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Kinoshita-Lee-Nauenberg Theorem

= +
=

=

KLN theorem: In a theory with massless fields, transition rates are free of the
infrared divergence (soft and collinear) if the summation over initial and final
degenerate states is carried out.
• Infrared safe observables. e.g, Jet observables and e+e− total cross section.
• The KLN theorem: infrared divergences appear because some of states are

physically “degenerate”, but we treat them as different.
• A state with a quark accompanied by a collinear gluon is degenerate

with a state with a single quark.
• A state with a soft gluon is degenerate with a state with no gluon (virtual).
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The gauge invariant definition of parton distributions

The integrated quark distribution

fq(x) =

∫
dξ−

4π
eixP+ξ−〈P

∣∣ψ̄(0)γ+L(ξ−)ψ(0, ξ−)
∣∣P〉

• The gauge links come from the sum over all degenerate quark states.

|ψq(k) 〉GI = |ψq(k) 〉+|ψq(k1)g(k − k1) 〉+|ψq(k1)g(k2)g(k − k1 − k2) 〉+· · · .

• Gauge invariant definition with L(ξ−) ≡ P exp
[
−ig

∫ ξ−
0 dξ−′A+(ξ−′)

]
.

• Light-cone gauge together with proper B.C.⇒ parton density interpretation.
The unintegrated (Transverse Momentum Dependent (TMD)) quark distribution
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Two Different Gauge Invariant Operator Definitions

[F.Dominguez, BX and F. Yuan, 11] I. Weizsäcker Williams gluon distribution:

xG(1) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xG(2) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]

• The WW gluon distribution is the conventional gluon distributions.
• The dipole gluon distribution has no such interpretation.
• Sudakov resummation in small-x physics. [Mueller, BX and Yuan, 13]
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Deep into small-x region

• Partons in the low-x region is dominated by gluons. See HERA data.
• BFKL equation⇒ Resummation of the αs ln 1

x .
• When too many gluons squeezed in a confined hadron, gluons start to overlap

and recombine⇒ Non-linear dynamics⇒ BK (JIMWLK) equation
• Use Qs(x) to separate the saturated dense regime from the dilute regime.
• Core ingredients: Multiple interactions + Small-x (high energy) evolution
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Wilson Lines in Color Glass Condensate Formalism

We use Wilson line to represent the multiple scattering between the fast moving
quark and target background gluon fields.

x⊥

AA A A

· · ·U(x⊥)=P exp
(
−ig

∫
dz+A−(x⊥,z+)

) · · · · · ·

The Wilson loop (color dipole) in McLerran-Venugopalan (MV) model

x⊥

y⊥

· · ·1
Nc

〈
TrU(x⊥)U†(y⊥)

〉
=e−

Q2
s (x⊥−y⊥)2

4 · · · · · ·

• Dipole amplitude S(2) then produces the quark kT spectrum via Fourier
transform

F(k⊥) ≡ dN
d2k⊥

=

∫
d2x⊥d2y⊥

(2π)2 e−ik⊥·(x⊥−y⊥) 1
Nc

〈
TrU(x⊥)U†(y⊥)

〉
.
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Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions

dσpA→hX
LO

d2p⊥dyh
=

∫ 1

τ

dz
z2

[
x1qf (x1, µ)Fx2 (k⊥)Dh/q(z, µ) + x1g(x1, µ)F̃x2 (k⊥)Dh/g(z, µ)

]
.

x1 ∼ p⊥√
s
e+y ∼ 1

x2 ∼ p⊥√
s
e−y � 1

Jan 8, 2013 Zhongbo Kang, LANL

Observation at high energy

! The spin asymmetry becomes the largest at forward rapidity region, 
corresponding to
! The partons in the projectile (the polarized proton) have very large momentum 

fraction x: dominated by the valence quarks (spin effects are valence effects)
! The partons in the target (the unpolarized proton or nucleus) have very small 

momentum fraction x: dominated by the small-x gluons

! Thus spin asymmetry in the forward region could probe both
! The transverse spin effect from the valence quarks in the projectile: Sivers 

effect, Collins effect, and etc
! The small-x gluon saturation physics in the target

4

projectile:

target:

valence

gluon

√
s

Tuesday, January 8, 2013

Jan 8, 2013 Zhongbo Kang, LANL

Inclusive hadron production in small-x formalism

! At forward rapidity, the hadron is produced as follows (at LO)

! Dipole gluon distribution follows B-K evolution equation, which can be solved 
numerically

! Comparison with RHIC data

7

F (xA, q⊥) =

�
d2r⊥
(2π)2

eiq⊥·r⊥ 1

Nc

�
Tr

�
U(0)U†(r⊥)

��
xA

dσ

dyd2p⊥
=

K

(2π)2

�
d2b

� 1

xF

dz

z2
xfq/p(x)F (xA, q⊥)Dh/q(z)

q⊥

p⊥ = z q⊥

Albaete-Marquet, 2010

Tuesday, January 8, 2013

• F(k⊥) (dipole gluon distribution) encodes dense gluon info.
• [Dumitru, Hayashigaki, Jalilian-Marian, 06; Altinoluk, Kovner 11] [Altinoluk,

Armesto, Beuf, Kovner, Lublinsky, 14]; Full NLO [Chirilli, BX and Yuan, 12]
7 / 21



INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

NLO diagrams in the q→ q channel

[Chirilli, BX and Yuan, 12]

13

of 30

Calculating Inclusive Hadron Production » Next to Leading Order

NLO Diagrams
Leading:

p

A

Next-to-leading:
p

A

p

A

p

A

p

A

p

A

p

A

p

A

p

A

Chirilli, Xiao, and Yuan 2012.Has Saturation Found Its Smoking Gun? David Zaslavsky — Central China Normal University
• Take into account real (top) and virtual (bottom) diagrams together!
• Multiple interactions inside the grey blobs!
• Integrate over gluon phase space⇒Divergences!.
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Factorization for single inclusive hadron productions

Factorization for the p + A→ H + X process [Chirilli, BX and Yuan, 12]

[quark] (xp+p , 0,0)

(0, xap
−
a ,kg⊥)

z
kµ

ξ pµ, y [hadron]

[nucleus] pµa

qµ [gluon]

k+ ≃ 0

P+

A
≃ 0

P−
p ≃ 0

Rapidity Divergence Collinear Divergence (F)Collinear Divergence (P)

• Need to include all real and virtual graphs in all four channel q→ q, q→ g,
g→ q(q̄) and g→ g.
• Gluons in different kinematical regions give different divergences due to

degeneracy. KLN
• 1. collinear to the target nucleus;⇒ BK evolution for UGD F(k⊥).
• 2. collinear to the initial quark;⇒ DGLAP evolution for PDFs
• 3. collinear to the final quark. ⇒ DGLAP evolution for FFs.
• Divergence⇒ Renormalization⇒ Resummation!
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Hard Factors

For the q→ q channel, the factorization formula can be written as

d3σp+A→h+X

dyd2p⊥
=

∫ dz

z2

dx

x
ξxq(x, µ)Dh/q(z, µ)

∫ d2x⊥d2y⊥
(2π)2

{
S(2)
Y (x⊥, y⊥)

[
H(0)

2qq +
αs

2π
H(1)

2qq

]

+

∫ d2b⊥
(2π)2

S(4)
Y (x⊥, b⊥, y⊥)

αs

2π
H(1)

4qq


withH(0)

2qq = e−ik⊥·r⊥ δ(1 − ξ) and

H(1)
2qq = CFPqq(ξ) ln

c2
0

r2
⊥µ

2

e−ik⊥·r⊥ +
1

ξ2
e
−i

k⊥
ξ
·r⊥

 − 3CFδ(1 − ξ)e−ik⊥·r⊥ ln
c2
0

r2
⊥k2
⊥

− (2CF − Nc) e−ik⊥·r⊥

 1 + ξ2

(1 − ξ)+
Ĩ21 −


(

1 + ξ2
)

ln (1 − ξ)2

1 − ξ


+


H(1)

4qq = −4πNce−ik⊥·r⊥
e
−i 1−ξ

ξ
k⊥·(x⊥−b⊥) 1 + ξ2

(1 − ξ)+

1

ξ

x⊥ − b⊥(
x⊥ − b⊥

)2 · y⊥ − b⊥(
y⊥ − b⊥

)2
−δ(1 − ξ)

∫ 1

0
dξ′

1 + ξ′2(
1 − ξ′

)
+

 e−i(1−ξ′)k⊥·(y⊥−b⊥)

(b⊥ − y⊥)2
− δ(2)

(b⊥ − y⊥)

∫
d2r′⊥

eik⊥·r′⊥

r′2⊥


 ,

where Ĩ21 =

∫ d2b⊥
π

e−i(1−ξ)k⊥·b⊥
 b⊥ ·

(
ξb⊥ − r⊥

)
b2
⊥
(
ξb⊥ − r⊥

)2 − 1

b2
⊥

 + e−ik⊥·b⊥ 1

b2
⊥

 .
Clear physical interpretation in coordinate space. However, need to go to momentum space for
numerical evaluation!
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Factorization and NLO Calculation

• Factorization is about separation of short distant physics (perturbatively
calculable hard factor) from large distant physics (Non perturbative).

σ ∼ xf (x)⊗H⊗ Dh(z)⊗F(k⊥)

• NLO (1-loop) calculation always contains various kinds of divergences.
• Some divergences can be absorbed into the corresponding evolution equations.
• The rest of divergences should be cancelled.

• Hard factor
H = H(0)

LO +
αs

2π
H(1)

NLO + · · ·

should always be finite and free of divergence of any kind.
• NLO vs NLL Naive αs expansion sometimes is not sufficient!

LO NLO NNLO · · ·
LL 1 αsL (αsL)2 · · ·
NLL αs αs (αsL) · · ·
· · · · · · · · ·

• Evolution→ Resummation of large logs.
LO evolution resums LL; NLO⇒ NLL.
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Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

dσ =

∫
xfa(x)⊗ Da(z)⊗F xg

a (k⊥)⊗H(0)

+
αs

2π

∫
xfa(x)⊗ Db(z)⊗F xg

(N)ab ⊗H
(1)
ab .

[quark] (xp+p , 0,0)

(0, xap
−
a ,kg⊥)

z
kµ

ξ pµ, y [hadron]

[nucleus] pµa

qµ [gluon]

Consistent implementation should include all the NLO αs corrections.
• NLO parton distributions. (MSTW or CTEQ)
• NLO fragmentation function. (DSS or others.)
• Use NLO hard factors. Partially by [Albacete, Dumitru, Fujii, Nara, 12]
• Use the one-loop approximation for the running coupling
• rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08;

Kovchegov, Weigert, 07]. Full NLO BK evolution not available.
• Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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• Agree with data for p⊥ < Qs(y), and reduced scale dependence, no K factor.
• For more forward rapidity, the agreement gets better and better.
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Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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4
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0

(
x0
xg

)λ]

d
3
N

d
η
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⊥
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S
(2)
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[
− r2

4
Q2

0

(
x0
xg
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(
e+ 1

Λr
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• The abrupt drop at NLO when p⊥ > Qs was
surprising and puzzling.

• Fixed order calculation in field theories is not
guaranteed to be positive.

• Failure of positivity is also seen in TMD,
where Y-term is devised to match collinear
factorization.
[Collins, Foundations of perturbative QCD]
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Extending the applicability of CGC calculation

Some thoughts:
• Towards a more complete framework. [Altinoluk, Armesto, Beuf, Kovner and

Lublinsky, 14; Kang, Vitev and Xing, 14; Ducloue, Lappi and Zhu, 16, 17;
Iancu, Mueller and Triantafyllopoulos, 16; Liu, Ma, Chao, 19; Kang, Liu, 19;
Kang, Liu, Liu, 20;]
• To solve this problem, needs to find a solution within our current factorization

to extend the applicability of CGC.
• More than just negativity problem. Need to work reliably (describe data) from

RHIC to LHC, low pT to high pT .
• Additional consideration: solution needs to be easy to be implemented

numerically due to limited computing resources.
• A lot of logs occur in pQCD loop-calculations: DGLAP, small-x, threshold,

Sudakov.
• Breakdown of pQCD expansion often happens due to the appearance of logs in

certain phase spaces.
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NLO hadron productions in pA collisions: An Odyssey

[Watanabe, Xiao, Yuan, Zaslavsky, 15]

What we have learnt so far in DIS and pA collisions

Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
�

sNN = 200GeV per nucleon
at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the
grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di�erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p� � Qs. On
the other hand, where p� � Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p� region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p� window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di�erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.
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�

sNN = 200GeV at y = 4 with results from SOLO for the
GBW and rcBK models. The color scheme is the same as in figure 4, and again, the error band comes from
µ2 = 10 GeV2 and 50GeV2. We do not see the negative total cross section because the cuto� momentum
above which the cross section becomes negative is larger than the p� of the available data, and in fact larger
than the kinematic limit
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FIG. 6. Comparison of ATLAS forward-rapidity data [21] with the center-of-mass energy of
�

sNN =
5.02 TeV at y = 1.75 with SOLO results for the GBW and rcBK models. Again, the color scheme is the
same as in figure 4. Here the error band shows plots for µ2 = 10 GeV2 and µ2 = 100 GeV2. Since the
numerical data for these measurements are not published, we have extracted the ATLAS points from Fig. 6
of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable
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The abrupt drop at NLO when p? > Qs was surprising and puzzling.
Fixed order calculation in field theories is not guaranteed to be positive.
Failure of positivity is also seen in TMD factorization, where Y-term is devised to match
collinear factorization.[Collins, Foundations of perturbative QCD, 11]
Similar to TMD, saturation only applies at low-k? and x region in s ! 1.
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What we have learnt so far in DIS and pA collisions

Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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FIG. 4. Comparisons of BRAHMS data [9] with the center-of-mass energy of
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sNN = 200GeV per nucleon
at rapidity y = 2.2, 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the
grid fill indicates LO+NLO results, and the solid fill corresponds to our new results which include the NLO
corrections from Lq and Lg due to the kinematical constraint. The error band is obtained by changing µ2

from 10 GeV2 to 50 GeV2.

(transformed) formulas. The LO and LO+NLO curves are very similar to earlier results published
in Ref. [43]; some slight di�erences are due to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely negligible in the region where p� � Qs. On
the other hand, where p� � Qs, Lq and Lg start to become important and alleviate the negativity
problem in the GBW model, and help us to better describe the data in the high p� region. In the
rcBK case, we find that the full NLO cross section now becomes completely positive and provides
us excellent agreement with all the RHIC data.

In Figure 6, we show the comparison between the forward ATLAS data at y = 1.75 and the
numerical results from SOLO. We observe remarkable agreement between the full NLO calculation
from the saturation formalism and experimental data up to 6GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the applicable p� window of the saturation
formalism from roughly 2.5–3 GeV to 6 GeV. From 6 GeV and up, the full NLO cross section
still becomes negative, which implies that the saturation formalism does not apply anymore and
the collinear factorization should be used. Admittedly, what we have seen is only one piece of
a promising clue for the gluon saturation phenomenon. More data in di�erent forward rapidity
windows at the LHC would allow us to conduct precise tests of the theoretical calculation, and
may eventually provide us the smoking gun proof.
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of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.

In Figure 7, we show the comparison between the ALICE and ATLAS data at y = 0 and the
numerical results from SOLO. We find that the full NLO results, especially the one with the rcBK
solution, miss the data. (It seems that the GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the dilute-dense factorization breaks
down at y = 0. This is completely expected for the following reason. First, the collinear parton
distributions of the proton projectile do not resum small-x logarthms and may have considerable
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The abrupt drop at NLO when p? > Qs was surprising and puzzling.
Fixed order calculation in field theories is not guaranteed to be positive.
Failure of positivity is also seen in TMD factorization, where Y-term is devised to match
collinear factorization.[Collins, Foundations of perturbative QCD, 11]
Similar to TMD, saturation only applies at low-k? and x region in s ! 1.
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• Work in low p⊥ ≤ Qs region!
• Including the kinematical

constraints. (Originally assume the
limit s→∞)

ln
1
xg

+ ln
k2
⊥

q2
⊥︸ ︷︷ ︸

missed earlier

⇒

New terms: Lq + Lg.

Related to threshold double logs!
• SOLO (1.0 and 2.0) break down in

the large p⊥ ≥ Qs region.
• Approach threshold at high k⊥.

Threshold resummation
(Sudakov)! [Xiao, Yuan, 18; work
in process]
Another method: X. Liu’s talk
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INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Gluon Radiation at the Threshold

Near threshold: radiated gluon has to be soft!

[quark] (xp+p , 0,0)

(0, xap
−
a ,kg⊥)

z
kµ

ξ pµ, y [hadron]

[nucleus] pµa

qµ [gluon]

• Gluon momentum: q+ = (1− ξ)p+
q → 0 with two regions of q− and q⊥.

• If q⊥ ∼ k⊥, then q− →∞, this is part of the small-x evolution.

• If q⊥ → 0 as well, this gives large log like ln
k2
⊥

q2
⊥

.

• KLN⇒ complete cancellation between real and virtual.
• Introduce an additional factorization scale Λ for soft gluon qperp when

incomplete cancellation occurs and logs start to appear.
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INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Threshold resummation in the saturation formalism

• ln(1− xp) and ln k2
⊥/Q2

s in the large k⊥ region (k⊥ � Qs) near threshold
∫ 1

x

dξ
(1− ξ)+

f (ξ) =

∫ 1

x
dξ

f (ξ)− f (1)

1− ξ + f (1) ln(1− x)

• In fact, these two types of logs seem to always appear together in our calculation
and soft-collinear effective theory (SCET) in almost identical pattern.
• Remarkable similarities between the threshold resummation in CGC formalism

(fixed kT ) and that in SCET[Becher, Neubert, 06].
• Threshold resummation: Sudakov soft gluon part and plus-function part.
• The forward threshold jet function ∆(µ2,Λ2, z) satisfies an almost identical

RGE equation. The solution helps to resum threshold logs.

d∆(µ2,Λ2, z)
d lnµ

= −2αsNc

π
[ln z + β0] ∆(µ2,Λ2, z)

+
2αsNc

π

∫ z

0
dz′

∆(µ2,Λ2, z)−∆(µ2,Λ2, z′)
z− z′

,

Solution: ∆(µ2,Λ2, z = ln
x
τ

) =
e(β0−γE)γµ,Λ

Γ[γµ,Λ]
zγµ,Λ−1.
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INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Numerical challenges

[Watanabe, Xiao, Yuan, Zaslavsky, 15] Several numerical tricks to help compute the
NLO corrections more precisely.
• Numerical calculation (8-d in total) is notoriously hard in coordinate space. Go

to momentum space.
• There are terms which have strong cancellation (1/k2

T → 1/k4
T ), need to

combine them in numerics.
• Work in finite integration range, need to identify the peaks of each term!
• A couple of identities in Fouier transformations∫

d2x⊥
(2π)2

S(x⊥) ln
c2

0

x2
⊥µ

2
e−ik⊥·x⊥ =

∫
d2l⊥
πl2⊥

[
F(k⊥ + l⊥)− J0(

c0

µ
l⊥)F(k⊥)

]
=

1
π

∫
d2l⊥

(l⊥ − k⊥)2

[
F(l⊥)− Λ2

Λ2 + (l⊥ − k⊥)2
F(k⊥)

]
+ F(k⊥) ln

Λ2

µ2
.

• Introduce a semi-hard (additional) scale Λ2 ∼ (1− ξ)k2
⊥ ∼ Q2

s which is
analogous to the intermediate jet scale µ2

i in SCET [Becher, Neubert, 06].
(Sudakov soft part!)
• µ2 and Λ2 dependences cancel order by order! At fixed order, need to choose

the “natural" values for them.
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INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Preliminary Results

[Xiao, Yuan, 18; Shi, Wang, Wei, Xiao, Yuan,numerical work in process]

dσ =

∫
xfa(x)⊗ Da(z)⊗F xg

a (k⊥)⊗H(0) ⊗∆(µ,Λ)⊗ SSud(µ,Λ)

+
αs

2π

∫
xfa(x)⊗ Db(z)⊗F xg

(N)ab ⊗H
(1)
ab (µ,Λ).

rcBK

µ2 = 10 − 100GeV2

1 2 3 4 5 6

10−8

10−6

10−4

10−2

100

pT

d
N

d
y
d
p
2 T
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LO
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rcBK
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LO

+NLO

+ Lq + Lg

resum, Λ2 = 6 GeV2

• Set µ ∼ Q ∼ k⊥ and Λ� µ. Slightly increase σ (e−x ≥ 1− x)
• ∆(µ,Λ) and SSud(µ,Λ) satisfy RGEs.
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INTRODUCTION FACTORIZATION AT ONE-LOOP ORDER PHENOMENOLOGY SUMMARY

Conclusion

• Factorization for single and dihadron productions in pA collisions in the small-x
saturation formalism at one-loop order. (More interesting).
• Towards the quantitative test of saturation physics beyond LL. (More precise).
• One-loop calculation for hard processes in CGC, Sudakov factor.

(More complete understanding of TMD or UGD).
• Extension to larger k⊥ region and QCD threshold resummation.

Low-k⊥⇔ saturation; High-k⊥⇔ pQCD + Resummation.
• Gluon saturation could be the next interesting discovery at

the LHC and future EIC.
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