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The perturbative calculation of scattering amplitude is
crucial for higher energy physics. using Feynman
diagrams.
The tradition way to do the calculation is to use the
Feynman diagrams, but it is well known now, this method is
not efficient in many situations.
In last thirty years, various techniques have been
developed to speed the computation. Now one-loop
computation is considered as solved problem and the
frontier is the two loop and higher, as we will hear a lot in
this workshop.
However, in this talk, I will discuss some problems left in
the one-loop calculation.

Bo Feng Some results of one-loop reduction



Motivation
Higher poles

Tadpole

Some efficient one-loop computation algorithms:
OPP method: [Ossola, Papadopoulos, Pittau, 2006]

Unitarity cut method: [Bern, Dixon, Dunbar , Kosower, 1994] [Britto,
Buchbinder, Cachazo, B.F, 2005] [C. Anastasiou, R. Britto, B.F, Z.
Kunszt, P. Mastrolia, 2006]

Forde’s method: [D. Forde, 2007]

Generalized OPP method: [R.K. Ellis, W.T. Giele, Z. Kunszt, 2007]

ACK method: [N. Arkani-Hammed, F. Cachazo, J. Kaplan, 2008]
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For one-loop computation, the well established method is
the reduction method.
Now we are all known that the reduction can be divided
into two categories: the reduction at the integrand level
and the reduction at the integral level.
The reduction at the integrand level is nothing, but division
and separation of polynomial, for which the powerful
mathematical tool is the "computational algebraic
geometry".
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One well known algorithm for reduction at the integrand
level is the OPP method.
OPP method has the advantage that it is easy to be
implemented into program, both numerically and
analytically.
The disadvantage of OPP method is that we need to
compute coefficients of spurious terms, although they do
not contribute at the integral level. For practical
applications, it is not a big problem since for the
renormalizable theories, the spurious terms are not so
much.
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However, from theoretical point of view, it is not satisfied,
since the number of spurious terms increasing with the
increasing of power of ` in numerator. Thus for arbitrary
higher and higher power in numerator, there are more and
more terms to be calculated, and the efficiency will be lost.
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For the reduction at the integral level, the typical algorithm
is the celebrating PV-reduction method.
For this method, we need to calculate the coefficients of
masters only and the spurious terms will never show up.
Although the algorithm of the original PV-reduction method
is clear, its implement is not so easy.
A better realization of reduction at the integral level is the
Unitarity cut method.

Bo Feng Some results of one-loop reduction



Motivation
Higher poles

Tadpole

PV reduction

The mast basis are given by

pentagontadpole bubble triangle box

For massless inner line, there is no tadpole and massless
bubble.
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Unitary cut

Some facts regarding the one-loop amplitudes:
The singular behavior of one-loop amplitudes is much
more complicated than the tree-level: we have branch cuts
as well as higher dimension singular surface.
Under the expansion into basis, all branch cuts are given
by scalar basis while coefficients are rational functions.
Applying above observation we have unitarity cut method:
taking imaginary part at both sides Im(I) =

∑
i ci Im(Ii) and

comparing both sides we can get ci if each Im(Ii) is unique.
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Unitary cut

The good point for this method is that the input is the
multiplication of on-shell tree-level amplitudes of both
sides. Especially when we combine the BCFW recursion
relation.
The difficulty is how to evaluate Im(I)? This is solved by
holomorphic anomaly: reducing integration into reading out
residues of poles

[Cachazo, Svrcek, Witten, 2004] [Britto, Buchbinder, Cachazo, Feng,
2005]

Current status: Now we have well defined algebraic steps
to extract coefficients from tree-level input.
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Example: Triangle

Tri[Ks,K ]

=
1
2

(K 2)N+1

(−β
√

1− u)N+1(
√
−4q2

s K 2)N+1

1

(N + 1)! 〈Ps,1 Ps,2〉N+1

dN+1

dτN+1

(
〈`|K |`]N+1

(K 2)N+1 T
(N)(˜̀) · Ds(˜̀)∣∣∣∣∣{|`] → |Qs(u) |`〉

|`〉 →
∣∣Ps,1 − τPs,2

〉
+{Ps,1 ↔ Ps,2})

∣∣∣
τ→0

Advantage: (1) we can get the wanted coefficients without
calculating the spurious terms; (2) we can deal with
arbitrary higher power in numerator.
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However, there are some unsatisfied parts of unitarity cut
method. In this talk we will discuss following two aspects:

(A) The unitarity cut for higher poles
(B) The tadpole coefficients
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We consider the reduction of

M[`] ≡
∫

dD`

(2π)D/2
N [`]∏n

j=1((`− Kj)2 −m2
j + iε)aj

, ai ≥ 1

By general theory, we know that

Im(M[`]) =
∑

t

ct Im(It [`])

The Im(It [`]) is known, so we need to find Im(M[`])
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To use the unitarity cut method, we use a trick by noticing that∫
dD`

(2π)D/2

N [`]∏n
j=1((`− Kj )2 −m2

j + iε)ai

=


n∏

j=1

1
(aj − 1)!

daj−1

dηaj−1
j

∫
dD`

(2π)D/2

N [`]∏n
j=1((`− Kj )2 −m2

j − ηj + iε)

 |ηj→0

thus

Re[L] + iIm[L] =


n∏

j=1

1
(aj − 1)!

daj−1

dηaj−1
j

(Re[R] + iIm[R])

 |ηj→0
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Since the ηi ’s are real numbers, we have

Re[L] + iIm[L] =


n∏

j=1

1
(aj − 1)!

daj−1

dηaj−1
j

Re[R]

 |ηj→0

+i


n∏

j=1

1
(aj − 1)!

daj−1

dηaj−1
j

Im[R]

 |ηj→0

so finally

Im[L] =


n∏

j=1

1
(aj − 1)!

daj−1

dηaj−1
j

Im[R]

 |ηj→0
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For general N [`], we know the expansion

Im[R] =
∑

t

ct Im(It [`])

The action of d
dη will act on both ct and Im(It [`]).

Since the analytic function ct ’s are known, the unknown
piece is the action of d

dη on Im(It [`]) and its expansion. In
another words, we just need to consider the reduction of
general power with N [`] = 1 for n ≤ 5.
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Example I: bubble∫
d4−2εp

(2π)4−2ε
1

(p2 −M2
1 )a((p − K )2 −M2

2 )b

The imaginary part is given by

C[I2] = (K 2)−1+ε∆
1
2−ε
∫ 1

0
duu−1−ε√1− u

where

∆[K ; M1,M2] = (K 2)
2

+ (M1
2)2 + (M2

2)2

−2M1
2M2

2 − 2K 2M1
2 − 2K 2M2

2
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By our trick

C[I2(n + 1,m + 1)] =
1

m!n!

(
∂

∂M2
2

)m(
∂

∂M2
1

)n

C[I2(1,1)]

thus

c2→2(n + 1,m + 1) =
1

m!n!∆
1
2−ε

(
∂

∂M2
2

)m(
∂

∂M2
1

)n

∆
1
2−ε
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Recurrence relation:

I3(1,1,n3) =
1

(n3 − 1)!

dn3−1

d(m2
1)n3−1

I3(1,1,1)

=
1

(n3 − 1)

d
d(m2

1)

1
(n3 − 2)!

dn3−2

d(m2
1)n3−2

I3(1,1,1)

=
1

(n3 − 1)

d
d(m2

1)
I3(1,1,n3 − 1)

=
1

(n3 − 1)

d
d(m2

1)
{c3→3(1,1,n3 − 1)I3

+
3∑

i=1

c3→2;̄i(1,1,n3 − 1)I2;̄i + ...

}
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=
1

(n3 − 1)

dc3→3(1,1,n3 − 1)

d(m2
1)

I3 +
c3→3(1,1,n3 − 1)

(n3 − 1)
I3(1,1,2)

+
3∑

i=1

dc3→2;̄i(1,1,n3 − 1)

(n3 − 1)d(m2
1)

I2;̄i

+
c3→2;1̄(1,1,n3 − 1)

(n3 − 1)
I2;1̄(1,2) +

c3→2;2̄(1,1,n3 − 1)

(n3 − 1)
I2;2̄(2,1) + ...
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Thus we derive

c3(1, 1, n3) =
1

(n3 − 1)

dc3→3(1, 1, n3 − 1)

d(m2
1)

+
c3→3(1, 1, n3 − 1)

(n3 − 1)
c3→3(1, 1, 2)

c3→2;1̄(1, 1, n3) =
c3→3(1, 1, n3 − 1)

(n3 − 1)
c3→2;1̄(1, 1, 2) +

1

(n3 − 1)

dc3→2;1̄(1, 1, n3 − 1)

d(m2
1)

+
c3→2;1̄(1, 1, n3 − 1)

(n3 − 1)
c2→2;1̄(1, 2)

c3→2;2̄(1, 1, n3) =
c3→3(1, 1, n3 − 1)

(n3 − 1)
c3→2;2̄(1, 1, 2) +

1

(n3 − 1)

dc3→2;2̄(1, 1, n3 − 1)

d(m2
1)

+
c3→2;2̄(1, 1, n3 − 1)

(n − 1)
c2→2;2̄(2, 1)

c3→2;3̄(1, 1, n3) =
c3→3(1, 1, n3 − 1)

(n3 − 1)
c3→2;3̄(1, 1, 2) +

1

(n3 − 1)

dc3→2;3̄(1, 1, n3 − 1)

d(m2
1)

Thus the key calculation is for scalar integral with one and only
one propagator having power 2.
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Further simplification—- The dihedral symmetry Dn:
By momentum shifting p → p + K1 we get

I3(n1,n2,n3)[K1,K2,K3; M1,M2,m1]

=

∫
d4−2εp4

(2π)4−2ε
1

((p + K1)2 −M2
1 )n1 (p2 −M2

2 )n2 ((p − K2)2 −m2
1)n3

= I3(n2,n3,n1)[K2,K3,K1; M2,m1,M1]

We can also consider the variable changing p → −p to get

I3(n1,n2,n3)[K1,K2,K3; M1,M2,m1]

=

∫
d4−2εp

(2π)4−2ε
1

(p2 −M2
1 )n1 ((p + K1)2 −M2

2 )n2 ((p − K3)2 −m2
1)n3

= I3(n1,n3,n2)[K3,K2,K1; M1,m1,M2]

Thus only In(1, ...,1,2) needed to be calculated.
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For triangle, we need to compute only I3(1,1,2). Let us show
the calculation for the cut K1:

CK1(I3(1,1,2)) = −(
4K 2

1
∆[K1,M1,M2]

)ε
1√

∆3;m=0

∂

∂m2
1

Tri(0)(Z )

With a little algebra we have

∂

∂m2
1

Tri(0)(Z ) =
2K 2

1√
∆3;m=0∆[K1,M1,M2]

(2(1− 2ε)
1− Z 2 Bub(0)

+
2Z ε

1− Z 2 Tri(0)(Z )
)
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Thus

c3→3;K1(1,1,2) =
4K 2

1√
∆3;m=0∆[K1,M1,M2]

Z ε
1− Z 2

and

c3→2;3̄;K1
(1,1,2) = −

4K 2
1

∆[K1,M1,M2]∆3;m=0

1− 2ε
1− Z 2
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One of the big problem of unitarity cut method is that
tadpole coefficients can not be found by this way.
There are proposal using the single cut, but the calculation
is still complicated.
In this talk, I will present a method to give the analytic
expression of tadpole coefficients
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We want to find the tadpole coefficient of integral

I(m)
n+1[R; {Ki}; M0, {Mi}] ≡

∫
dD`

(2π)D
(2` · R)m

(`2 −M2
0 )
∏n

j=1((`− Kj )2 −M2
j )

This expression is general
If the numerator is (2` · R1)(2` · R2), we can consider the
reduction of (2` · R)2, then put R = α1R1 + α2R2 and
expand it, thus the coefficient of 2α1α2 is the wanted
reduction result for the original numerator.
Similarly, if the numerator is 4`µFµν`ν , we can consider the
reduction of (2` · R1)(2` · R2) first. Then for each pair of
R1,R2, we replace (K1 · R)(K2 · R) by (K1)µFµν(K2)ν and
R1 · R2 by ηµνFµν (please notice that Fµν is symmetric
tensor).
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We will focus on

I(m)
n+1 = C0(m,n + 1)

∫
dD`

(2π)D
1

(`2 −M2
0 )

+ ...

and others can be obtained by momentum shifting.
To find the C0, we will use a trick, i.e., to establish some
differential equations by using following differential
operators:

D̂i ≡ Ki ·
∂

∂R
, i = 1, ...,n; T̂ ≡ ηµν ∂

∂Rµ

∂

Rν
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Kµ
1

∂

∂Rµ
I(m)
n+1 =

∫
dD`

(2π)D
m(2` · R)m−1(2K1 · `)

(`2 −M2
0 )
∏n

j=1((`− Kj )2 −M2
j )

=

∫
dD`

(2π)D
m(2` · R)m−1∏n

j=1((`− Kj )2 −M2
j )

−
∫

dD`

(2π)D
m(2` · R)m−1

(`2 −M2
0 )
∏n

j=2((`− Kj )2 −M2
j )

+ (M2
0 + K 2

1 −M2
1 )

∫
dD`

(2π)D
m(2` · R)m−1

(`2 −M2
0 )
∏n

j=1((`− Kj )2 −M2
j )

= mI(m−1)

n+1;0̄
−mI(m−1)

n+1;1̄
+ mf1I(m−1)

n+1
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Using

D̂j I
(m)
n+1 =

{
D̂jC0(m,n + 1)

}∫ dD`

(2π)D
1

(`2 −M2
0 )

+ ...

and comparing the tadpole coefficients, we have the
equation

D̂jC0(m,n + 1) = −mC0(m − 1,n + 1; j̄)
+mfjC0(m − 1,n + 1)
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Similarly

ηµν
∂

∂Rµ

∂

∂Rν
I(m)
n+1 =

∫
dD`

(2π)D
m(m − 1)(2` · R)m−2(4`2)

(`2 −M2
0 )2
∏n

j=1((`− Kj )2 −M2
j )

= 4m(m − 1)M2
0

∫
dD`

(2π)D
(2` · R)m−2

(`2 −M2
0 )2
∏n

j=1((`− Kj )2 −M2
j )

+

∫
dD`

(2π)D
4m(m − 1)(2` · R)m−2∏n

j=1((`− Kj )2 −M2
j )

= 4m(m − 1)M2
0 I(m−2)

n+1 + 4m(m − 1)I(m−2)

n+1;0̄

thus

T̂C0(m,n + 1) = 4m(m − 1)M2
0 C0(m − 2,n + 1)
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To continue the study, we are not solve the differential
equations directly, but noticing that it can be expand as
following

C0(m,n + 1) = (M2
0 )−n

2i0+
∑n

k=1 ik =m∑
{ik},k=0,...,n

c(m)
i0,i1,i2,i3,...in

(M2
0 )i0si0

00

n∏
k=1

sik
0k

Using this expansion, we transfer the differential equation
to the algebraic recurrence relation
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Example I: tadpole

T̂C0(m,1)[R; M0] = T̂
(

c(m)(M2
0 )

m
2 s

m
2

00

)
= c(m)(M2

0 )
m
2 (Dm + m(m − 2))s

m−2
2

00

= 4m(m − 1)M2
0 C0(m − 2,1) = 4m(m − 1)M2

0 c(m−2)(M2
0 )

m−2
2 s

m−2
2

00

which leads to the recurrence relation

c(m) =
4(m − 1)

(D + m − 2)
c(m−2)

Using the initial condition c(0) = 1, we get immediately for

c(m=even) = 2m (m − 1)!!∏m
2
i=1(D + 2(i − 1))

, c(m=odd) = 0
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Example II: bubble
With the expansion

C0(m,2) =

bm
2 c∑

i=0

c(m)
i si

00(M2
0 )i−1sm−2i

01

we have
By D1, we get immediately than when m = 2r

2(i + 1)β11c(m)
i+1 + (m − 2i)c(m)

i = mα1β11c(m−1)
i , i = 0, ..., r − 1

and when m = 2r + 1

2(i + 1)β11c(m)
i+1 + (m − 2i)c(m)

i = mα1β11c(m−1)
i i = 0, ., r − 1

c(m)
r = −(2r + 1)β11c(2r) + mα1β11c(m−1)

r

where c(m) is the tadpole expansion coefficients.
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By T , we have

2(i + 1)(D + 2m − 4− 2i)β11c(m)
i+1 + (m − 2i)(m − 2i − 1)c(m)

i

= 4m(m − 1)β11c(m−2)
i , i = 0, ..., bm

2
c − 1

For m = 2r + 1, using the second line, we solve
immediately

c(2r+1)
r = −(2r + 1)β11c(2r) + (2r + 1)α1β11c(2r)

r

Then using the first line, we have

c(2r+1)
i =

−2(i + 1)β11

(2r + 1− 2i)
c(2r+1)

i+1 +
(2r + 1)

(2r + 1− 2i)
α1β11c(2r)

i

recursively from i = r − 1 to i = 0.
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For m = 2r , there are (r + 1) unknown coefficients. Using
T produce r equations. One more can be found using D
with i = r − 1.
Using i = r − 1 from T and i = r − 1 from D, we can solve
immediately

c(2r)
r =

(2r − 1)

(D + 2r − 3)

(
α1β11c(2r−2) + (4− α2

1β11)c(2r−2)
r−1

)
Having solved c(2r)

r we can use T relation to finally get

c(2r)
i =

8r(2r − 1)β11c(2r−2)
i − 2(i + 1)(D + 4r − 4− 2i)β11c(2r)

i+1

(2r − 2i)(2r − 2i − 1)

recursively from i = r − 1 to i = 0.
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Final remarks:
Our method for tadpole is nothing, but the traditional
PV-reduction method with a little deformation
It can also be applied to find coefficients of other basis,
such as bubble, triangle, box and pentagon.
The generalization to higher loops is possible, but there
are some technical difficulties.
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Thanks a lot of your
attention !
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