A new method for amplitude with multi fermion line ——The development of FDC program

张丰 In collaboration with Jian-Xiong Wang

Institute of High Energy Physics, Chinese Academy of Sciences

微扰量子场论研讨会 2021.05.14-16 上海

1 WHY(Background)

- *HOW(Method)*
- 3 RESULTS(Speed)

æ

・ロト ・四ト ・ヨト・

- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.

医下 不臣下

WHY Background

- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- With the development of particle physics experiment technology, especially the increase of collision particle energy, the multi-particle final state process will be more and more important.
 (1) LEPII: e⁺e⁻ → w⁺w⁻ → 4f, nearly 100 processes
 (2) Future high energy collider (ILC, CLIC, and etc): e⁺e⁻ → tt̄ → 6f In recent years, there are more and more researches for multi-particle final state process

ヘロト ヘ回ト ヘヨト ヘヨト

WHY Background

- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- With the development of particle physics experiment technology, especially the increase of collision particle energy, the multi-particle final state process will be more and more important.
 (1) LEPII: e⁺e⁻ → w⁺w⁻ → 4f, nearly 100 processes
 (2) Future high energy collider (ILC, CLIC, and etc): e⁺e⁻ → tt̄ → 6f In recent years, there are more and more researches for multi-particle final state process
- It's difficult for existing programs on the market to do this job.

ヘロト 人間 とくほとくほとう

- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- With the development of particle physics experiment technology, especially the increase of collision particle energy, the multi-particle final state process will be more and more important.
 (1) LEPII: e⁺e⁻ → w⁺w⁻ → 4f, nearly 100 processes
 (2) Future high energy collider (ILC, CLIC, and etc): e⁺e⁻ → tt̄ → 6f In recent years, there are more and more researches for multi-particle final state process
- It's difficult for existing programs on the market to do this job.
- Helicity amplitude: some trouble in dealing with massive particle

ヘロン 人間 とくほ とくほ とう

HOW(Improve the fermion line calculation) Step1: Simplification of spinor

One term for a fermion line in Feynman amplitude can be generally expressed as:

$$M = \overline{u}(n_1, k_1, s_1) B_m u(n_2, k_2, s_2) = u^+(n_1, k_1, s_1) \gamma^0 B_m u(n_2, k_2, s_2),$$
(1)

$$u(n,k,s) = \begin{cases} \frac{\hat{k}+m}{\sqrt{k^0+m}}\mu(+,s) = \hat{k}'\mu(+,s), & n = +\\ \frac{\hat{k}-m}{\sqrt{k^0+m}}\mu(-,s) = \hat{k}'\mu(-,s), & n = - \end{cases}$$
(2)

$$\mu(+, \mathbf{s}) = \begin{pmatrix} \chi_{\mathbf{s}} \\ 0 \end{pmatrix}, \qquad \mu(-, \mathbf{s}) = \begin{pmatrix} 0 \\ \chi_{\mathbf{s}} \end{pmatrix}, \qquad \chi_{\mathbf{s}} = \begin{cases} \begin{pmatrix} 1 & 0 \end{pmatrix}^{T}, & \mathbf{s} = 1 \\ \begin{pmatrix} 0 & 1 \end{pmatrix}^{T}, & \mathbf{s} = 2 \end{cases}$$

$$k'^{\mu} = (\sqrt{k^0 + m}, \frac{\overrightarrow{k}}{\sqrt{k^0 + m}})$$
(3)

Institute of High Energy Physics

HOW(Improve the fermion line calculation) Step1: Simplification of spinor

Substituting the new form, one can get

$$M = \mu(n_1, s_1)^+ \hat{k}_1^+ \gamma_0 B_m \hat{k}_2^\prime \mu(n_2, s_2) = \mu(n_1, s_1)^+ \gamma_0 A_n \mu(n_2, s_2)$$
(4)

1

$$\mu(+,s) = \begin{pmatrix} \chi_s \\ 0 \end{pmatrix}, \qquad \mu(-,s) = \begin{pmatrix} 0 \\ \chi_s \end{pmatrix}, \qquad \chi_s = \begin{cases} \begin{pmatrix} 1 & 0 \end{pmatrix}', \quad s=1 \\ \begin{pmatrix} 0 & 1 \end{pmatrix}', \quad s=2 \end{cases}$$

$$A_n \equiv \hat{k}'_1 B_m \hat{k}'_2, \quad n = m + 2. \tag{5}$$

Meanwhile, if there is a γ_5 in front of B_m ,

$$M = \overline{u}(n_1, k_1, s_1)\gamma_5 B_m u(n_2, k_2, s_2)$$
(6)

the final result equals:

$$M = -\mu(n_1, s_1)^+ \gamma_0 \gamma_5 A_n \mu(n_2, s_2).$$
(7)

HOW(Improve the fermion line calculation) Step2: Simplification of Dirac matrices product

In general, one can redefine

$$A_n \equiv \hat{p}_n \cdots \hat{p}_2 \hat{p}_1, \quad n = 2, 3, \cdots.$$
(8)

Form the calculation, the general result with n p_i , whose form has relationship with odevity, and equals:

$$A_n = \hat{p}_n \cdots \hat{p}_2 \hat{p}_1 = \begin{cases} \hat{p}_a \gamma^0 - i \gamma_5 \hat{p}_b \gamma^0, & \text{n is even} \\ \hat{p}_a - i \gamma_5 \hat{p}_b, & \text{n is odd} \end{cases}$$

If there is a γ_5 at the front, the general form is

$$\gamma_5 A_n = \gamma_5 \hat{p}_n \cdots \hat{p}_2 \hat{p}_1 = \begin{cases} -i(\hat{p}_b \gamma^0 + i\gamma_5 \hat{p}_a \gamma^0), & \text{n is even} \\ -i(\hat{p}_b + i\gamma_5 \hat{p}_a), & \text{n is odd} \end{cases}$$
(10)

(9)

HOW(Improve the fermion line calculation) Step3: Simplification of fermion line

The process introduced above should get and use final analytic results.

$$\begin{split} M &= \mu(n_1, s_1)^+ \gamma_0(\hat{p}_a \gamma^0 - i\gamma_5 \hat{p}_b \gamma^0) \mu(n_2, s_2) \\ &= \mu(n_1, s_1)^+ \begin{pmatrix} p_a^0 - ip_b^3 & -ip_b^1 - p_b^2 & p_a^3 - ip_b^0 & p_a^1 - ip_a^2 \\ -ip_b^1 + p_b^2 & p_a^0 + ip_b^3 & p_a^1 + ip_a^2 & -p_a^3 - ip_b^0 \\ -p_a^3 + ip_b^0 & -p_a^1 + ip_a^2 & -p_a^0 + ip_b^3 & ip_b^1 + p_b^2 \\ -p_a^1 - ip_a^2 & p_a^3 + ip_b^0 & ip_b^1 - p_b^2 & -p_a^0 - ip_b^3 \end{pmatrix} \mu(n_2, s_2). \end{split}$$

$$\mu(+,s) = \begin{pmatrix} \chi_s \\ 0 \end{pmatrix}, \qquad \mu(-,s) = \begin{pmatrix} 0 \\ \chi_s \end{pmatrix}, \qquad \chi_s = \begin{cases} \begin{pmatrix} 1 & 0 \end{pmatrix}^T, \quad s=1 \\ \begin{pmatrix} 0 & 1 \end{pmatrix}^T, \quad s=2 \end{cases}$$

HOW(Improve the fermion line calculation) Step3: Simplification of fermion line

٨

The process introduced above should get and use final analytic results.

$$\begin{split} \mathcal{M} &= \mu(n_1, s_1)^+ \gamma_0(\hat{p}_a \gamma^0 - i\gamma_5 \hat{p}_b \gamma^0) \mu(n_2, s_2) \\ &= \mu(n_1, s_1)^+ \begin{pmatrix} p_a^0 - ip_b^1 & -ip_b^1 - p_b^2 & p_a^3 - ip_b^0 & p_a^1 - ip_a^2 \\ -ip_b^1 + p_b^2 & p_a^0 + ip_b^3 & p_a^1 + ip_a^2 & -p_a^3 - ip_b^0 \\ -p_a^3 + ip_b^0 & -p_a^1 + ip_a^2 & -p_a^0 + ip_b^3 & ip_b^1 + p_b^2 \\ -p_a^1 - ip_a^2 & p_a^3 + ip_b^0 & ip_b^1 - p_b^2 & -p_a^0 - ip_b^3 \end{pmatrix} \mu(n_2, s_2). \end{split}$$

In fact, for a specific fermion line, both sides are particles:

$$M = \begin{cases} p_a^0 - ip_b^3, & s_1 = 1 \text{ and } s_2 = 1\\ -ip_b^1 - p_b^2, & s_1 = 1 \text{ and } s_2 = 2\\ -ip_b^1 + p_b^2, & s_1 = 2 \text{ and } s_2 = 1\\ p_a^0 + ip_b^3, & s_1 = 2 \text{ and } s_2 = 2 \end{cases}$$
(11)

▲ 글 ▶ | ▲ 글 ▶

HOW(Improve the fermion line calculation) Step4: Simplification of amplitude

- (1) contract to vector boson propagator;
- (2) contract the vector obtained in to other fermion line;
- (3) finally, all fermion lines can be contracted to one fermion line or scalar.

HOW(Improve the fermion line calculation) Step4: Simplification of amplitude

- (1) contract to vector boson propagator;
- (2) contract the vector obtained in to other fermion line;
- (3) finally, all fermion lines can be contracted to one fermion line or scalar.

$$M = \overline{u}(p_5, s_5)\hat{V}_3(\hat{p} + m)\hat{V}_1(\hat{p}' + m)\hat{V}_2u(p_3, s_3)$$

process	$e^+ + e^- \rightarrow c + \overline{c} + b + \overline{b}(8)$		$e^+ + e^- \rightarrow c + \overline{c} + c + \overline{c} + c + \overline{c}(576)$	
program \sqrt{s}	FDC	MadGraph	FDC	MadGraph
20	0.6	2.26	103.4	4008
50	0.5	2.28	90.4	3936
100	0.5	2.23	111.4	3990
200	0.5	2.24	127.9	4044
500	0.5	2.24	154.2	4002
1000	0.5	2.23	172.8	4002

Table: The expected time for generating 10000 events for a certain process. (\sqrt{s} in unit of GeV and expected time in unit of second.)

프 🖌 🛪 프 🕨

RESULTS Compare the calculation speed with other programs

group	$1(e^+ + e^- ightarrow c + \overline{c} + b + \overline{b})$		$2(e^+ + e^- \rightarrow c + \overline{c} + c + \overline{c} + c + \overline{c})$	
program \sqrt{s}	FDC	WHIZARD	FDC	WHIZARD
20	0.3	4	7.1	319
50	0.3	5	7.0	760
100	0.3	6	6.8	3935
200	0.2	8	6.8	6999
500	0.2	8	7.1	7905
1000	0.2	11	7.0	6277

Table: Group 1 represents the subprocess of $e^+ + e^- \rightarrow c + \overline{c} + b + \overline{b}$, which only contains the 4 diagrams of that. group 2 represents the subprocess of $e^+ + e^- \rightarrow c + \overline{c} + c + \overline{c} + c + \overline{c}$, which only contains 12 diagrams of that.

- The numerical calculation of the amplitude of multi fermion lines process is improved obviously, and the velocity is increased a lot.
- The improved algorithm has been programmed, and embedded into FDC. Any multi fermion lines process can be calculated.
- The article is in preparation and will be completed soon.

The End Thank you very much

14/17

æ

・ロト ・回ト ・ヨト ・ヨト

$$A_{2} = \begin{pmatrix} p_{2} \cdot p_{1} - i\varepsilon_{ijk}p_{2}^{i}p_{1}^{j}\sigma^{k} & (p_{1}^{0}\overrightarrow{p_{2}} - p_{2}^{0}\overrightarrow{p_{1}}) \cdot \overrightarrow{\sigma} \\ (p_{1}^{0}\overrightarrow{p_{2}} - p_{2}^{0}\overrightarrow{p_{1}}) \cdot \overrightarrow{\sigma} & p_{2} \cdot p_{1} - i\varepsilon_{ijk}p_{2}^{i}p_{1}^{j}\sigma^{k} \end{pmatrix}.$$
 (12)

one can define two new p donated by p_a , p_b , which are

$$p_{a} = (p_{2} \cdot p_{1}, -p_{2}^{0} \overrightarrow{p_{1}} + p_{1}^{0} \overrightarrow{p_{2}}),$$

$$p_{b} = (0, \quad \varepsilon_{ijk} p_{2}^{i} p_{1}^{j}).$$
(13)

one can rewrite the form of Eq, which equals

$$A_2 = \hat{p}_a \gamma^0 - i \gamma_5 \hat{p}_b \gamma^0. \tag{14}$$

э

문에 비용에 다

Appendix

On the basis of the previous,

$$A_{3} = \hat{p}_{3}\hat{p}_{2}\hat{p}_{1} = \hat{p}_{3}(\hat{p}_{a}\gamma^{0} - i\gamma_{5}\hat{p}_{b}\gamma^{0}) = \hat{p}_{3}\hat{p}_{a}\gamma^{0} + i\gamma_{5}\hat{p}_{3}\hat{p}_{b}\gamma^{0}$$
(15)

$$\hat{p}_{3}\hat{p}_{a} = \hat{p}_{a_{1}'}\gamma^{0} - i\gamma_{5}\hat{p}_{b_{1}'}\gamma^{0},
\hat{p}_{3}\hat{p}_{b} = \hat{p}_{a_{2}'}\gamma^{0} - i\gamma_{5}\hat{p}_{b_{2}'}\gamma^{0}$$
(16)

Hence, one can submit them into formula (15) and continue to calculate:

$$\begin{aligned} \mathcal{A}_{3} &= (\hat{p}_{a_{1}'}\gamma^{0} - i\gamma_{5}\hat{p}_{b_{1}'}\gamma^{0})\gamma^{0} + i\gamma_{5}(\hat{p}_{a_{2}'}\gamma^{0} - i\gamma_{5}\hat{p}_{b_{2}'}\gamma^{0})\gamma^{0} \\ &= \hat{p}_{a_{1}'} - i\gamma_{5}\hat{p}_{b_{1}'} + i\gamma_{5}\hat{p}_{a_{2}'} + \hat{p}_{b_{2}'} \\ &= (\hat{p}_{a_{1}'} + \hat{p}_{b_{2}'}) - i\gamma_{5}(\hat{p}_{b_{1}'} - \hat{p}_{a_{2}'}). \end{aligned}$$
(17)

э

So one can also define two new p donate by p_{a_2} , p_{b_2} , where

$$p_{a_2} = p_{a'_1} + p_{b'_2},$$

$$p_{b_2} = p_{b'_1} - p_{a'_2},$$
(18)

and get the final result:

$$A_3 = \hat{p}_{a_2} - i\gamma_5 \hat{p}_{b_2}. \tag{19}$$

→ 프 ▶ - 프