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H (0;u1)H

(

0, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H (0;u2)H

(

0, 1, 1;
u1 + u3 − 1

u1 − 1

)

− 1

4
H (0;u1)H

(

0, 1, 1;
u2 + u3 − 1

u3 − 1

)

+

1

4
H (0;u3)H

(

0, 1, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (0;u2)H (1, 0, 0;u1)−

1

2
H (0;u3) H (1, 0, 0;u1)−

1

2
H (0;u1)H (1, 0, 0;u2) +

1

2
H (0;u3) H (1, 0, 0;u2) +

1

2
H (0;u1)H (1, 0, 0;u3) −

1

2
H (0;u2)H (1, 0, 0;u3) −

1

4
H (0;u3) H

(

1, 0, 1;
u1 + u2 − 1

u2 − 1

)

−

1

4
H (0;u2)H

(

1, 0, 1;
u1 + u3 − 1

u1 − 1

)

− 1

4
H (0;u1)H

(

1, 0, 1;
u2 + u3 − 1

u3 − 1

)

−

7H (0, 0, 0, 0;u1) − 7H (0, 0, 0, 0;u2) − 7H (0, 0, 0, 0;u3) +
3

2
H

(

0, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+

3H (0, 0, 0, 1; (u1 + u2)) +
3

2
H

(

0, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+ 3H (0, 0, 0, 1; (u1 + u3)) +

3

2
H

(

0, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 3H (0, 0, 0, 1; (u2 + u3)) +
9

4
H (0, 0, 1, 0;u1) +

9

4
H (0, 0, 1, 0;u2) +

9

4
H (0, 0, 1, 0;u3) −

1

2
H (0, 1, 0, 0;u1) −

1

2
H (0, 1, 0, 0;u2) −

1

2
H (0, 1, 0, 0;u3) +

1

2
H

(

0, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

2
H

(

0, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

2
H

(

0, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ H (0, 1, 1, 0;u1) + H (0, 1, 1, 0;u2) + H (0, 1, 1, 0;u3) −

1

4
H

(

0, 1, 1, 1;
u1 + u2 − 1

u2 − 1

)

− 1

4
H

(

0, 1, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H

(

0, 1, 1, 1;
u2 + u3 − 1

u3 − 1

)

+ H

(

1, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+ H

(

1, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

H

(

1, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 2H (1, 0, 1, 0;u1) + 2H (1, 0, 1, 0;u2) + 2H (1, 0, 1, 0;u3) +

1

4
H

(

1, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

4
H

(

1, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

4
H

(

1, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (1, 1, 1, 0;u1) +

1

2
H (1, 1, 1, 0;u2) +

1

2
H (1, 1, 1, 0;u3) −

1

24
π2H (0;u3)H

(

1;
1

u123

)

− 1

24
π2H (0;u1)H

(

1;
1

u231

)

− 1

24
π2H (0;u2)H

(

1;
1

u312

)

+

1

8
π2H (0;u2)H

(

1;
1

v123

)

− 1

8
π2H (0;u3)H

(

1;
1

v123

)

+
1

24
π2H (0;u2)H

(

1;
1

v132

)

−

1

24
π2H (0;u3)H

(

1;
1

v132

)

− 1

24
π2H (0;u1)H

(

1;
1

v213

)

+
1

24
π2H (0;u3)H

(

1;
1

v213

)

−
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1

8
π2H (0;u1)H

(

1;
1

v231

)

+
1

8
π2H (0;u3)H

(

1;
1

v231

)

+
1

8
π2H (0;u1)H

(

1;
1

v312

)

−

1

8
π2H (0;u2)H

(

1;
1

v312

)

+
1

24
π2H (0;u1)H

(

1;
1

v321

)

− 1

24
π2H (0;u2)H

(

1;
1

v321

)

−

1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

u123

)

− 1

4
H (1, 0;u2)H

(

0, 1;
1

u123

)

+
1

24
π2H

(

0, 1;
1

u123

)

+

1

24
π2H

(

0, 1;
1

u231

)

− 1

4
H (0;u1) H (0;u3)H

(

0, 1;
1

u231

)

− 1

4
H (1, 0;u3)H

(

0, 1;
1

u231

)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

u312

)

− 1

4
H (1, 0;u1)H

(

0, 1;
1

u312

)

+
1

24
π2H

(

0, 1;
1

u312

)

−

1

4
H (0;u2)H (0;u3)H

(

0, 1;
1

v123

)

+
1

4
H (0, 0;u2)H

(

0, 1;
1

v123

)

+

1

4
H (0, 0;u3)H

(

0, 1;
1

v123

)

+
1

6
π2H

(

0, 1;
1

v123

)

− 1

4
H (0;u2) H (0;u3)H

(

0, 1;
1

v132

)

+

1

4
H (0, 0;u2)H

(

0, 1;
1

v132

)

+
1

4
H (0, 0;u3)H

(

0, 1;
1

v132

)

+
1

6
π2H

(

0, 1;
1

v132

)

−

1

4
H (0;u1)H (0;u3)H

(

0, 1;
1

v213

)

+
1

4
H (0, 0;u1)H

(

0, 1;
1

v213

)

+

1

4
H (0, 0;u3)H

(

0, 1;
1

v213

)

+
1

6
π2H

(

0, 1;
1

v213

)

− 1

4
H (0;u1) H (0;u3)H

(

0, 1;
1

v231

)

+

1

4
H (0, 0;u1)H

(

0, 1;
1

v231

)

+
1

4
H (0, 0;u3)H

(

0, 1;
1

v231

)

+
1

6
π2H

(

0, 1;
1

v231

)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1

v312

)

+
1

4
H (0, 0;u1)H

(

0, 1;
1

v312

)

+

1

4
H (0, 0;u2)H

(

0, 1;
1

v312

)

+
1

6
π2H

(

0, 1;
1

v312

)

− 1

4
H (0;u1) H (0;u2)H

(

0, 1;
1

v321

)

+

1

4
H (0, 0;u1)H

(

0, 1;
1

v321

)

+
1

4
H (0, 0;u2)H

(

0, 1;
1

v321

)

+
1

6
π2H

(

0, 1;
1

v321

)

−

1

2
H (0;u2)H (0;u3)H

(

1, 1;
1

v123

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v123

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v123

)

+
11

24
π2H

(

1, 1;
1

v123

)

− 1

24
π2H

(

1, 1;
1

v132

)

−

1

24
π2H

(

1, 1;
1

v213

)

− 1

2
H (0;u1) H (0;u3)H

(

1, 1;
1

v231

)

+
1

2
H (0, 0;u1)H

(

1, 1;
1

v231

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v231

)

+
11

24
π2H

(

1, 1;
1

v231

)

− 1

2
H (0;u1) H (0;u2)H

(

1, 1;
1

v312

)

+

1

2
H (0, 0;u1)H

(

1, 1;
1

v312

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v312

)

+
11

24
π2H

(

1, 1;
1

v312

)

−

1

24
π2H

(

1, 1;
1

v321

)

+
1

2
H (0;u2)H

(

0, 0, 1;
1

u123

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1

u123

)

+

1

2
H (0;u1)H

(

0, 0, 1;
1

u231

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1

u231

)

+
1

2
H (0;u1)H

(

0, 0, 1;
1

u312

)

+

1

2
H (0;u2)H

(

0, 0, 1;
1

u312

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

u123

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

u231

)

+

1

4
H (0;u2)H

(

0, 1, 1;
1

u312

)

+
1

4
H (0;u2)H

(

0, 1, 1;
1

v123

)

− 1

4
H (0;u3)H

(

0, 1, 1;
1

v123

)

−
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1

4
H (0;u2)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

v213

)

−

1

4
H (0;u3)H

(

0, 1, 1;
1

v213

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v231

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v231

)

+

1

4
H (0;u1)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u2)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v321

)

+

1

4
H (0;u2)H

(

0, 1, 1;
1

v321

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

u123

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

u231

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

u312

)

+
1

4
H (0;u2)H

(

1, 0, 1;
1

v123

)

− 1

4
H (0;u3)H

(

1, 0, 1;
1

v123

)

−

1

4
H (0;u2)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

v213

)

−

1

4
H (0;u3)H

(

1, 0, 1;
1

v213

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v231

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v231

)

+

1

4
H (0;u1)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u2)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v321

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

v321

)

+ H (0;u2)H
(

1, 1, 1;
1

v123

)

− H (0;u3)H
(

1, 1, 1;
1

v123

)

−

H (0;u1)H
(

1, 1, 1;
1

v231

)

+ H (0;u3)H
(

1, 1, 1;
1

v231

)

+ H (0;u1)H
(

1, 1, 1;
1

v312

)

−

H (0;u2)H
(

1, 1, 1;
1

v312

)

− 3

2
H
(

0, 0, 0, 1;
1

u123

)

− 3

2
H
(

0, 0, 0, 1;
1

u231

)

−

3

2
H
(

0, 0, 0, 1;
1

u312

)

− 3H
(

0, 0, 0, 1;
1

v132

)

− 3H
(

0, 0, 0, 1;
1

v213

)

− 3H
(

0, 0, 0, 1;
1

v321

)

−

1

2
H
(

0, 0, 1, 1;
1

u123

)

− 1

2
H
(

0, 0, 1, 1;
1

u231

)

− 1

2
H
(

0, 0, 1, 1;
1

u312

)

−

1

2
H
(

0, 1, 0, 1;
1

u123

)

− 1

2
H
(

0, 1, 0, 1;
1

u231

)

− 1

2
H
(

0, 1, 0, 1;
1

u312

)

+

1

4
H
(

0, 1, 1, 1;
1

v123

)

+
1

4
H
(

0, 1, 1, 1;
1

v132

)

+ ζ3H (0;u1) + ζ3H (0;u2) + ζ3H (0;u3) +

5

2
ζ3H (1;u1) +

5

2
ζ3H (1;u2) +

5

2
ζ3H (1;u3) +

1

2
ζ3H

(

1;
1

u123

)

+
1

2
ζ3H

(

1;
1

u231

)

+

1

2
ζ3H

(

1;
1

u312

)

− 1

2
H
(

1, 0, 0, 1;
1

u123

)

− 1

2
H
(

1, 0, 0, 1;
1

u231

)

− 1

2
H
(

1, 0, 0, 1;
1

u312

)

+

1

4
ζ3H

(

1;
1

v123

)

+
1

4
ζ3H

(

1;
1

v132

)

+
1

4
ζ3H

(

1;
1

v213

)

+
1

4
ζ3H

(

1;
1

v231

)

+
1

4
ζ3H

(

1;
1

v312

)

+

1

4
ζ3H

(

1;
1

v321

)

+
1

4
H
(

0, 1, 1, 1;
1

v213

)

+
1

4
H
(

0, 1, 1, 1;
1

v231

)

+
1

4
H
(

0, 1, 1, 1;
1

v312

)

+

1

4
H
(

0, 1, 1, 1;
1

v321

)

+
1

4
H
(

1, 0, 1, 1;
1

v123

)

+
1

4
H
(

1, 0, 1, 1;
1

v132

)

+
1

4
H
(

1, 0, 1, 1;
1

v213

)

+

1

4
H
(

1, 0, 1, 1;
1

v231

)

+
1

4
H
(

1, 0, 1, 1;
1

v312

)

+
1

4
H
(

1, 0, 1, 1;
1

v321

)

+
1

4
H
(

1, 1, 0, 1;
1

v123

)

+

1

4
H
(

1, 1, 0, 1;
1

v132

)

+
1

4
H
(

1, 1, 0, 1;
1

v213

)

+
1

4
H
(

1, 1, 0, 1;
1

v231

)

+
1

4
H
(

1, 1, 0, 1;
1

v312

)

+

1

4
H
(

1, 1, 0, 1;
1

v321

)

+
3

2
H
(

1, 1, 1, 1;
1

v123

)

+
3

2
H
(

1, 1, 1, 1;
1

v231

)

+
3

2
H
(

1, 1, 1, 1;
1

v312

)
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R(2)
6,WL(u1, u2, u3) = (H.1)

1

24
π2G

(
1

1 − u1
,

u2 − 1

u1 + u2 − 1
; 1

)

+
1

24
π2G

(
1

u1
,

1

u1 + u2
; 1

)

+
1

24
π2G

(
1

u1
,

1

u1 + u3
; 1

)

+

1

24
π2G

(
1

1 − u2
,

u3 − 1

u2 + u3 − 1
; 1

)

+
1

24
π2G

(
1

u2
,

1

u1 + u2
; 1

)

+
1

24
π2G

(
1

u2
,

1

u2 + u3
; 1

)

+

1

24
π2G

(
1

1 − u3
,

u1 − 1

u1 + u3 − 1
; 1

)

+
1

24
π2G

(
1

u3
,

1

u1 + u3
; 1

)

+
1

24
π2G

(
1

u3
,

1

u2 + u3
; 1

)

+

3

2
G

(

0, 0,
1

u1
,

1

u1 + u2
; 1

)

+
3

2
G

(

0, 0,
1

u1
,

1

u1 + u3
; 1

)

+
3

2
G

(

0, 0,
1

u2
,

1

u1 + u2
; 1

)

+

3

2
G

(

0, 0,
1

u2
,

1

u2 + u3
; 1

)

+
3

2
G

(

0, 0,
1

u3
,

1

u1 + u3
; 1

)

+
3

2
G

(

0, 0,
1

u3
,

1

u2 + u3
; 1

)

−

1

2
G

(

0,
1

u1
, 0,

1

u2
; 1

)

+ G

(

0,
1

u1
, 0,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u1
, 0,

1

u3
; 1

)

+

G

(

0,
1

u1
, 0,

1

u1 + u3
; 1

)

− 1

2
G

(

0,
1

u1
,

1

u1
,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u1
,

1

u1
,

1

u1 + u3
; 1

)

−

1

2
G

(

0,
1

u1
,

1

u2
,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u1
,

1

u3
,

1

u1 + u3
; 1

)

− 1

2
G

(

0,
1

u2
, 0,

1

u1
; 1

)

+

G

(

0,
1

u2
, 0,

1

u1 + u2
; 1

)

− 1

2
G

(

0,
1

u2
, 0,

1

u3
; 1

)

+ G

(

0,
1

u2
, 0,

1

u2 + u3
; 1

)

−
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“multiple(Goncharov)-polylogrithm function”

17 page complicated functions



[Goncharov, Spradlin, Vergu, Volovich 2010]

a line result in terms of classical polylogarithms!

17 pages =

Result can be remarkably simple
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Classical Polylogarithms for Amplitudes and Wilson Loops
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)
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n = 4, 5, the first nontrivial remainder function is R(2)
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Wilson loop diagrams to obtain an analytic expression
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if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
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Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
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tion and then describe the algorithm by which it was
obtained.
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(2)
6

The remainder function R(2)
6 is usually presented as a
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s123s345
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, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
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±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

2

and

ℓn(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantity

J =
3
∑

i=1

(ℓ1(x
+
i )− ℓ1(x

−
i )). (6)

Note that in the Euclidean region where all ui > 0, the
x+
i never enter the lower half-plane and the x−

i never
enter the upper half-plane. The expression (3) is valid
in the Euclidean region with the understanding that the
branch cuts of Lin(x

+
i ) and Lin(1/x

−
i ) are taken to lie

below the real axis while the branch cuts of Lin(x
−
i ) and

Lin(1/x
+
i ) are taken to lie above the real axis. (The

quantities x+
i x

−
i appearing as arguments of the logs are

always positive.) In writing (3) extreme care has neces-
sarily been taken to ensure the proper analytic structure.
For example one can easily check that J naively simpli-
fies to 1

2 log(x
−/x+), but this relation only holds in the

regions ∆ > 0 or u1 + u2 + u3 < 1. We caution the
reader that any attempt to use any such naive relations,
including the well-known relation between Lin(1/x) and
Lin(x), without careful consideration of the branch struc-
ture, voids our warranty on (3).
Besides its great simplicity, two notable features of (3)

which set it apart from the DDS formula are manifest
symmetry under any permutation of the ui, and the fact
that the expression is valid and readily evaluated for all
positive ui, in particular also outside the unit cube.

DESCRIPTION OF THE ALGORITHM

A Convenient Choice of Variables

The DDS formula is expressed in terms of the classical
polylogarithms Lik as well as a collection of considerably
more complicated multiparameter generalizations stud-
ied by one of the authors [19] and defined recursively by

G(ak, ak−1, . . . ; z) =

∫ z

0
G(ak−1, . . . ; t)

dt

t− ak
(7)

with G(z) ≡ 1, of which the harmonic polylogarithms
familiar in the physics literature [20] are special cases.
The parameters of the various transcendental functions

which appear in the DDS formula involve not just the
cross-ratios (1), but also the more complicated combi-
nations 1 − ui, (1 − ui)/(1 − ui − uj), ui + uj , u

±
jkl =

1−uj−uk+ul±
√
∆

2(1−uj)ul
, and v±jkl =

uk−ul±
√

(uk+ul)2−4ujukul

2(1−uj)uk
.

This large collection of variables is redundant in an ineffi-
cient way, with many rather complicated algebraic iden-
tities amongst them.

Our computation is greatly facilitated by a judicious
choice of variables which trivializes all of these algebraic
relations. We choose to express the three ui by six vari-
ables zi valued in P1 (with an SL(2,C) redundancy) via

u1 =
z23z56
z25z36

, u2 =
z16z34
z14z36

, u3 =
z12z45
z14z25

, (8)

where zij = zi − zj . One virtue of these coordinates is
that ∆ becomes a perfect square, so that the u±

jkl are

rational functions of the zij . (The v±jkl completely drop
out as explained in the following subsection.)
We anticipate that for general n the best variables for

studying the remainder function will be the momentum
twistors of [21]. Indeed the z variables may be thought
of as a particular simplification of momentum twistors
which is valid for the special case n = 6 via the rela-
tion ⟨abcd⟩ ∝ zabzaczadzbczbdzcd. In terms of momentum
twistors

u1 =
⟨1234⟩⟨4561⟩
⟨1245⟩⟨3461⟩, x+

1 = −⟨1456⟩⟨2356⟩
⟨1256⟩⟨3456⟩, etc. (9)

The Symbol of a Transcendental Function

We define a function Tk of transcendentality degree
k as one which can be written as a linear combination
(with rational coefficients) of k-fold iterated integrals of
the form

Tk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk, (10)

where a and b are rational numbers, Ri(t) are rational
functions with rational coefficients and the iterated inte-
grals are defined recursively by

∫ b

a

d logR1 ◦ · · · ◦ d logRn =

∫ b

a

(∫ t

a

d logR1 ◦ · · · ◦ d logRn−1

)

d logRn(t). (11)

The integrals are taken along paths from a to b. When
the Ri are rational functions in several variables the issue
of local path independence (or homotopy invariance) is

important (see [22]), and we have checked that R(2)
6 has

this property.
A useful quantity associated with Tk is its symbol, an

element of the k-fold tensor product of the multiplicative
group of rational functions modulo constants (see [22,
sec. 3]). The symbol of the function shown in (10) is

symbol(Tk) = R1 ⊗ · · ·⊗Rk, (12)

and this definition is extended to all functions of degree
k by linearity.
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Such simplicity is totally unexpected using traditional Feynman diagrams!

Mathematical tool: “symbol”



Function Differential symbol

R d R 0

log(R) d log(R) R

log(R1)log(R2) logR1 dlogR2+logR2 dlogR1 R1     R2 + R2    R1

Li2(R) Li1(R) dlogR -(1-R)     R

From function to “Symbol”

⊗

⊗⊗

Recursion definition of “Symbol”:



Symbol

Algebraic relations:
c is const

Make it easy to prove non-trivial identities, e.g.:



Applications

Complicated 
expression symbol Simple 

expression



Applications

Complicated 
expression symbol

Derive symbol directly without knowing function in advance.

Bootstrap strategy

A better strategy:

Simple 
expression

We will apply a different strategy based on master integrand expansion.

Dixon, Drummond, Henn 2011, ….



Outline

Summary and outlook

New bootstrap strategy

Two-loop four-point form factor

Background and Motivation



Bootstrap



Bootstrap

Bootstrap

Top-down

Bottom-up



S-matrix program

“One should try to calculate S-matrix elements directly, 
without the use of field quantities, by requiring them to 
have some general properties that ought to be valid, .…”  

— Eden et.al, “The Analytic S-matrix”, 1966



Conformal bootstrap

Alexander M. Polyakov
Vyacheslav S. Rychkov

2-dim D-dim

Compute anomalous dimensions and correlation functions



Bootstrap of amplitudes

Computing the finite remainder functions using symbol techniques. 
Ansatz 

in symbols Physical constraints Solution

Sansatz(R) = ∑
i

ci[ ⊗a Wi,a]

∑ Multiple Polylogarithms

Symbol bootstrap

S(R) = ∑
i

ci( ⊗a Wi,a)



Bootstrap of amplitudes

Computing the finite remainder functions using symbol techniques. 
Ansatz 

in symbols Physical constraints Solution

Sansatz(R) = ∑
i

ci[ ⊗a Wi,a]

∑ Multiple Polylogarithms

Symbol bootstrap

S(R) = ∑
i

ci( ⊗a Wi,a)

Ansatz 
in master integrals Physical constraints Solution of 

coefficients

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l) = ∑
i

Ci I(l)
i

The new strategy we will use



“master bootstrap”

Ansatz in master 
integral expansion Physical constraints Solution of 

coefficients

Symmetry property

IR divergences

Collinear factorization

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Unitarity cut

ℱ(l),ansatz = ∑
i

Ci I(l)
i



Application: 
two-loop four-point form factor



Form factors

We consider two-loop four-point form factor in N=4 SYM:

HHiggs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s
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⇢
1

p2
T

✓
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m2
h

s
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◆4�

�
4

s

✓
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h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
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h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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It is a N=4 version of Higgs+4-parton amplitudes in QCD:
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1 Introduction

2 Setup

2.1 Effective Lagrangian

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0Htr(F 2) +O

(

1

m2
t

)

, (2.1)

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.2)

where O0 = Htr(F 2) is the leading term, and the subleading terms contain dimension-7

operators [1–5]

O1 = Htr(F ν
µ F ρ

ν F µ
ρ ) , (2.3)

O2 = Htr(DρFµνD
ρFµν) , (2.4)

O3 = Htr(DρFρµDσF
σµ) , (2.5)

O4 = Htr(FµρD
ρDσF

σµ) . (2.6)

– 1 –

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩



Form factors

We consider two-loop four-point form factor in N=4 SYM:

HIt is a N=4 version of Higgs+4-parton amplitudes in QCD:

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩

Five-point two-loop amplitudes are at frontier and under intense study:

There have been many massless five-point two-loop amplitudes 
obtained in analytic form.

For five-point two-loop amplitudes with one massive leg, so far only 
one result is available: Badger, Hartanto, Zoia 2021

CAVENDISH-HEP-21/01

Two-loop QCD corrections to Wbb̄ production at hadron colliders

Simon Badger,1, ⇤ Heribertus Bayu Hartanto,2, † and Simone Zoia1, ‡
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and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy
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(Dated: April 16, 2021)

We present an analytic computation of the two-loop QCD corrections to ud̄ ! W+bb̄ for an
on-shell W -boson using the leading colour and massless bottom quark approximations. We perform
an integration-by-parts reduction of the unpolarised squared matrix element using finite field recon-
struction techniques and identify an independent basis of special functions that allows an analytic
subtraction of the infrared and ultraviolet poles. This basis is valid for all planar topologies for
five-particle scattering with an o↵-shell leg.

INTRODUCTION

The production of aW -boson in association with a pair
of b-quarks at hadron colliders is of fundamental impor-
tance as a background to Higgs production in association
with a vector boson. The process is one of a prioritised
list of 2 ! 3 scattering problems for which higher or-
der corrections are necessary to keep theory in line with
data. These amplitudes are related to a large class of
processes contributing to pp ! W + 2j production and
the work presented here represents a significant step to-
wards achieving a complete classification of the missing
two-loop amplitudes.

The process has been studied extensively at next-to-
leading order (NLO) [1–5] and was the first in a set of
o↵-shell five-particle amplitudes to be studied using the
unitarity method [6, 7]. The present state of the art in
phenomenological studies allows full mass e↵ects, shower
matching, electro-weak corrections and the inclusion ad-
ditional QCD jets [8–10].

A numerical computation of the two-loop helicity am-
plitudes [11] demonstrated the importance of an e�cient
analytic form with a well understood basis of special func-
tions. Major steps forward came via e�cient numeri-
cal evaluation of the di↵erential equations [12] and ana-
lytic evaluation in terms the Goncharov Polylogarithms
(GPLs) [13, 14]. These results opened the door for a fully
analytic amplitude computation yet significant challenges
remain. The complexity of the external kinematics rep-
resents a challenge for integral reduction techniques and
the identification of a minimal basis of special functions is
required to find analytic simplifications after subtracting
universal infrared and ultraviolet divergences.

E�cient amplitude and integration-by-parts reduction
(IBP) [15, 16] using finite field arithmetic [17–27] has
gained significant interest in recent years. Through mul-
tiple evaluations of a numerical algorithm [28–31], fully
analytic forms for planar massless five-particle ampli-
tudes have been extracted using a rational parametri-
sation of the kinematics [32]. Following a complete
understanding of a pentagon function basis [33, 34], a

large number of two-loop amplitudes are now available
in compact analytic form [35–47]. We have also seen
the first phenomenological predictions at NNLO in QCD
for the production of three photons in hadron colliders
after combination with real-virtual and double real radi-
ation [48, 49].
In this short letter we outline the extension of this

method to processes with an additional mass scale.

LEADING COLOUR ud̄ ! W+bb̄ AMPLITUDES

The leading order process consists of two simple Feyn-
man diagrams as shown in Fig. 1. We label our process
as follows,

d̄(p1) + u(p2) ! b(p3) + b̄(p4) +W
+(p5), (1)

where p
2
1 = p

2
2 = p

2
3 = p

2
4 = 0 and p

2
5 = m

2
W . The colour

decomposition at leading colour is

A
(L)(1d̄, 2u, 3b, 4b̄, 5W ) =

n
L
g
2
sgW �

ī4
i1

�
ī2

i3
A

(L)(1d̄, 2u, 3b, 4b̄, 5W ), (2)

where n = m✏Nc↵s/(4⇡), ↵s = g
2
s/(4⇡) and m✏ =

i(4⇡)✏e�✏�E . gs and gW are the strong and weak cou-
pling constants respectively.
We interfere the L-loop partial amplitudes A

(L) in
Eq. (2) with the tree-level partial amplitude A

(0) to ob-
tain the unrenormalised L-loop unpolarised squared par-
tial amplitude,

M
(L) =

X

spin

A
(0)⇤

A
(L)

. (3)

p
1

p
2

p
3

p
4

p
5p

3

p
4

p
1

p
2

p
5

FIG. 1. Leading order Feynman diagrams contributing to
ud̄ ! W+bb̄ .
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See e.g. Abreu, Dormans, Cordero, Ita, Page 2019 and many others….



Form factors
Our result provides a first two-loop five-point example with a 
color-singlet off-shell leg.

Planar master integrals have been evaluated recently.

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩

i
j

k

l

{s12, s23, s34, s14, s13, s24, tr5}; tr5 = 4iεp1p2 p3p4

Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020
Canko, Papadopoulos, Syrrakos 2020

H



Ansatz

Tree-level:

One-loop:

2

FIG. 1: Integral topologies of maximal number of
propagators for the planar two-loop form factor.

takes the simple form as [2]

F
(0)
4 = F

(0)
tr(�3

12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (4)

The one-loop form factor is easy to compute which takes
the following form

F
(1)
4 = F

(0)
4

⇣
W1 I

(1)
1 +W2 I

(1)
2

⌘
, (5)

where Wa are rational functions of kinematic invariants

W1 =
h12i h34i

h13i h24i
, W2 =

h14i h23i

h13i h24i
, (6)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation

⇣X

i

Wi I
(1)
i (✏)

⌘2���
IR

=
hX

i

Wi

�
I
(1)
i (✏)

�2i���
IR

(7)

which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz

F
(2)
4 = F

(0)
4

⇣
W1 I

(2)
1 +W2 I

(2)
2

⌘
, (8)

in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:

I
(2)
a =

225X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
(2)
a :

I
(2)
2 = I

(2)
1 |(p1$p3) . (10)

In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:

log I = �

1X

l=1

g2l
"
�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏

#
nX

i=1

�
�
sii+1

µ2

��l✏
+O

�
✏0
�
,

(11)
which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
? ], which at two loops can be given as

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (12)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (13)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies

R
(2)
n =

⇥
I
(2)

� I
(2),BDS

⇤
fin

pi k pi+1
�������! R

(2)
n�1 . (14)

But for tr(�3), I(1) contains both kinematics factors
W1 and W2, the (I(1))2 in I

(2),BDS will introduce a pole
of h13i which cannot be canceled, thus we redefine the
subtraction as reference[] do

I
(2),BDS =

2X

i=1

Wi

h�
I
(1)
i (✏)

�2
+ f (2)(✏)I(1)

i (2✏)
i
, (15)

ℱ𝒪,4 = ∫ d4x e−iq⋅x⟨1ϕ,2ϕ,3ϕ4+ | tr(ϕ3)(x) |0⟩
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]

F
(0)
4 = F

(0)
tr(�3

12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form

F
(1)
4 = F

(0)
4

⇣
B1 I

(1)
1 +B2 I

(1)
2

⌘
, (4)

where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (24). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation

⇣X

i

Bi I
(1)
i (✏)

⌘2���
IR

=
hX

i

Bi

�
I
(1)
i (✏)

�2i���
IR

(6)

which will be used for two-loop ansatz. [to improve]
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop form factor

F
(2)
4 = F

(0)
4

⇣
B1 I

(2)
1 +B2 I

(2)
2

⌘
, (7)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (8)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to
choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (10)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (11)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
part satisfies

R
(2)
n =

⇥
I
(2)

� I
(2),BDS

⇤
fin

pi k pi+1
�������! R

(2)
n�1 . (12)

For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(6), we define the BDS ansatz part as

I
(2),BDS =

2X

i=1

Bi

h�
I
(1)
i (✏)

�2
+ f (2)(✏)I(1)

i (2✏)
i
, (13)

which has same IR part and collinear limit behavior as
before.
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (7) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing two Ba terms.
The IR and collinear constraints can often fix a sig-

nificant part of the parameters. In some cases, they are
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]

F
(0)
4 = F

(0)
tr(�3

12)
(1�, 2�, 3�, 4+) =

h31i

h34ih41i
. (3)

The one-loop form factor is easy to compute which takes
the following form

F
(1)
4 = F

(0)
4 I

(1) = F
(0)
4

⇣
B1 G

(1)
1 +B2 G

(1)
2

⌘
, (4)

where Ba are rational functions of kinematic invariants

B1 =
h12i h34i

h13i h24i
, B2 =

h14i h23i

h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation

⇣X

i

Bi I
(1)
i (✏)

⌘2���
IR

=
hX

i

Bi

�
I
(1)
i (✏)

�2i���
IR

(6)
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(1)
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�
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(1)
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�2i
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�
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(1)
1 � G

(1)
2

�

(7)
which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor

F
(2)
4 = F

(0)
4

⇣
B1 G

(2)
1 +B2 G

(2)
2

⌘
, (8)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
(2),BDS =

1

2

�
I
(1)(✏)

�2
+ f (2)(✏)I(1)(2✏) , (11)

where

f (2)(✏) = �2⇣2 � 2⇣3✏� 2⇣4✏
2 . (12)

I
(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
(2),BDS =
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which has same IR part and collinear limit behavior as
before.
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
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, B2 =
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, B1 +B2 = 1 , (5)

and I
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a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
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a : Thus we have
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ca,iI
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
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where
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(2),BDS not only captures the IR divergence but also has
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
(2),BDS =
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which has same IR part and collinear limit behavior as
before.
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takes the simple form as [2]
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The one-loop form factor is easy to compute which takes
the following form
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where Wa are rational functions of kinematic invariants
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, W2 =
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and I
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as in (25). The choice of W1 and W2 are not arbitrary:
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which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-
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in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:
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where ca,i are the coe�cients that are to be solved. We
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which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
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To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
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h13i h24i
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and I
(1)
a can be given in terms of bubble and box integrals

as in (24). The choice of B1 and B2 are not arbitrary: it
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which will be used for two-loop ansatz. [to improve]
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to
choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:
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a =
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ca,iI
(2),UT
i , (9)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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where
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part satisfies
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(6), we define the BDS ansatz part as

I
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which has same IR part and collinear limit behavior as
before.
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (7) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing two Ba terms.
The IR and collinear constraints can often fix a sig-

nificant part of the parameters. In some cases, they are
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configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
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, B2 =

h14i h23i
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, B1 +B2 = 1 , (5)

and I
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a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
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a : Thus we have

an ansatz:
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
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for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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, B1 +B2 = 1 , (5)

and I
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a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
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Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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2 = I

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:
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a =
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
(2),BDS =

2X

a=1

Ba

h�
G
(1)
a (✏)

�2
+ f (2)(✏)G(1)

a (2✏)
i
, (14)
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before.
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for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
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, B2 =
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h13i h24i
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and I
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a can be given in terms of bubble and box integrals
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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part satisfies

R
(2)
n =

⇥
I
(2)

� I
(2),BDS

⇤
fin

pi k pi+1
�������! R

(2)
n�1 . (13)

For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
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the following form
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Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
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a : Thus we have
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
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takes the simple form as [2]
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The one-loop form factor is easy to compute which takes
the following form
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where Wa are rational functions of kinematic invariants

W1 =
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, W2 =
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and I
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as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation
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which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz
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in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:
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where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
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In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
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result takes the simple form as [35]
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The one-loop form factor is easy to compute which takes
the following form
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where Ba are rational functions of kinematic invariants

B1 =
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h13i h24i
, B2 =
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h13i h24i
, B1 +B2 = 1 , (5)

and I
(1)
a can be given in terms of bubble and box integrals

as in (24). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]
Inspired by the one-loop structure, we propose the fol-

lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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1 |(p1$p3) . (8)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to
choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:
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i , (9)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(6), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
A further useful constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (7) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing two Ba terms.
The IR and collinear constraints can often fix a sig-

nificant part of the parameters. In some cases, they are
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the following form
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and I
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Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:
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The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
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an ansatz:
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
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and I
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Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor
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in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
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(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X
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ca,iI
(2),UT
i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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color-singlet q-leg. Since the form factor we consider is
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ter ✏ = (4�D)/2.
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The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
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contains 221 master integrals for each I
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where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]
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takes the simple form as [2]
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The one-loop form factor is easy to compute which takes
the following form
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and I
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a can be given in terms of bubble and box integrals

as in (25). The choice of W1 and W2 are not arbitrary:
it satisfies the following relation
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which will be used for two-loop ansatz.
Inspired by the one-loop structure, we propose the fol-

lowing ansatz
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in which the Wa are defined in (6), which are suggested
by the one-loop result.

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. The integral topolo-
gies with maximal number of propagators are shown in
Figure 1. Since the operator has length 3, its associated
massive q-leg (denoted by blue color) should be connected
to a 4-vertex. To obtain the full form factor, one needs to
consider all possible insertions of the q-leg, since the op-
erator is a color-singlet. All needed master integrals are
known in [? ]. An analysis of the topology shows that
the most general ansatz contains 225 master integrals.
Thus we have an ansatz:

I
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where ca,i are the coe�cients that are to be solved. We

point out that there is a symmetry between I
(2)
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In (9), we have chosen the master integrals to be uni-
formly transcendental (UT) integrals of transcendental-
ity degree 4. This has an important advantage: the form
factor we consider is a BPS form factor in N = 4 SYM
which has maximal and uniform transcendentality de-
gree, therefore the coe�cients ca,i should be pure ratio-
nal numbers independent of dimensional regularization
parameter ✏.
To summarize, our ansatz contains 225 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. In this section, we outline the constrains. The
implementation of them to the two-loop form factor will
be given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood, and importantly, they depend only on lower
loop results and some universal building blocks. For ex-
ample, for planar N = 4 SYM, the IR divergence takes
the simple exponentiation form [? ]:
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which depends only on the number of external on-shell
legs and the cusp and collinear anomalous dimensions.
A convenient way to capture both the IR and collinear

behavior for N = 4 loop quantities is the BDS ansatz [?
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor

F
(2)
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⇣
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1 +B2 G
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⌘
, (8)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

I
(2)
2 = I

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

I
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.
To summarize, our ansatz contains 221 free parameters

which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.
Two such properties are the IR divergences [] and

collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
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(2),BDS not only captures the IR divergence but also has

the nice collinear property such that the finite remainder
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as

I
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which has same IR part and collinear limit behavior as
before.
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FIG. 1: Topologies of maximal number of propagators
for the planar form factor, where the blue leg carries

o↵-shell momentum q and external on-shell leg
configurations are (pi, pj , pk, pl) 2 cyclic(p1, p2, p3, p4).

result takes the simple form as [35]
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where Ba are rational functions of kinematic invariants
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and I
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a can be given in terms of bubble and box integrals

as in (25). The choice of B1 and B2 are not arbitrary: it
satisfies the following relation
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which will be used for two-loop ansatz. [to improve]

Inspired by the one-loop structure, we propose the fol-
lowing ansatz of two-loop form factor

F
(2)
4 = F
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⇣
B1 G

(2)
1 +B2 G
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2

⌘
, (8)

in which the Ba are defined in (5), which are suggested
by the one-loop result. The (p1 $ p3) symmetry of the
form factor requires that:

G
(2)
2 = G

(2)
1 |(p1$p3) . (9)

The loop correction part I(2)
a can be expanded in terms

of a set of two-loop master integrals. Planar topologies
with maximal number of propagators are shown in Fig. 1.
Note that because the operator contain 3 scalar fields, its
associated massive q-leg (denoted by blue color) should
be connected to a 4-vertex. To obtain the full form fac-
tor, one needs to consider all possible insertions of the
color-singlet q-leg. Since the form factor we consider is
a BPS form factor in N = 4 SYM which has uniform
transcendentality degree 4, it is therefore convenient to

choose the master integrals to be of uniformly transcen-
dental (UT) integrals. Such a basis has been constructed
in [16, 17] based on the canonical di↵erential equation
method [36], which we will follow in this paper. An anal-
ysis of the topology shows that the most general ansatz

contains 221 master integrals for each I
(2)
a : Thus we have

an ansatz:

G
(2)
a =

221X

i=1

ca,iI
(2),UT
i , (10)

where ca,i are the coe�cients that are to be solved. Since
both form factor and integrals basis have same degree 4,
the coe�cients ca,i are expected to be pure rational num-
bers independent of dimensional regularization parame-
ter ✏ = (4�D)/2.

To summarize, our ansatz contains 221 free parameters
which is to be solved by imposing physical constraints.

PHYSICAL CONSTRAINTS

As mentioned in the introduction, the central idea of
bootstrap is to constrain the result by general physical
properties. We outline the constrains below, and the im-
plementation of them to the two-loop form factor will be
given in next section.

Two such properties are the IR divergences [] and
collinear factorization [], which are relatively well-
understood. For the two-loop form factor we consider,
a convenient way to capture both the IR and collinear
behavior is the BDS ansatz [? ? ]

I
(2),BDS =

1

2
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(1)(✏)
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where
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the nice collinear property such that the finite remainder
part satisfies
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For the form factor of tr(�3), I(1) contains two kine-
matics factors B1 and B2, the (I(1))2 in I

(2),BDS will
introduce a pole of h13i which cannot be canceled. Using
(7), we define the BDS ansatz part as
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which has same IR part and collinear limit behavior as
before.
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FIG. 3: Masters to be determined by unitarity cuts,
plus their permutations given in (21).

The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Wa, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.

The two-loop remainder has degree 4 and its symbol
can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciAi ⌦Bi ⌦ Ci ⌦Di , (22)

where Ai, . . . , Di are symbol letters. We find that
out of 42 independent letters that appear in master
integrals,

p
�3,1234,

p
�3,1423 and tr5 cancel in the

finite remainder. In more details, we find: (1) the
first-entry letters always correspond to physical poles
ui,i+1 and ui,i+1,i+2, and there are 8 letters; (2) the
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The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

[ remaining parameters are not fixed by IR, collinear,
their combination are finite and have good collinear be-
havior ]

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters
IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].
[µ-term and D-dim cut]

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.
The two-loop remainder has degree 4 and its symbol

can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciWi1 ⌦Wi2 ⌦Wi3 ⌦Wi4 , (22)
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The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

[ remaining parameters are not fixed by IR, collinear,
their combination are finite and have good collinear be-
havior ]

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters
IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].
[µ-term and D-dim cut]

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.
The two-loop remainder has degree 4 and its symbol

can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciWi1 ⌦Wi2 ⌦Wi3 ⌦Wi4 , (22)
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Unitarity cut 𝒪(ϵ1)
tr5 × μ2

Remaining 18 parameters can be 
fixed by knowing master integrals:
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The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Wa, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.

The two-loop remainder has degree 4 and its symbol
can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciAi ⌦Bi ⌦ Ci ⌦Di , (22)

where Ai, . . . , Di are symbol letters. We find that
out of 42 independent letters that appear in master
integrals,

p
�3,1234,

p
�3,1423 and tr5 cancel in the

finite remainder. In more details, we find: (1) the
first-entry letters always correspond to physical poles
ui,i+1 and ui,i+1,i+2, and there are 8 letters; (2) the
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Remaining 18 parameters are 
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FIG. 3: Masters to be determined by unitarity cuts,
plus their permutations given in (21).

The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

[ remaining parameters are not fixed by IR, collinear,
their combination are finite and have good collinear be-
havior ]

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters
IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].
[µ-term and D-dim cut]

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.
The two-loop remainder has degree 4 and its symbol

can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciWi1 ⌦Wi2 ⌦Wi3 ⌦Wi4 , (22)
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where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
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To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters
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FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Wa, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.

The two-loop remainder has degree 4 and its symbol
can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciAi ⌦Bi ⌦ Ci ⌦Di , (22)

where Ai, . . . , Di are symbol letters. We find that
out of 42 independent letters that appear in master
integrals,

p
�3,1234,

p
�3,1423 and tr5 cancel in the

finite remainder. In more details, we find: (1) the
first-entry letters always correspond to physical poles
ui,i+1 and ui,i+1,i+2, and there are 8 letters; (2) the
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Substituting in the master integral results, we have the 
full analytic form in GPLs, and they can be evaluated 
with GiNaC to ‘arbitrary’ high precision: 5

F (2)/F (0)

✏�4 8

✏�3 �10.888626564448543787 + 25.132741228718345908i

✏�2 �31.872672672370517258� 16.558017711981028644i

✏�1 �24.702889082481070673� 2.9923229294749490751i

✏0 �82.902014730676342383� 129.78151092480602830i

TABLE II: Numerical result of the two-loop form factor
up to finite order with the kinematics: {s12 = 241/25,

s23 = �377/100, s34 = 13/50, s14 = �161/100,
s13 = s24 = �89/100, tr5 =

p
1635802/2500i}.

where Wi are symbol letters. We find that out of
42 independent letters that appear in master in-
tegrals,

p
�3,1234,

p
�3,1423 and tr5 cancel in the

finite remainder. In more details, we find: (1) the
first-entry letters always correspond to physical poles
ui,i+1 and ui,i+1,i+2, and there are 8 letters; (2) the
second entry is free from {X1, Y1, Y2, Z, u13, u24}, and
there are 28 letters; (3) third entry contains all 42
letters except u123; (4) the last-entry is free from
{X1, X2, Z, uijk, 1 � uijk, u12 � u123, u23 � u123}, and
there are 22 letters.

From the analytic expression of masters [17], the full
analytic form factor is also ready to obtain in terms of
multiple polylogarithm functions (GPL). In Table II, we
give a numerical data point computed using GiNAC [44]
through the Mathematic interface provided by PolyLog-
Tools [45]. The analytic continuation is described in [17].
We also cross checked the results by using FIESTA [46]
and pySecDec [47].

The expression of the symbol of remainder and the full
function form (in GPL) of the form factor are provided
in ancillary files.

DISCUSSION

We apply a new bootstrap strategy based on an ansatz in
master integral expansion and compute the planar two-
loop four-point form factor with tr(�3

12) operator in N =
4 SYM. This belongs to the non-trivial class of 2-loop
5-particle scattering with one o↵-shell leg.

Unlike the traditional Feynman diagram computation,
the bootstrap strategy allows on construction the final
result by using physical constraint directly. Since the
constraints are taken into account in the intermediate
steps, they guarantee the correctness of the result.

Since the ansatz uses theory-independent basis inte-
grals, the strategy can be used for loop amplitudes and
form factors in general theories. In particular, it can be
used to explain some universality property such as the
maximal transcendentality principle. Applying the above

strategy for the two-loop minimal form factors, it turns
that IR constraint alone are enough to fix the maximally
transcendental parts. And since the maximally transcen-
dental part of IR divergences are universal (i.e. theroy-
independent), this explains the equality between the re-
sults of N = 4 SYM and QCD. Similar argument can be
applied to 2-loop 3-point form factor with stress tensor
multiplet. More details will be given in [].

Our strategy is di↵erent from the symbol bootstrap as
the latter starts from pure symbols, while here we take
the advantage of the known master integrals, thus the
symbol alphabets are known in advance and the inte-
grability conditions are also satisfied. To compute the
master coe�cients, one can use unitarity-cut constraint.
Besides, the result can be used to extract the information
of O(✏) orders.

With further physical constrains, one may expect the
ansatz can be fixed more e�ciently. Powerful constraints
includes the OPE limit [] and Regge limit []. Based on
the progress of OPE limit for form factor [], symbol boot-
strap has been used to construct a three-point form factor
up to five loops in N = 4 []. Form factors in N = 4 SYM
preserves less symmetries comparing to amplitudes. It
would be interesting to see if there is any hidden symme-
try for example, the Q̄-like equation [33] for form factors.
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We can separate the letters that appear in the remain-
der into two parts. The first part are simple u variables
or the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to B2 ⇠ W21 in [16].

To introduce the second part, we define variables:

x±
ijkl =

1 + sij � skl ±
p

�3,ijkl

2sij
, (42)

y±ijkl =
tr±(ijkl)

2sijsil
, (43)

z±±
ijkl = 1 + y±ijkl � x±

lijk , (44)

where �3 appears in 3-massive triangle integral

�3,ijkl = Gram(pi + pj , pk + pl) , (45)

and

tr±(ijkl) = sijskl � siksjl + silsjk ± tr5 , (46)

in which the odd kinematics

tr5 = 4i✏µ⌫⇢�p
µ
1p

⌫
2p

⇢
3p

�
4 (47)

is relate to Gram determinant

�5 = Gram(p1, p2, p3, p4) = tr25 . (48)

Given these definition, we introduce following letters that
will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (49)

X1(pi + pj , pk, pl) =
uijx

+
ijkl � uijl

uijx
�
ijkl � uijl

, (50)

X2(pi + pj , pk + pl) =
x+
ijkl

x�
ijkl

, (51)

Y1(pi, pj , pk, pl) =
tr+(ijkl)

tr�(ijkl)
=

y+ijkl
y�ijkl

, (52)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (53)

Z(pi, pj , pk, pl) =
z++
ijklz

��
ijkl

z+�
ijklz

�+
ijkl

. (54)

They satisfy relations:

X1(pi + pj , pk, pl) = 1/X1(pi + pj , pl, pk) , (55)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(56)

To make connection to the notation of [16]:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (57)

To summarize: there are in total 42 letters given in
(41) and (56) that appear in the remainder function. For
the 221 master integrals, there are four extra letters to
consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (58)

giving in total 46 letters.

D. Momentum twistor and letters

To consider the collinear limit of 4-point form factor,
we consider the momentum twistor variables [37, 38], us-
ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum

twistor space is shown in Fig. 2.
The letters can be represented by momentum twistor
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Z(pi, pj , pk, pl) =
z++
ijklz

��
ijkl

z+�
ijklz

�+
ijkl

. (54)

They satisfy relations:

X1(pi + pj , pk, pl) = 1/X1(pi + pj , pl, pk) , (55)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(56)

To make connection to the notation of [16]:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (57)

To summarize: there are in total 42 letters given in
(41) and (56) that appear in the remainder function. For
the 221 master integrals, there are four extra letters to
consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (58)

giving in total 46 letters.

D. Momentum twistor and letters

To consider the collinear limit of 4-point form factor,
we consider the momentum twistor variables [37, 38], us-
ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum

twistor space is shown in Fig. 2.
The letters can be represented by momentum twistor
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We can separate the letters that appear in the remain-
der into two parts. The first part are simple u variables
or the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to B2 ⇠ W21 in [16].

To introduce the second part, we define variables:

x±
ijkl =

1 + sij � skl ±
p

�3,ijkl

2sij
, (42)

y±ijkl =
tr±(ijkl)

2sijsil
, (43)

z±±
ijkl = 1 + y±ijkl � x±

lijk , (44)

where �3 appears in 3-massive triangle integral

�3,ijkl = Gram(pi + pj , pk + pl) , (45)

and

tr±(ijkl) = sijskl � siksjl + silsjk ± tr5 , (46)

in which the odd kinematics

tr5 = 4i✏µ⌫⇢�p
µ
1p

⌫
2p

⇢
3p

�
4 (47)

is relate to Gram determinant

�5 = Gram(p1, p2, p3, p4) = tr25 . (48)

Given these definition, we introduce following letters that
will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (49)

X1(pi + pj , pk, pl) =
uijx

+
ijkl � uijl

uijx
�
ijkl � uijl

, (50)

X2(pi + pj , pk + pl) =
x+
ijkl

x�
ijkl

, (51)

Y1(pi, pj , pk, pl) =
tr+(ijkl)

tr�(ijkl)
=

y+ijkl
y�ijkl

, (52)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (53)

Z(pi, pj , pk, pl) =
z++
ijklz

��
ijkl

z+�
ijklz

�+
ijkl

. (54)

They satisfy relations:

X1(pi + pj , pk, pl) = 1/X1(pi + pj , pl, pk) , (55)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(56)

To make connection to the notation of [16]:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (57)

To summarize: there are in total 42 letters given in
(41) and (56) that appear in the remainder function. For
the 221 master integrals, there are four extra letters to
consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (58)

giving in total 46 letters.

D. Momentum twistor and letters

To consider the collinear limit of 4-point form factor,
we consider the momentum twistor variables [37, 38], us-
ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum

twistor space is shown in Fig. 2.
The letters can be represented by momentum twistor
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We can separate the letters that appear in the remain-
der into two parts. The first part are simple u variables
or the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to B2 ⇠ W21 in [16].

To introduce the second part, we define variables:

x±
ijkl =

1 + sij � skl ±
p

�3,ijkl

2sij
, (42)

y±ijkl =
tr±(ijkl)

2sijsil
, (43)

z±±
ijkl = 1 + y±ijkl � x±

lijk , (44)

where �3 appears in 3-massive triangle integral

�3,ijkl = Gram(pi + pj , pk + pl) , (45)

and

tr±(ijkl) = sijskl � siksjl + silsjk ± tr5 , (46)

in which the odd kinematics

tr5 = 4i✏µ⌫⇢�p
µ
1p

⌫
2p

⇢
3p

�
4 (47)

is relate to Gram determinant

�5 = Gram(p1, p2, p3, p4) = tr25 . (48)

Given these definition, we introduce following letters that
will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (49)

X1(pi + pj , pk, pl) =
uijx

+
ijkl � uijl

uijx
�
ijkl � uijl

, (50)

X2(pi + pj , pk + pl) =
x+
ijkl

x�
ijkl

, (51)

Y1(pi, pj , pk, pl) =
tr+(ijkl)

tr�(ijkl)
=

y+ijkl
y�ijkl

, (52)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (53)

Z(pi, pj , pk, pl) =
z++
ijklz

��
ijkl

z+�
ijklz

�+
ijkl

. (54)

They satisfy relations:

X1(pi + pj , pk, pl) = 1/X1(pi + pj , pl, pk) , (55)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(56)

To make connection to the notation of [16]:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (57)

To summarize: there are in total 42 letters given in
(41) and (56) that appear in the remainder function. For
the 221 master integrals, there are four extra letters to
consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (58)

giving in total 46 letters.

D. Momentum twistor and letters

To consider the collinear limit of 4-point form factor,
we consider the momentum twistor variables [37, 38], us-
ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum

twistor space is shown in Fig. 2.
The letters can be represented by momentum twistor
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We can separate the letters that appear in the remain-
der into two parts. The first part are simple u variables
or the linear combinations of them:

u12, u13, u14, u23, u24, u34,

u123, u124, u134, u234,

u123 � u12, u123 � u23, u124 � u12, u124 � u14,

u134 � u14, u134 � u34, u234 � u23, u234 � u34,

1� u123, 1� u124, 1� u134, 1� u234 .

(41)

They correspond to B2 ⇠ W21 in [16].

To introduce the second part, we define variables:

x±
ijkl =

1 + sij � skl ±
p

�3,ijkl

2sij
, (42)

y±ijkl =
tr±(ijkl)

2sijsil
, (43)

z±±
ijkl = 1 + y±ijkl � x±

lijk , (44)

where �3 appears in 3-massive triangle integral

�3,ijkl = Gram(pi + pj , pk + pl) , (45)

and

tr±(ijkl) = sijskl � siksjl + silsjk ± tr5 , (46)

in which the odd kinematics

tr5 = 4i✏µ⌫⇢�p
µ
1p

⌫
2p

⇢
3p

�
4 (47)

is relate to Gram determinant

�5 = Gram(p1, p2, p3, p4) = tr25 . (48)

Given these definition, we introduce following letters that
will occur in the remainder:

U(pi + pj , pk + pl) = uiklujkl � ukl , (49)

X1(pi + pj , pk, pl) =
uijx

+
ijkl � uijl

uijx
�
ijkl � uijl

, (50)

X2(pi + pj , pk + pl) =
x+
ijkl

x�
ijkl

, (51)

Y1(pi, pj , pk, pl) =
tr+(ijkl)

tr�(ijkl)
=

y+ijkl
y�ijkl

, (52)

Y2(pi, pj , pk, pl) =
y+ijkl + 1

y�ijkl + 1
, (53)

Z(pi, pj , pk, pl) =
z++
ijklz

��
ijkl

z+�
ijklz

�+
ijkl

. (54)

They satisfy relations:

X1(pi + pj , pk, pl) = 1/X1(pi + pj , pl, pk) , (55)

Y1(pi, pj , pk, pl) =
1

Y1(pk, pj , pi, pl)
=

1

Y1(pj , pk, pl, pi)
,

Y2(pi, pj , pk, pl) =
1

Y2(pi, pl, pk, pj)

= Y2(pk, pj , pi, pl)Y1(pi, pj , pk, pl),

Z(pi, pj , pk, pl) = Z(pk, pl, pi, pj)

= Z(pj , pi, pk, pl) = Z(pi, pj , pl, pk).

We list the letters that occur in our result explicitly:

X1(p1 + p2, p3, p4), X1(p2 + p3, p4, p1),

X1(p1 + p4, p2, p3), X1(p3 + p4, p1, p2),

X2(p1 + p2, p3 + p4), X2(p2 + p3, p1 + p4),

X2(p1 + p4, p2 + p3), X2(p3 + p4, p1 + p2),

U(p1 + p2, p3 + p4), U(p2 + p3, p1 + p4),

U(p1 + p4, p2 + p3), U(p3 + p4, p1 + p2),

Y1(p1, p2, p3, p4), Y1(p1, p3, p2, p4)

Y2(p1, p3, p2, p4), Y2(p3, p1, p2, p4),

Y2(p1, p3, p4, p2), Y2(p3, p1, p4, p2),

Z(p1, p2, p3, p4), Z(p3, p2, p1, p4).

(56)

To make connection to the notation of [16]:

X1 : {W37,W38,W39,W54},

X2 : {W33,W34,W35,W36},

U : {W22,W23,W24,W51},

Y1(p1, p2, p3, p4) : W40,

Z(p3, p2, p1, p4) : W47,

Y2, Y1(p1, p3, p2, p4) : W41 ⇠ W46. (57)

To summarize: there are in total 42 letters given in
(41) and (56) that appear in the remainder function. For
the 221 master integrals, there are four extra letters to
consider

q2 ,
p
�3,1234 ,

p
�3,1423 , tr5 , (58)

giving in total 46 letters.

D. Momentum twistor and letters

To consider the collinear limit of 4-point form factor,
we consider the momentum twistor variables [37, 38], us-
ing the periodic Wilson line picture [39–41].
The periodic Wilson line configuration in momentum

twistor space is shown in Fig. 2.
The letters can be represented by momentum twistor

Most 
complicated 

letters:

4

2

3

1

4

(a) dBub

1 2

3

4

(b) dBub

2

3

4

1

`1

(c) BPb

2

3

4

1 `1

(d) TP

1

2 3

4

`1 `2

(e) dBox2c

FIG. 3: Masters to be determined by unitarity cuts,
plus their permutations given in (21).

The computation is similar to the collinear limit. And
with this step, the remaining freedom of degree is 31.

At function level

As we have just seen, the constraints at symbol level re-
duce the ansatz significantly. Since the symbol does not
concern the terms that contain transcendental numbers
such as ⇡, ⇣n, possible constraints may not be captured
by using symbol alone. For these, we need to consider the
full functional form of the master integrals, which have
also been computed in [17]. Since we only need to fix the
coe�cients, practically it is convenient to do numerical
computation with high enough precision; see next section
for more discussion on numerics. By repeating the above
steps at function level, indeed new constraints are found:
after IR, collinear and spurious pole constrains, the de-
grees of freedom are reduce to 26, 25, 18, respectively.

To determine the final 18 parameters, it is enough to
fix the coe�cients of following masters

IUT
dBub(2, 3; 2, 3) : [1], IUT

dBub(2, 3; 2, 3, 4) : [1],

IUT
BPb(1, 2, 3, 4) : [2], IUT

BPb(4, 1, 2, 3) : [2] ,

IUT
dBox2c(1, 2, 3, 4) : [2], IUT

dBox2c(4, 1, 2, 3) : [2] ,

IUT
TP (i, j, k, l) : [8] , (21)

where (i, j, k, l) include all cyclic permutations of exter-
nal legs (1, 2, 3, 4), and the number in square bracket
indicates the number of parameters fixed by the given
topology. The topologies of these integrals are shown in
Fig. 3.

We point out that the double-box integrals in Fig. 3(e)
are of O(✏) order. Therefore, if we are only interested in
getting the ✏0 order of the form factor, the coe�cients of
IUT
dBox2c(i, j, k, l) are not needed, leaving only 14 parame-
ters.

[ remaining parameters are not fixed by IR, collinear,
their combination are finite and have good collinear be-
havior ]

(1) (2) (3)

FIG. 4: Unitarity cuts.

Constraints Parameters left

Symmetry of (p1 $ p3) 221

IR (Symbol) 82

Collinear limit (Symbol) 38

Spurious pole (Symbol) 31

IR (Function) 26

Spurious pole (Funcion) 25

Collinear limit (Funcion) 18

If keeping only to ✏0 order 14

Simple unitarity cuts 0

TABLE I: Solving for parameters via constraints.

Unitarity constraint

To determine the remaining parameters, we will ap-
ply unitarity cuts. The two double-bubble masters
IUT
dBub(2, 3; 2, 3) and IUT

dBub(2, 3; 2, 3, 4) can be fixed by
two-double cuts (1) and (2) in Fig. 4 respectively. All re-
maining masters IUT

BPb, I
UT
TP , IUT

dBox2c can be fixed by the
single type of cut (3) in Fig. 4.
We summarize the steps of applying constraints and

the remaining parameters after each constraint in Table I.
All master coe�cients, up to the spinor factors Ba, are
small rational numbers and the full list are provided in
Supplemental material.
As cross checks, we have also applied D-dimensional

unitarity cuts for a spanning set of cuts and find full
consistency with the bootstrap result [? ].
[µ-term and D-dim cut]

FULL FORM FACTOR AND REMAINDER

Given the full result of master expansion, we now discuss
the expression after substituting the express of masters.
The remainder of form factors in N = 4 preserve only

scale invariance and are function of dimensionless ratios
of Mandelstam variables [19]. We introduce ratio vari-
ables uij := sij/q2, and only five of them are indepen-
dent.
The two-loop remainder has degree 4 and its symbol

can be expressed in terms of tensor:

Sym(R(2)
4 ) =

X

i

ciWi1 ⌦Wi2 ⌦Wi3 ⌦Wi4 , (22)



Technical points:  
collinear limit of form factors

Dual momentum space 3

Z1

Z2

Z3

Z1

Z2

Z3

Z̄2

Z̄3

x1
x2

x3

x1
x2

x3

x̄1
x̄2

x̄3

Z̄1

Z4 Z4 Z̄4

x4 x4 x̄4

FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

the new I
(2),BDS has same infrared subtraction part and

collinear limit behavior as before.
A further simple constraint is that all spurious poles

(i.e. unphysical poles) must cancel in the full result. As
for the form factor (8) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing twoWa terms.

They above constraints usually can fix a significant
part of the parameters. For example, for two-loop three-
point form factor of stress-tensor operator in N = 4 [?
], they are su�cient to fix the full results. In general
more complicated cases, there are remaining parameters
which ask for further constraints. Powerful constraints
includes the OPE limit and Regge limit, which may be
roughly understood as the higher order constraints in the
collinear limit expansion. Using symbol bootstrap, this
has been used to construct a up to five-loop three-point
form factor in N = 4 [].

While such constraints are not yet available for the
four-point form factor under study, we will use another
powerful tool – the unitarity cut constraints []. Unitar-
ity cut method is a powerful universal method which in
principle can determine the full result. However, here we
would like to stress that after using the above IR and
collinear constraints, only few simple unitarity cuts are
needed to fix the remaining free parameters, as we will
shown in the next section.

Collinear limit of form factors

Before apply the above constraints, we discuss the
collinear limit of the kinematic variables for the form fac-
tor. Collinear limit can be conveniently defined dual mo-
mentum space picture and momentum twistor variables
[3, 4]. For the form factor we study, it can be represented
by a periodic Wilson line in the dual momentum (twistor)
space [5–7], where xi are dual coordinates defined as

xi � xi+1 = pi = �i
e�i , xi � xi = xi � x̄i = q . (16)

and momentum twistors can be defined as

ZA
i = (�↵

i , µ
�
i ) , µ�

i = x↵�
i · �i↵ = x↵�

i+1 · �i↵ . (17)

The configuration for four-point form factor is shown in
Figure 2. For reader who is not familiar with the nota-
tion, an introduction of the dual picture and momentum
twistor variables is given in Supplemental material.

Consider the collinear limit p4 k p3, it is convenient to
parametrize twistor variable Z4 as:

Z4 = Z3+ �
h1̄2̄13i

h1̄2̄12i
Z2+ ⌧�

h2̄123i

h1̄2̄12i
Z̄1+ ⌘

h1̄123i

h1̄2̄12i
Z̄2 , (18)

where the ratio of four brackets are introduced to balance
the twistor weight. The collinear limit can be achieved
by taking first ⌘ ! 0, followed by � ! 0. The parameter
⌧ is finite which physically corresponds to the momentum
fraction shared by particle 4 in the limit. This is similar
to the amplitudes case used in [8]. Because of the pe-
riodicity condition, same limit applies simultaneously to
Z4, Z̄4. And the collinear limit of spinor variables using
(17) satisfies a similar relation as

�4 = �3 + �
h1̄2̄13i

h1̄2̄12i
�2 + ⌧�

h2̄123i

h1̄2̄12i
�̄1 + ⌘

h1̄123i

h1̄2̄12i
�̄2 . (19)

Given these parametrization, one can take the collinear
limit of any kinematic variables of four-point form fac-
tors. The explicit collinear limit for all letter variables
are given in Supplemental material
Finally we point out that the s24 spurious pole cancel-

lation can be studied by taking p4 k p2 which is similar
to collinear limit as above.

SOLVING THE ANSATZ

Now we apply the constraints to solve for the coe�cients
of the ansatz in (9). To simplify the discussion of each
step, we will first apply of the constraints at symbol level
and then at the level of full functions.

At symbol level

The symbol was first introduced to simplify the two-
loop six-gluon amplitudes [9]. The symbol of all two-loop
masters have been given in []. Plugging them into our
ansatz (8), we obtain an ✏-expansion form of the form
factor:

Sym(F (2)
4 ) =

X

k�0

✏k�4
X

↵(c)⌦k
i=1 Ri , (20)

where are Ri are rational function of Mandelstam vari-
ables and are classified as symbol letters. [more on letters]
First, from the BDS formula and one-loop data, one

computes the divergent part of 1/✏m,m = 4, 3, 2, 1. By
matching their symbol with our ansatz, we can solve for
⇠ 100 parameters.
Next, we take the collinear limits for the symbol of the

finite part which should match with the two-loop three-
point result as
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4

p4 k p3
��������!

or p4 k p1
R
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FIG. 2: Dual periodic Wilson line configuration for the
4-point form factor in momentum twistor space.

the new I
(2),BDS has same infrared subtraction part and

collinear limit behavior as before.
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(i.e. unphysical poles) must cancel in the full result. As
for the form factor (8) we consider, the 1/h24i is a spuri-
ous pole, which must cancel after summing twoWa terms.
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�
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lation can be studied by taking p4 k p2 which is similar
to collinear limit as above.

SOLVING THE ANSATZ

Now we apply the constraints to solve for the coe�cients
of the ansatz in (9). To simplify the discussion of each
step, we will first apply of the constraints at symbol level
and then at the level of full functions.

At symbol level

The symbol was first introduced to simplify the two-
loop six-gluon amplitudes [9]. The symbol of all two-loop
masters have been given in []. Plugging them into our
ansatz (8), we obtain an ✏-expansion form of the form
factor:
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where are Ri are rational function of Mandelstam vari-
ables and are classified as symbol letters. [more on letters]
First, from the BDS formula and one-loop data, one

computes the divergent part of 1/✏m,m = 4, 3, 2, 1. By
matching their symbol with our ansatz, we can solve for
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Technical points:  
numerical computation
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as

u12 =
x2
13

x2
11̄

=
h4123i h41̄i

h4141̄i h23i
, u23 =

x2
24

x2
22̄

=
h1234i h1̄2̄i

h121̄2̄i h34i
,

u34 =
x2
31̄

x2
33̄

=
h2341̄i h2̄3̄i

h232̄3̄i h41̄i
, u14 =

x2
42̄

x44
=

h341̄2̄i h34i

h3434i h1̄2̄i
,

u123 =
x2
14

x2
11̄

=
h4134i h41̄i

h4141̄i h34i
, u234 =

x2
21̄

x22̄
=

h1241̄i h1̄2̄i

h121̄2̄i h41̄i
,

u341 =
x2
32̄

x2
33̄

=
h231̄2̄i h2̄3̄i

h232̄3̄i h1̄2̄i
, u412 =

x2
43

x2
44

=
h3423i h34i

h3434i h23i
.

(59)
and we know

y+ijkl =
tr+(ijkl)

2sijsil
=

hl|k|j]

hl|i|j]
, y�ijkl =

tr�(ijkl)

2sijsil
=

hj|k|l]

hj|i|l]
,

(60)
so that

y+1234 =
h1234i

h4123i
, y�1234 =

ujkukl

u

h2341̄i

h341̄2̄i
,

y+1324 =
1

W2

✓
u123 � u12

u23
� 1

◆�1

, y+3124 = y+1324
��
p1$p3

,

y+1342 =
1

W1

✓
u134 � u14

u34
� 1

◆�1

, y+3142 = y+1342
��
p1$p3

,

y�ijkl =
ujkukl

uijuil

⇣
y+ijkl

⌘�1
,

(61)
each uij and uijk can expressed as momentum twistor.

E. Collinear limit of letters

Following the discussion in the main text, here we give
the collinear limit for the kinematic variables and the
letters. For convenience of notation, we introduce a new
variable t as:

⌧ =
t� 1

t

s12 + s13
s12 + s23

. (62)

It is easy to see that h34i / �, [34] / ⌘
� . Keep the lead-

ing term in the collinear limit, the behavior of u variables
at the collinear limit as follow

u12 ! û12, u23 ! (1� t)û23,

u14 ! tû13 u34 ! �⌘û13û23,

u24 ! tû23, u13 ! (1� t)û13,

u234 ! û23, u123 ! 1� t(û13 + û23),

u341 ! û13, u412 ! û12 + t(û13 + û23), (63)

where {û12, û23, û13} are the variables for the 3-point
form factor obtained in the collinear limit.
The collinear limit of x±

ijkl seems a little subtle, since
�3 can not be treated as momentum twistor. Fortu-

nately, their limit are finite

�3,1234 !(1� û12)
2,

�3,1423 !(1 +
û13

1 + t
� û23)

2
�

4û13

1 + t
,

(64)

so that all the limit of x±
ijkl is finite. Only �3,1234 can

turn to a square when p3 k p4 means x±
1234 and x±

3412 will
free from square root, and it worth notices that

x�
3412 !

1

1� û12
+O(⌘) . (65)

And a non-trivial relation we will use is

X1(pi + pj , pk, pl)X1(pk + pl, pi, pj)

X2(pi + pj , pk + pl)X2(pk + pl, pi + pj)

pj k pk
�����! 1 .

(66)
For y±ijkl, because of tr±(1234) ! 0 when p3 k p4, one

needs to take the collinear limit carefully using momen-
tum twistor variables, which give:

y+1234 !
(1� t)�

t

(û12 + û13)û23

û12
, y�1234 ! �

⌘

�

û23

û12 + û13
,

y+1324 !
û23

û13
, y�1324 !

û23

û13
,

y+3124 ! �
t

(1� t)�

û12

û13(û12 + û13)
, y�3124 !

�

⌘

û12 + û13

û13
,

y+1342 !
t⌘

(1� t)�

û23

û12 + û13
, y�1342 ! ��

(û12 + û13)û23

û12
,

y+3142 !
t

1� t
, y�3142 !

t

1� t
. (67)

F. On function variables and letters

The function form of master integrals has been ob-
tained in GPL in [17]. The GPLs are given in terms of
a new set of variables {x, S12, S23, S34, S45, S51}. The
new variables are related to external five momenta,
{q1, q2, q3, q4, q5} with q1 massive, through following re-
lations:

q21 = (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 ,

s̃34 = S51x ,

s̃45 = S12x
2 ,

s̃15 = (1� x)S45 + S23x . (68)

where s̃ij = (qi + qj)2.
To evaluate the master integrals out of Euclidean re-

gions, proper analytic continuation is needed. The rule
is gives each positive kinematics a small positive imag-
inary part i⌘x, then it will lead to two solutions of
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the collinear limit for the kinematic variables and the
letters. For convenience of notation, we introduce a new
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û13(û12 + û13)
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F. On function variables and letters

The function form of master integrals has been ob-
tained in GPL in [17]. The GPLs are given in terms of
a new set of variables {x, S12, S23, S34, S45, S51}. The
new variables are related to external five momenta,
{q1, q2, q3, q4, q5} with q1 massive, through following re-
lations:

q21 = (1� x)(S45 � S12x) ,

s̃12 = (S34 � S12(1� x))x ,

s̃23 = S45 ,

s̃34 = S51x ,

s̃45 = S12x
2 ,

s̃15 = (1� x)S45 + S23x . (68)

where s̃ij = (qi + qj)2.
To evaluate the master integrals out of Euclidean re-

gions, proper analytic continuation is needed. The rule
is gives each positive kinematics a small positive imag-
inary part i⌘x, then it will lead to two solutions of

Master integrals are evaluated in multiple polylogarithm.

five-point two-loop Master Integrals with massless internal propagators and one external
particle carrying a space- or time-like momentum, P1 in Fig. 1, as well as the full set of
planar five-point two-loop massless Master Integrals with light-like external momenta [39].
Very recently results on all planar families have been reported in reference [44]. In this
paper we present fully analytic results in terms of poly-logarithmic functions for all planar
families, based on the Simplified Differential Equations approach.

In section 2, we define the scattering kinematics and the corresponding integral repre-
sentations of the Master Integrals and derive the form of the canonical differential equation
in the SDE approach. The derivation of the boundary terms and the solution for all Master
Integrals in terms of Goncharov poly-logarithms (GP), is presented in section 3. In section
4 we show how to obtain numerical results from our analytic expressions in all kinematical
regions. Finally in section 5 we summarize our findings and discuss future applications
with emphasis on the computation of the remaining non-planar five-point two-loop Master
Integrals.

2 Planar two-loop five-point Master Integrals with one off-shell leg

There are three families of Master Integrals, labelled as P1, P2 and P3, see Fig. 1, associated
to planar two-loop five-point amplitudes with one off-shell leg. We adopt the definition of
the scattering kinematics following [44], where external momenta qi, i = 1 . . . 5 satisfyP5

1 qi = 0, q21 ⌘ p1s, q2i = 0, i = 2 . . . 5, and the six independent invariants are given by
{q

2
1, s12, s23, s34, s45, s15}, with sij := (qi + qj)

2.
In the SDE approach [43] the momenta are parametrized by introducing a dimensionless

variable x, as follows

q1 ! p123 � xp12, q2 ! p4, q3 ! �p1234, q4 ! xp1 (2.1)

where the new momenta pi, i = 1 . . . 5 satisfy now
P5

1 pi = 0, p2i = 0, i = 1 . . . 5, whereas
pi...j := pi+. . .+pj . The set of independent invariants is given by {S12, S23, S34, S45, S51, x},
with Sij := (pi + pj)

2. The explicit mapping between the two sets of invariants is given by

p1s = (1� x)(S45 � S12x), s12 = (S34 � S12(1� x))x, s23 = S45, s34 = S51x,

s45 = S12x
2
, s15 = S45 + (S23 � S45)x (2.2)

and as usual the x = 1 limit corresponds to the on-shell kinematics.
The corresponding Feynman Integrals are defined through

G
P1
a1···a11 := e

2�E✏
Z

d
d
k1

i⇡d/2

d
d
k2

i⇡d/2

1

k
2a1
1 (k1 + q1)2a2(k1 + q12)2a3(k1 + q123)2a4

⇥
1

k
2a5
2 (k2 + q123)2a6(k2 + q1234)2a7(k1 � k2)2a8(k1 + q1234)2a9(k2 + q1)2a10(k2 + q12)2a11

,

(2.3)
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G
P2
a1···a11 := e

2�E✏
Z

d
d
k1

i⇡d/2

d
d
k2

i⇡d/2

1

k
2a1
1 (k1 � q1234)2a2(k1 � q234)2a3(k1 � q34)2a4

⇥
1

k
2a5
2 (k2 � q34)2a6(k2 � q4)2a7(k1 � k2)2a8(k2 � q1234)2a9(k2 � q234)2a10(k1 � q4)2a11

,

(2.4)

G
P3
a1···a11 := e

2�E✏
Z

d
d
k1

i⇡d/2

d
d
k2

i⇡d/2

1

k
2a1
1 (k1 + q2)2a2(k1 + q23)2a3(k1 + q234)2a4

⇥
1

k
2a5
2 (k2 + q234)2a6(k2 � q1)2a7(k1 � k2)2a8(k1 � q1)2a9(k2 + q2)2a10(k2 + q23)2a11

, (2.5)

where qi...j := qi + . . .+ qj .
The P1 family consists of 74 Master integrals. For P2 and P3 the corresponding numbers

are 75 and 86. This can easily be verified using standard IBP reduction software, such as
FIRE6 [45] and Kira [46, 47]. The top-sector integrals are shown in Fig. 2.

xp1

xp2

�p1234

p123 � xp12

p4

xp1 xp2

�p1234

p123 � xp12

p4

xp2

p123 � xp12

xp1

p4

�p1234

Figure 2. The two-loop diagrams representing the top-sector of the planar pentabox family P1,
P2 and P3. All external momenta are incoming.

2.1 Canonical basis and Differential Equations

In order to express all integrals given by Eqs.(2.3 – 2.5), the easiest way is to define a basis
that satisfies a canonical differential equation. By basis we mean a combination of Feynman
Integrals with coefficients depending on the set of invariants and the dimensionality of space-
time d = 4�2✏. Let us assume that such a basis is known, then the DE is written in general
as

d~g = ✏

X

a

d log (Wa) M̃a~g (2.6)

where ~g represents a vector containing all elements of the canonical basis, Wa are functions
of the kinematics and M̃a are matrices independent of the kinematical invariants, whose
matrix elements are pure rational numbers. Notice that Eq. (2.6) is a multi-variable equa-
tion and in the case under consideration the differentiation is understood with respect to
the six-dimensional array of independent kinematical invariants, {q21, s12, s23, s34, s45, s15}.
Since Wa are in general algebraic functions of the kinematical invariants a straightforward
integration of Eq. (2.6) in terms of generalized poly-logarithms is not an easy task.
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A different set of kinematics are chosen.
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We present a first analytic computation of a two-loop 
five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master 
integral expansion, which applies efficiently for this case.



Summary and outlook

We present a first analytic computation of a two-loop 
five-point scattering with one color-singlet off-shell leg.

Consider more general observables.

Study the new constraints beyond collinear limit, such as 
OPE limit, Regge limit.

Outlook:

We develop a new bootstrap strategy based on master 
integral expansion, which applies efficiently for this case.

Hidden analytic structure, such as Qbar-like eqn.
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Unitarity cuts

Consider one-loop amplitudes:

What we really want



Unitarity cuts

We can perform unitarity cuts:

and from tree products, we derive the coefficients more directly.

Cutkosky cutting rule:


