\right) \mathcal{I}_{2 ; \bar{i}}+\ldots\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{\left(n_{3}-1\right)} \frac{d c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{d\left(m_{1}^{2}\right)} \mathcal{I}_{3}+\frac{c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} l_{3}(1,1,2) \\
& +\sum_{i=1}^{3} \frac{d c_{3 \rightarrow 2 ; i}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right) d\left(m_{1}^{2}\right)} \mathcal{I}_{2 ; \bar{i}} \\
& +\frac{c_{3 \rightarrow 2 ; 1}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} I_{2 ; \overline{1}(1,2)+\frac{c_{3 \rightarrow 2 ; \overline{2}}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} I_{2 ; \overline{2}}(2,1)+.} \quad .
\end{aligned}
$$

Thus we derive

$$
\begin{aligned}
& c_{3}\left(1,1, n_{3}\right)=\frac{1}{\left(n_{3}-1\right)} \frac{d c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{d\left(m_{1}^{2}\right)}+\frac{c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} c_{3 \rightarrow 3}(1,1,2) \\
& c_{3 \rightarrow 2 ; \overline{1}}\left(1,1, n_{3}\right)=\frac{c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} c_{3 \rightarrow 2 ; \overline{1}}(1,1,2)+\frac{1}{\left(n_{3}-1\right)} \frac{d c_{3 \rightarrow 2 ; 1}\left(1,1, n_{3}-1\right)}{d\left(m_{1}^{2}\right)} \\
& +\frac{c_{3 \rightarrow 2 ; \overline{1}}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} c_{2 \rightarrow 2 ; \overline{1}}(1,2) \\
& c_{3 \rightarrow 2 ; \overline{2}}\left(1,1, n_{3}\right)=\frac{c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} c_{3 \rightarrow 2 ; \overline{2}(1,1,2)}+\frac{1}{\left(n_{3}-1\right)} \frac{d c_{3 \rightarrow 2 ; \overline{2}^{2}\left(1,1, n_{3}-1\right)}^{d\left(m_{1}^{2}\right)}}{} \\
& +\frac{c_{3 \rightarrow 2 ; \overline{2}^{(1,1, ~}}(n-1)}{(n-1)} c_{2 \rightarrow 2 ; \overline{2}^{(2,1)}} \\
& c_{3 \rightarrow 2 ; \overline{3}}\left(1,1, n_{3}\right)=\frac{c_{3 \rightarrow 3}\left(1,1, n_{3}-1\right)}{\left(n_{3}-1\right)} c_{3 \rightarrow 2 ; \overline{3}}(1,1,2)+\frac{1}{\left(n_{3}-1\right)} \frac{d c_{3 \rightarrow 2 ; \overline{3}}\left(1,1, n_{3}-1\right)}{d\left(m_{1}^{2}\right)}
\end{aligned}
$$

Thus the key calculation is for scalar integral with one and only one propagator having power 2.

Further simplification- The dihedral symmetry D_{n} :

- By momentum shifting $p \rightarrow p+K_{1}$ we get

$$
\begin{aligned}
& I_{3}\left(n_{1}, n_{2}, n_{3}\right)\left[K_{1}, K_{2}, K_{3} ; M_{1}, M_{2}, m_{1}\right] \\
= & \int \frac{d^{4-2 \epsilon} p^{4}}{(2 \pi)^{4-2 \epsilon}} \frac{1}{\left(\left(p+K_{1}\right)^{2}-M_{1}^{2}\right)^{n_{1}}\left(p^{2}-M_{2}^{2}\right)^{n_{2}}\left(\left(p-K_{2}\right)^{2}-m_{1}^{2}\right)^{n_{3}}} \\
= & I_{3}\left(n_{2}, n_{3}, n_{1}\right)\left[K_{2}, K_{3}, K_{1} ; M_{2}, m_{1}, M_{1}\right]
\end{aligned}
$$

- We can also consider the variable changing $p \rightarrow-p$ to get

$$
\begin{aligned}
& I_{3}\left(n_{1}, n_{2}, n_{3}\right)\left[K_{1}, K_{2}, K_{3} ; M_{1}, M_{2}, m_{1}\right] \\
= & \int \frac{d^{4-2 \epsilon} p}{(2 \pi)^{4-2 \epsilon}} \frac{1}{\left(p^{2}-M_{1}^{2}\right)^{n_{1}}\left(\left(p+K_{1}\right)^{2}-M_{2}^{2}\right)^{n_{2}}\left(\left(p-K_{3}\right)^{2}-m_{1}^{2}\right)^{n_{3}}} \\
= & I_{3}\left(n_{1}, n_{3}, n_{2}\right)\left[K_{3}, K_{2}, K_{1} ; M_{1}, m_{1}, M_{2}\right]
\end{aligned}
$$

- Thus only $I_{n}(1, \ldots, 1,2)$ needed to be calculated.

For triangle, we need to compute only $I_{3}(1,1,2)$. Let us show the calculation for the cut K_{1} :

$$
\mathcal{C}_{K_{1}}\left(I_{3}(1,1,2)\right)=-\left(\frac{4 K_{1}^{2}}{\Delta\left[K_{1}, M_{1}, M_{2}\right]}\right)^{\epsilon} \frac{1}{\sqrt{\Delta_{3 ; m=0}}} \frac{\partial}{\partial m_{1}^{2}} \operatorname{Tri}^{(0)}(Z)
$$

- With a little algebra we have

$$
\begin{aligned}
& \frac{\partial}{\partial m_{1}^{2}} \operatorname{Tri}^{(0)}(Z)=\frac{2 K_{1}^{2}}{\sqrt{\Delta_{3 ; m=0} \Delta\left[K_{1}, M_{1}, M_{2}\right]}}\left(\frac{2(1-2 \epsilon)}{1-Z^{2}} B u b^{(0)}\right. \\
& \left.+\frac{2 Z \epsilon}{1-Z^{2}} \operatorname{Tri}^{(0)}(Z)\right)
\end{aligned}
$$

Thus

$$
c_{3 \rightarrow 3 ; K_{1}}(1,1,2)=\frac{4 K_{1}^{2}}{\sqrt{\Delta_{3 ; m=0} \Delta\left[K_{1}, M_{1}, M_{2}\right]}} \frac{Z \epsilon}{1-Z^{2}}
$$

and

$$
c_{3 \rightarrow 2 ; \overline{3} ; K_{1}}(1,1,2)=-\frac{4 K_{1}^{2}}{\Delta\left[K_{1}, M_{1}, M_{2}\right] \Delta_{3 ; m=0}} \frac{1-2 \epsilon}{1-Z^{2}}
$$

- One of the big problem of unitarity cut method is that tadpole coefficients can not be found by this way.
- There are proposal using the single cut, but the calculation is still complicated.
- In this talk, I will present a method to give the analytic expression of tadpole coefficients

We want to find the tadpole coefficient of integral
$I_{n+1}^{(m)}\left[R ;\left\{K_{i}\right\} ; M_{0},\left\{M_{i}\right\}\right] \equiv \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{(2 \ell \cdot R)^{m}}{\left(\ell^{2}-M_{0}^{2}\right) \prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)}$
This expression is general

- If the numerator is $\left(2 \ell \cdot R_{1}\right)\left(2 \ell \cdot R_{2}\right)$, we can consider the reduction of $(2 \ell \cdot R)^{2}$, then put $R=\alpha_{1} R_{1}+\alpha_{2} R_{2}$ and expand it, thus the coefficient of $2 \alpha_{1} \alpha_{2}$ is the wanted reduction result for the original numerator.
- Similarly, if the numerator is $4 \ell_{\mu} F^{\mu \nu} \ell_{\nu}$, we can consider the reduction of $\left(2 \ell \cdot R_{1}\right)\left(2 \ell \cdot R_{2}\right)$ first. Then for each pair of R_{1}, R_{2}, we replace $\left(K_{1} \cdot R\right)\left(K_{2} \cdot R\right)$ by $\left(K_{1}\right)_{\mu} F^{\mu \nu}\left(K_{2}\right)_{\nu}$ and $R_{1} \cdot R_{2}$ by $\eta_{\mu \nu} F^{\mu \nu}$ (please notice that $F^{\mu \nu}$ is symmetric tensor).

We will focus on

$$
I_{n+1}^{(m)}=C_{0}(m, n+1) \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}-M_{0}^{2}\right)}+\ldots
$$

and others can be obtained by momentum shifting.

- To find the C_{0}, we will use a trick, i.e., to establish some differential equations by using following differential operators:

$$
\widehat{D}_{i} \equiv K_{i} \cdot \frac{\partial}{\partial R}, i=1, \ldots, n ; \quad \widehat{T} \equiv \eta^{\mu \nu} \frac{\partial}{\partial R^{\mu}} \frac{\partial}{R^{\nu}}
$$

$$
\begin{aligned}
& K_{1}^{\mu} \frac{\partial}{\partial R^{\mu}} I_{n+1}^{(m)}=\int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{m(2 \ell \cdot R)^{m-1}\left(2 K_{1} \cdot \ell\right)}{\left(\ell^{2}-M_{0}^{2}\right) \prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
= & \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{m(2 \ell \cdot R)^{m-1}}{\prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
& -\int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{m(2 \ell \cdot R)^{m-1}}{\left(\ell^{2}-M_{0}^{2}\right) \prod_{j=2}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
+ & \left(M_{0}^{2}+K_{1}^{2}-M_{1}^{2}\right) \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{m(2 \ell \cdot R)^{m-1}}{\left(\ell^{2}-M_{0}^{2}\right) \prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
= & m l_{n+1 ; 0}^{(m-1)}-m l_{n+1 ; 1}^{(m-1)}+m f_{1} I_{n+1}^{(m-1)}
\end{aligned}
$$

- Using

$$
\widehat{D}_{j} I_{n+1}^{(m)}=\left\{\widehat{D}_{j} C_{0}(m, n+1)\right\} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{\left(\ell^{2}-M_{0}^{2}\right)}+\ldots
$$

and comparing the tadpole coefficients, we have the equation

$$
\begin{aligned}
& \widehat{D}_{j} C_{0}(m, n+1)=-m C_{0}(m-1, n+1 ; \bar{j}) \\
& +m f_{j} C_{0}(m-1, n+1)
\end{aligned}
$$

- Similarly

$$
\begin{aligned}
& \eta^{\mu \nu} \frac{\partial}{\partial R^{\mu}} \frac{\partial}{\partial R^{\nu}} I_{n+1}^{(m)}=\int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{m(m-1)(2 \ell \cdot R)^{m-2}\left(4 \ell^{2}\right)}{\left(\ell^{2}-M_{0}^{2}\right)^{2} \prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
= & 4 m(m-1) M_{0}^{2} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{(2 \ell \cdot R)^{m-2}}{\left(\ell^{2}-M_{0}^{2}\right)^{2} \prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
+ & \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{4 m(m-1)(2 \ell \cdot R)^{m-2}}{\prod_{j=1}^{n}\left(\left(\ell-K_{j}\right)^{2}-M_{j}^{2}\right)} \\
= & 4 m(m-1) M_{0}^{2} I_{n+1}^{(m-2)}+4 m(m-1) I_{n+1 ; \overline{0}}^{(m-2)}
\end{aligned}
$$

thus

$$
\widehat{T} C_{0}(m, n+1)=4 m(m-1) M_{0}^{2} C_{0}(m-2, n+1)
$$

- To continue the study, we are not solve the differential equations directly, but noticing that it can be expand as following

$$
\begin{aligned}
C_{0}(m, n+1)= & \left(M_{0}^{2}\right)^{-n} \sum_{\left\{i_{k}\right\}, k=0, \ldots, n}^{2 i_{0}+\sum_{k=1}^{n} i_{k}=m} c_{i_{0}, i_{1}, i_{2}, i_{3}, \ldots i_{n}}^{(m)}\left(M_{0}^{2}\right)^{i_{0}} s_{00}^{i_{0}} \\
& \prod_{k=1}^{n} s_{0 k}^{i_{k}}
\end{aligned}
$$

Using this expansion, we transfer the differential equation to the algebraic recurrence relation

Example I: tadpole

$$
\begin{aligned}
& \widehat{T} C_{0}(m, 1)\left[R ; M_{0}\right]=\widehat{T}\left(c^{(m)}\left(M_{0}^{2}\right)^{\frac{m}{2}} S_{00}^{\frac{m}{2}}\right) \\
= & c^{(m)}\left(M_{0}^{2}\right)^{\frac{m}{2}}(D m+m(m-2)) s_{00}^{\frac{m-2}{2}} \\
= & 4 m(m-1) M_{0}^{2} C_{0}(m-2,1)=4 m(m-1) M_{0}^{2} c^{(m-2)}\left(M_{0}^{2}\right)^{\frac{m-2}{2}} s_{00}^{\frac{m-2}{2}}
\end{aligned}
$$

which leads to the recurrence relation

$$
c^{(m)}=\frac{4(m-1)}{(D+m-2)} c^{(m-2)}
$$

Using the initial condition $c^{(0)}=1$, we get immediately for

$$
c^{(m=\text { even })}=2^{m} \frac{(m-1)!!}{\prod_{i=1}^{\frac{m}{2}}(D+2(i-1))}, \quad c^{(m=o d d)}=0
$$

Example II: bubble
With the expansion

$$
C_{0}(m, 2)=\sum_{i=0}^{\left\lfloor\frac{m}{2}\right\rfloor} c_{i}^{(m)} s_{00}^{i}\left(M_{0}^{2}\right)^{i-1} s_{01}^{m-2 i}
$$

we have

- By D_{1}, we get immediately than when $m=2 r$
$2(i+1) \beta_{11} c_{i+1}^{(m)}+(m-2 i) c_{i}^{(m)}=m \alpha_{1} \beta_{11} c_{i}^{(m-1)}, i=0, \ldots, r-1$
and when $m=2 r+1$

$$
\begin{aligned}
& 2(i+1) \beta_{11} c_{i+1}^{(m)}+(m-2 i) c_{i}^{(m)}=m \alpha_{1} \beta_{11} c_{i}^{(m-1)} i=0, ., r-1 \\
& c_{r}^{(m)}=-(2 r+1) \beta_{11} c^{(2 r)}+m \alpha_{1} \beta_{11} c_{r}^{(m-1)}
\end{aligned}
$$

where $c^{(m)}$ is the tadpole expansion coefficients.

- By T, we have

$$
\begin{aligned}
& 2(i+1)(D+2 m-4-2 i) \beta_{11} c_{i+1}^{(m)}+(m-2 i)(m-2 i-1) c_{i}^{(m)} \\
& =4 m(m-1) \beta_{11} c_{i}^{(m-2)}, \quad i=0, \ldots,\left\lfloor\frac{m}{2}\right\rfloor-1
\end{aligned}
$$

- For $m=2 r+1$, using the second line, we solve immediately

$$
c_{r}^{(2 r+1)}=-(2 r+1) \beta_{11} c^{(2 r)}+(2 r+1) \alpha_{1} \beta_{11} c_{r}^{(2 r)}
$$

Then using the first line, we have

$$
c_{i}^{(2 r+1)}=\frac{-2(i+1) \beta_{11}}{(2 r+1-2 i)} c_{i+1}^{(2 r+1)}+\frac{(2 r+1)}{(2 r+1-2 i)} \alpha_{1} \beta_{11} c_{i}^{(2 r)}
$$

recursively from $i=r-1$ to $i=0$.

- For $m=2 r$, there are $(r+1)$ unknown coefficients. Using T produce r equations. One more can be found using D with $i=r-1$.
- Using $i=r-1$ from T and $i=r-1$ from D, we can solve immediately

$$
c_{r}^{(2 r)}=\frac{(2 r-1)}{(D+2 r-3)}\left(\alpha_{1} \beta_{11} c^{(2 r-2)}+\left(4-\alpha_{1}^{2} \beta_{11}\right) c_{r-1}^{(2 r-2)}\right)
$$

- Having solved $c_{r}^{(2 r)}$ we can use T relation to finally get

$$
c_{i}^{(2 r)}=\frac{8 r(2 r-1) \beta_{11} c_{i}^{(2 r-2)}-2(i+1)(D+4 r-4-2 i) \beta_{11} c_{i+1}^{(2 r)}}{(2 r-2 i)(2 r-2 i-1)}
$$

recursively from $i=r-1$ to $i=0$.

Final remarks:

- Our method for tadpole is nothing, but the traditional PV-reduction method with a little deformation
- It can also be applied to find coefficients of other basis, such as bubble, triangle, box and pentagon.
- The generalization to higher loops is possible, but there are some technical difficulties.

Thanks a lot of your attention!

