Bootstrapping a two－loop four－point form factor

Gang Yang

ITP，CAS

Based on the work to appear with Yuanhong Guo（郭圆宏），Lei Wang（王磊）

Generic strategy of loop computation

Feynman integrals

Feynman diagrams,
On-shell unitarity method, \ldots

\sum (integrand)

Solving integrals, functional identities to simplify the result, ...
\sum functions

Generic strategy of loop computation

Complicated intermediate expressions
Compact analytic form

Two-loop six-gluon amplitudes in $\mathrm{N}=4$

[Del Duca, Duhr, Smirnov 2010]

17 page complicated functions

Result can be remarkably simple

17 pages =

[Goncharov, Spradlin, Vergu, Volovich 2010]

$$
\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{1}{24} J^{4}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

a line result in terms of classical polylogarithms!

Such simplicity is totally unexpected using traditional Feynman diagrams!

Mathematical tool: "symbol"

From function to "Symbol"

Recursion definition of "Symbol":

$$
\mathrm{d} f_{k}=\sum_{i} f_{k-1}^{i} \operatorname{dLog}\left(R_{i}\right), \quad \operatorname{Symbol}\left(f_{k}\right)=\sum_{i} \operatorname{Symbol}\left(f_{k-1}^{i}\right) \otimes R_{i}
$$

Function	Differential	symbol
R	$d R$	0
$\log (R)$	$d \log (R)$	R
$\log (R 1) \log (R 2)$	$\log R 1$ dlogR2+logR2 dlogR1	$R 1 \otimes R 2+R 2 \otimes R 1$
$L i 2(R)$	$L i 1(R) d \log R$	$-(1-R) \otimes R$

Symbol

Algebraic relations:

$$
\begin{aligned}
& R_{1} \otimes \ldots \otimes\left(c R_{i}\right) \otimes \ldots \otimes R_{n}=R_{1} \otimes \ldots \otimes R_{i} \otimes \ldots \otimes R_{n} \quad c \text { is const } \\
& R_{1} \otimes \ldots \otimes\left(R_{i} R_{j}\right) \otimes \ldots \otimes R_{n}=R_{1} \otimes \ldots \otimes R_{i} \otimes \ldots \otimes R_{n}+R_{1} \otimes \ldots \otimes R_{j} \otimes \ldots \otimes R_{n}
\end{aligned}
$$

Make it easy to prove non-trivial identities, e.g.:

$$
\begin{aligned}
& \operatorname{Li}_{2}(z)=-\operatorname{Li}_{2}(1-z)-\log (1-z) \log (z)+\frac{\pi^{2}}{6} \\
& \operatorname{Li}_{2}(z)=-\operatorname{Li}_{2}\left(\frac{1}{z}\right)-\frac{1}{2} \log ^{2}(-z)-\frac{\pi^{2}}{6} / ; z \notin(0,1) \\
& \mathrm{Li}_{2}\left(\frac{x}{1-y}\right)+\mathrm{Li}_{2}\left(\frac{y}{1-x}\right)-\mathrm{Li}_{2}(x)-\mathrm{Li}_{2}(y)-\mathrm{Li}_{2}\left(\frac{x y}{(1-x)(1-y)}\right)=\log (1-x) \log (1-y)
\end{aligned}
$$

Applications

Complicated expression

Simple expression

Applications

Complicated expression

Simple expression

A better strategy:

Derive symbol directly without knowing function in advance.
Bootstrap strategy Dixon, Drummond, Henn 2011,....

We will apply a different strategy based on master integrand expansion.

Outline

Background and Motivation

New bootstrap strategy

Two-loop four-point form factor

Summary and outlook

Bootstrap

Bootstrap

S-matrix program

The Analytic S-Matrix

"One should try to calculate S-matrix elements directly, without the use of field quantities, by requiring them to have some general properties that ought to be valid,"

- Eden et.al, "The Analytic S-matrix", 1966

Conformal bootstrap

Compute anomalous dimensions and correlation functions

Alexander M. Polyakov
2-dim
\longrightarrow
D-dim

Bootstrap of amplitudes

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

Bootstrap of amplitudes

Symbol bootstrap

Computing the finite remainder functions using symbol techniques.

The new strategy we will use

"moaster oootstrap"

Application:
 two-loop four-point form factor

Form factors

We consider two-loop four-point form factor in N=4 SYM:

$$
\mathscr{F}_{O, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

It is a $\mathrm{N}=4$ version of Higgs+4-parton amplitudes in QCD:

$$
\xrightarrow{m_{t} \rightarrow \infty} \quad \mathcal{L}_{\text {eff }}=\hat{C}_{0} H \operatorname{tr}\left(F^{2}\right)+\mathcal{O}\left(\frac{1}{m_{\mathrm{t}}^{2}}\right)
$$

Form factors

We consider two-loop four-point form factor in N=4 SYM:

$$
\mathscr{F}_{\Theta, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

It is a $\mathrm{N}=4$ version of Higgs+4-parton amplitudes in QCD:

Five-point two-loop amplitudes are at frontier and under intense study:
There have been many massless five-point two-loop amplitudes obtained in analytic form. See e.g. Abreu, Dormans, Cordero, Ita. Page 2019 and many others....

For five-point two-loop amplitudes with one massive leg, so far only one result is available:

$$
u \bar{d} \rightarrow W^{+} b \bar{b}
$$

Badger, Hartanto, Zoia 2021

Form factors

Our result provides a first two-loop five-point example with a color-singlet off-shell leg.

$$
\begin{aligned}
& \mathscr{F}_{O, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle \\
& \left\{s_{12}, s_{23}, s_{34}, s_{14}, s_{13}, s_{24}, \operatorname{tr}_{5}\right\} ; \quad \operatorname{tr}_{5}=4 i \varepsilon_{p_{1} p_{2} p_{3} p_{4}}
\end{aligned}
$$

Planar master integrals have been evaluated recently.
Abreu, Ita, Moriello, Page, Tschernow, Zeng 2020
Canko, Papadopoulos, Syrrakos 2020

Ansatz

$$
\mathscr{F}_{\mathcal{O}, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

Tree-level: $\quad \mathcal{F}_{4}^{(0)}=\mathcal{F}_{\operatorname{tr}\left(\phi_{12}^{3}\right)}^{(0)}\left(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^{+}\right)=\frac{\langle 31\rangle}{\langle 34\rangle\langle 41\rangle}$.
One-loop:

$$
\begin{aligned}
\mathcal{F}_{4}^{(1)} & =\mathcal{F}_{4}^{(0)} \mathcal{I}^{(1)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(1)}+B_{2} \mathcal{G}_{2}^{(1)}\right) \\
B_{1} & =\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{2}=\frac{\langle 14\rangle\langle 23\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{1}+B_{2}=1
\end{aligned}
$$

$$
\left(\sum_{a} B_{a} \mathcal{G}_{a}^{(1)}\right)^{2}-\left[\sum_{a} B_{a}\left(\mathcal{G}_{a}^{(1)}\right)^{2}\right] \propto B_{1} B_{2}\left(\mathcal{G}_{1}^{(1)}-\mathcal{G}_{2}^{(1)}\right)
$$

Ansatz

$$
\mathscr{F}_{\mathcal{O}, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

Tree-level: $\quad \mathcal{F}_{4}^{(0)}=\mathcal{F}_{\text {tr }\left(\phi_{1}^{3}\right)}^{(0)}\left(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^{+}\right)=\frac{\langle 31\rangle}{\langle 34\rangle\langle 41\rangle}$.
One-loop:

$$
\begin{gathered}
\mathcal{F}_{4}^{(1)}=\mathcal{F}_{4}^{(0)} \mathcal{I}^{(1)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(1)}+B_{2} \mathcal{G}_{2}^{(1)}\right) \\
B_{1}=\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{2}=\frac{\langle 14\rangle\langle 23\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{1}+B_{2}=1
\end{gathered}
$$

Two-loop ansatz:

$$
\begin{aligned}
& \mathcal{F}_{4}^{(2)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(2)}+B_{2} \mathcal{G}_{2}^{(2)}\right) \\
& \mathcal{G}_{a}^{(2)}=\sum_{i=1}^{221} c_{a, i} I_{i}^{(2), \mathrm{UT}}, \quad \mathcal{G}_{2}^{(2)}=\left.\mathcal{G}_{1}^{(2)}\right|_{\left(p_{1} \leftrightarrow p_{3}\right)}
\end{aligned}
$$

Ansatz

$$
\mathscr{F}_{\mathcal{O}, 4}=\int d^{4} x e^{-i q \cdot x}\left\langle 1_{\phi}, 2_{\phi}, 3_{\phi} 4^{+}\right| \operatorname{tr}\left(\phi^{3}\right)(x)|0\rangle
$$

Tree-level: $\quad \mathcal{F}_{4}^{(0)}=\mathcal{F}_{\text {tr }\left(\phi_{1}^{3}\right)}^{(0)}\left(1^{\phi}, 2^{\phi}, 3^{\phi}, 4^{+}\right)=\frac{\langle 31\rangle}{\langle 34\rangle\langle 41\rangle}$.
One-loop:

$$
\begin{gathered}
\mathcal{F}_{4}^{(1)}=\mathcal{F}_{4}^{(0)} \mathcal{I}^{(1)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(1)}+B_{2} \mathcal{G}_{2}^{(1)}\right) \\
B_{1}=\frac{\langle 12\rangle\langle 34\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{2}=\frac{\langle 14\rangle\langle 23\rangle}{\langle 13\rangle\langle 24\rangle}, \quad B_{1}+B_{2}=1
\end{gathered}
$$

Two-loop ansatz:

$$
\begin{aligned}
& \mathcal{F}_{4}^{(2)}=\mathcal{F}_{4}^{(0)}\left(B_{1} \mathcal{G}_{1}^{(2)}+B_{2} \mathcal{G}_{2}^{(2)}\right) \\
& \left.\mathcal{G}_{a}^{(2)}=\sum_{i=1}^{221} c_{a, i} I_{i}^{(2), \mathrm{UT}}, \quad \mathcal{G}_{2}^{(2)}=\left.\mathcal{G}_{1}^{(2)}\right|_{\left(p_{1} \leftrightarrow p_{3}\right)}\right)
\end{aligned}
$$

Constraints

IR divergences

BDS ansatz

$$
\mathcal{I}^{(2), \mathrm{BDS}}=\frac{1}{2}\left(\mathcal{I}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) \mathcal{I}^{(1)}(2 \epsilon)
$$

Collinear factorization

$$
\mathcal{R}_{n}^{(2)}=\left[\mathcal{I}^{(2)}-\mathcal{I}^{(2), \mathrm{BDS}}\right]_{\mathrm{fin}} \xrightarrow{p_{i} \| p_{i+1}} \mathcal{R}_{n-1}^{(2)}
$$

Spurious pole

Unitarity cut

$$
\begin{gathered}
\mathcal{I}^{(2), \mathrm{BDS}}=\sum_{a=1}^{2} B_{a}\left[\frac{1}{2}\left(\mathcal{G}_{a}^{(1)}(\epsilon)\right)^{2}+f^{(2)}(\epsilon) \mathcal{G}_{a}^{(1)}(2 \epsilon)\right] \\
\left(\sum_{a} B_{a} G_{a}^{(1)}\right)^{2}-\left[\sum_{a} B_{a}\left(\mathcal{G}_{a}^{(1)}\right)^{2}\right] \propto B_{1} B_{2}\left(\mathcal{G}_{1}^{(1)}-\mathcal{G}_{2}^{(1)}\right)
\end{gathered}
$$

Constraints

IR divergences

Collinear factorization

Spurious pole

Constraints	Parameters left
Symmetry of $\left(p_{1} \leftrightarrow p_{3}\right)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	31
IR (Function)	26
Spurious pole (Funcion)	25
Collinear limit (Funcion)	18

Unitarity cut

Constraints

IR divergences

Collinear factorization

Spurious pole

Remaining 18 parameters can be fixed by knowing master integrals:

Unitarity cut

Constraints

IR divergences

Collinear factorization

Spurious pole

Remaining 18 parameters can be fixed by knowing master integrals:

Constraints

IR divergences

Collinear factorization

Spurious pole

Remaining 18 parameters are related to master integrals:

(a) dBub

(b) dBub

(c) BPb

(d) TP

(e) dBox 2 c

Unitarity cut
Can be fixed via simple two-double cuts:

A summary

Constraints	Parameters left
Symmetry of $\left(p_{1} \leftrightarrow p_{3}\right)$	221
IR (Symbol)	82
Collinear limit (Symbol)	38
Spurious pole (Symbol)	31
IR (Function)	26
Spurious pole (Funcion)	25
Collinear limit (Funcion)	18
If keeping only to ϵ^{0} order	14
Simple unitarity cuts	0

A summary

Substituting in the master integral results, we have the full analytic form in GPLs, and they can be evaluated with GiNaC to 'arbitrary' high precision:

	$\mathcal{F}^{(2)} / \mathcal{F}^{(0)}$
ϵ^{-4}	8
ϵ^{-3}	$-10.888626564448543787+25.132741228718345908 i$
ϵ^{-2}	$-31.872672672370517258-16.558017711981028644 i$
ϵ^{-1}	$-24.702889082481070673-2.9923229294749490751 i$
ϵ^{0}	$-82.902014730676342383-129.78151092480602830 i$

up to finite order with the kinematics: $\left\{s_{12}=241 / 25\right.$,

$$
\begin{aligned}
& s_{23}=-377 / 100, s_{34}=13 / 50, s_{14}=-161 / 100 \\
& \left.s_{13}=s_{24}=-89 / 100, \operatorname{tr}_{5}=\sqrt{1635802} / 2500 i\right\}
\end{aligned}
$$

Technical points: symbol letters

$$
\operatorname{Sym}\left(\mathcal{R}_{4}^{(2)}\right)=\sum_{i} c_{i} W_{i_{1}} \otimes W_{i_{2}} \otimes W_{i_{3}} \otimes W_{i_{4}}
$$

Building blocks

$$
\text { Abreu, Ita, Moriello, Page, Tschernow, Zeng } 2020
$$

$$
\begin{aligned}
& x_{i j k l}^{ \pm}=\frac{1+s_{i j}-s_{k l} \pm \sqrt{\Delta_{3, i j k l}}}{2 s_{i j}} \\
& y_{i j k l}^{ \pm}=\frac{\operatorname{tr}_{ \pm}(i j k l)}{2 s_{i j} s_{i l}} \\
& z_{i j k l}^{ \pm \pm}=1+y_{i j k l}^{ \pm}-x_{l i j k}^{ \pm}
\end{aligned}
$$

$$
\Delta_{3, i j k l}=\operatorname{Gram}\left(p_{i}+p_{j}, p_{k}+p_{l}\right)
$$

$$
\operatorname{tr}_{ \pm}(i j k l)=s_{i j} s_{k l}-s_{i k} s_{j l}+s_{i l} s_{j k} \pm \operatorname{tr}_{5}
$$

$$
\operatorname{tr}_{5}=4 i \epsilon_{\mu \nu \rho \sigma} p_{1}^{\mu} p_{2}^{\nu} p_{3}^{\rho} p_{4}^{\sigma}
$$

Most
complicated letters:

$$
\begin{aligned}
& X_{1}\left(p_{i}+p_{j}, p_{k}, p_{l}\right)=\frac{u_{i j} x_{i j k l}^{+}-u_{i j l}}{u_{i j} x_{i j k l}^{-}-u_{i j l}} \\
& X_{2}\left(p_{i}+p_{j}, p_{k}+p_{l}\right)=\frac{x_{i j k l}^{+}}{x_{i j k l}^{-}} \\
& Y_{1}\left(p_{i}, p_{j}, p_{k}, p_{l}\right)=\frac{\operatorname{tr}_{+}(i j k l)}{\operatorname{tr}_{-}(i j k l)}=\frac{y_{i j k l}^{+}}{y_{i j k l}^{-}} \\
& Y_{2}\left(p_{i}, p_{j}, p_{k}, p_{l}\right)=\frac{y_{i j k l}^{+}+1}{y_{i j k l}^{-}+1} \\
& Z\left(p_{i}, p_{j}, p_{k}, p_{l}\right)=\frac{z_{i j k l}^{+} z_{i j k l}^{--}}{z_{i j k l}^{+-} z_{i j k l}^{--}}
\end{aligned}
$$

Technical points: collinear limit of form factors

Dual momentum space

Technical points: numerical computation

Master integrals are evaluated in multiple polylogarithm.

A different set of kinematics are chosen.

$$
\left\{q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\} \text { with } q_{1} \text { massive } \quad\left\{x, S_{12}, S_{23}, S_{34}, S_{45}, S_{51}\right\}
$$

Summary and outlook

Summary and outlook

We present a first analytic computation of a two-loop five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master integral expansion, which applies efficiently for this case.

Summary and outlook

We present a first analytic computation of a two-loop five-point scattering with one color-singlet off-shell leg.

We develop a new bootstrap strategy based on master integral expansion, which applies efficiently for this case.

Outlook:
Consider more general observables.
Study the new constraints beyond collinear limit, such as OPE limit, Regge limit.

Hidden analytic structure, such as Qbar-like eqn.

Thank you!

Extra slides

Unitarity cuts

Consider one-loop amplitudes:

What we really want

Unitarity cuts

We can perform unitarity cuts:

and from tree products, we derive the coefficients more directly.

Cutkosky cutting rule: $\frac{1}{p^{2}}=\omega \Rightarrow \cdots=2 \pi i \delta^{+}\left(p^{2}\right)$

