A new method for amplitude with multi fermion line －The development of FDC program

张丰
 In collaboration with Jian－Xiong Wang

Institute of High Energy Physics，Chinese Academy of Sciences

微扰量子场论研讨会 2021．05．14－16 上海

Outline

(1) WHY(Background)
(2) $H O W$ (Method)
(3) RESULTS(Speed)
(4) SUMMARY

WHY

- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- With the development of particle physics experiment technology, especially the increase of collision particle energy, the multi-particle final state process will be more and more important.
(1) LEPII: $e^{+} e^{-} \rightarrow w^{+} w^{-} \rightarrow 4 f$, nearly 100 processes
(2) Future high energy collider (ILC, CLIC, and etc): $e^{+} e^{-} \rightarrow t \bar{t} \rightarrow 6 f$ In recent years, there are more and more researches for multi-particle final state process
- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- With the development of particle physics experiment technology, especially the increase of collision particle energy, the multi-particle final state process will be more and more important.
(1) LEPII: $e^{+} e^{-} \rightarrow w^{+} w^{-} \rightarrow 4 f$, nearly 100 processes
(2) Future high energy collider (ILC, CLIC, and etc): $e^{+} e^{-} \rightarrow t \bar{t} \rightarrow 6 f$ In recent years, there are more and more researches for multi-particle final state process
- It's difficult for existing programs on the market to do this job.

WHY

- In high energy physics, perturbation theory is widely used to do precise calculation.
- Our FDC system is a complete system of automatic perturbation calculation.
- With the development of particle physics experiment technology, especially the increase of collision particle energy, the multi-particle final state process will be more and more important.
(1) LEPII: $e^{+} e^{-} \rightarrow w^{+} w^{-} \rightarrow 4 f$, nearly 100 processes
(2) Future high energy collider (ILC, CLIC, and etc): $e^{+} e^{-} \rightarrow t \bar{t} \rightarrow 6 f$ In recent years, there are more and more researches for multi-particle final state process
- It's difficult for existing programs on the market to do this job.
- Helicity amplitude: some trouble in dealing with massive particle

HOW (Improve the fermion line calculation)

Step1: Simplification of spinor
One term for a fermion line in Feynman amplitude can be generally expressed as:

$$
\begin{gather*}
M=\bar{u}\left(n_{1}, k_{1}, s_{1}\right) B_{m} u\left(n_{2}, k_{2}, s_{2}\right)=u^{+}\left(n_{1}, k_{1}, s_{1}\right) \gamma^{0} B_{m} u\left(n_{2}, k_{2}, s_{2}\right) \tag{1}\\
u(n, k, s)=\left\{\begin{array}{l}
\frac{\hat{k}+m}{\sqrt{k^{0}+m}} \mu(+, s)=\hat{k}^{\prime} \mu(+, s), \quad n=+ \\
\frac{\hat{k}-m}{\sqrt{k^{0}+m}} \mu(-, s)=\hat{k}^{\prime} \mu(-, s), \quad n=- \\
\mu(+, s)=\binom{\chi_{s}}{0}, \quad \mu(-, s)=\binom{0}{\chi_{s}}, \quad \chi_{s}= \begin{cases}\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{T}, & s=1 \\
\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{T}, & s=2\end{cases} \\
k^{\prime \mu}=\left(\sqrt{k^{0}+m}, \frac{\vec{k}}{\sqrt{k^{0}+m}}\right)
\end{array}\right. \tag{2}
\end{gather*}
$$

HOW(Improve the fermion line calculation)

Step 1: Simplification of spinor
Substituting the new form, one can get

$$
\begin{align*}
M & =\mu\left(n_{1}, s_{1}\right)^{+} \hat{k}_{1}^{\prime+} \gamma_{0} B_{m} \hat{k}_{2}^{\prime} \mu\left(n_{2}, s_{2}\right) \\
& =\mu\left(n_{1}, s_{1}\right)^{+} \gamma_{0} A_{n} \mu\left(n_{2}, s_{2}\right) \tag{4}
\end{align*}
$$

$$
\mu(+, s)=\binom{\chi_{s}}{0}, \quad \mu(-, s)=\binom{0}{\chi_{s}}, \quad \chi_{s}= \begin{cases}\left(\begin{array}{cc}
1 & 0
\end{array}\right)^{T}, & s=1 \\
\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{T}, & s=2\end{cases}
$$

$$
\begin{equation*}
A_{n} \equiv \hat{k}_{1}^{\prime} B_{m} \hat{k}_{2}^{\prime}, \quad n=m+2 \tag{5}
\end{equation*}
$$

Meanwhile, if there is a γ_{5} in front of B_{m},

$$
\begin{equation*}
M=\bar{u}\left(n_{1}, k_{1}, s_{1}\right) \gamma_{5} B_{m} u\left(n_{2}, k_{2}, s_{2}\right) \tag{6}
\end{equation*}
$$

the final result equals:

$$
\begin{equation*}
M=-\mu\left(n_{1}, s_{1}\right)^{+} \gamma_{0} \gamma_{5} A_{n} \mu\left(n_{2}, s_{2}\right) \tag{7}
\end{equation*}
$$

HOW (Improve the fermion line calculation)

 Step2: Simplification of Dirac matrices productIn general, one can redefine

$$
\begin{equation*}
A_{n} \equiv \hat{p}_{n} \cdots \hat{p}_{2} \hat{p}_{1}, \quad n=2,3, \cdots . \tag{8}
\end{equation*}
$$

Form the calculation, the general result with $\mathrm{n} p_{i}$, whose form has relationship with odevity, and equals:

$$
A_{n}=\hat{p}_{n} \cdots \hat{p}_{2} \hat{p}_{1}= \begin{cases}\hat{p}_{a} \gamma^{0}-i \gamma_{5} \hat{p}_{b} \gamma^{0}, & \mathrm{n} \text { is even } \tag{9}\\ \hat{p}_{a}-i \gamma_{5} \hat{p}_{b}, & \mathrm{n} \text { is odd }\end{cases}
$$

If there is a γ_{5} at the front, the general form is

$$
\gamma_{5} A_{n}=\gamma_{5} \hat{p}_{n} \cdots \hat{p}_{2} \hat{p}_{1}= \begin{cases}-i\left(\hat{p}_{b} \gamma^{0}+i \gamma_{5} \hat{p}_{\mathrm{a}} \gamma^{0}\right), & \mathrm{n} \text { is even } \tag{10}\\ -i\left(\hat{p}_{b}+i \gamma_{5} \hat{p}_{\mathrm{a}}\right), & \mathrm{n} \text { is odd }\end{cases}
$$

HOW (Improve the fermion line calculation)

Step3: Simplification of fermion line
The process introduced above should get and use final analytic results.

$$
\begin{aligned}
& M=\mu\left(n_{1}, s_{1}\right)^{+} \gamma_{0}\left(\hat{p}_{a} \gamma^{0}-i \gamma_{5} \hat{p}_{b} \gamma^{0}\right) \mu\left(n_{2}, s_{2}\right) \\
&=\mu\left(n_{1}, s_{1}\right)^{+}\left(\begin{array}{cccc}
p_{a}^{0}-i p_{b}^{3} & -i p_{b}^{1}-p_{b}^{2} & p_{a}^{3}-i p_{b}^{0} & p_{a}^{1}-i p_{a}^{2} \\
-i p_{b}^{1}+p_{b}^{2} & p_{a}^{0}+i p_{b}^{3} & p_{a}^{1}+i p_{a}^{2} & -p_{a}^{3}-i p_{b}^{0} \\
-p_{a}^{3}+i p_{b}^{0} & -p_{a}^{1}+i p_{a}^{2} & -p_{a}^{0}+i p_{b}^{3} & i p_{b}^{1}+p_{b}^{2} \\
-p_{a}^{1}-i p_{a}^{2} & p_{a}^{3}+i p_{b}^{0} & i p_{b}^{1}-p_{b}^{2} & -p_{a}^{0}-i p_{b}^{3}
\end{array}\right) \mu\left(n_{2}, s_{2}\right) . \\
& \mu(+, s)=\binom{\chi_{s}}{0}, \quad \mu(-, s)=\binom{0}{\chi_{s}}, \quad \chi_{s}=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
1 & 0 \\
\left(\begin{array}{cc}
0 & 1
\end{array}\right)^{T}, & s=1
\end{array}\right. & s=2
\end{array}\right.
\end{aligned}
$$

HOW (Improve the fermion line calculation)

Step3: Simplification of fermion line
The process introduced above should get and use final analytic results.

$$
\begin{aligned}
M & =\mu\left(n_{1}, s_{1}\right)^{+} \gamma_{0}\left(\hat{p}_{a} \gamma^{0}-i \gamma_{5} \hat{p}_{b} \gamma^{0}\right) \mu\left(n_{2}, s_{2}\right) \\
& =\mu\left(n_{1}, s_{1}\right)^{+}\left(\begin{array}{cccc}
p_{a}^{0}-i p_{b}^{3} & -i p_{b}^{1}-p_{b}^{2} & p_{a}^{3}-i p_{b}^{0} & p_{a}^{1}-i p_{a}^{2} \\
-i p_{b}^{1}+p_{b}^{2} & p_{a}^{0}+i p_{b}^{3} & p_{a}^{1}+i p_{a}^{2} & -p_{a}^{3}-i p_{b}^{0} \\
-p_{a}^{3}+i p_{b}^{0} & -p_{a}^{1}+i p_{a}^{2} & -p_{a}^{0}+i p_{b}^{3} & i p_{b}^{1}+p_{b}^{2} \\
-p_{a}^{1}-i p_{a}^{2} & p_{a}^{3}+i p_{b}^{0} & i p_{b}^{1}-p_{b}^{2} & -p_{a}^{0}-i p_{b}^{3}
\end{array}\right) \mu\left(n_{2}, s_{2}\right) .
\end{aligned}
$$

In fact, for a specific fermion line, both sides are particles:

$$
M=\left\{\begin{array}{llll}
p_{a}^{0}-i p_{b}^{3}, & s_{1}=1 & \text { and } & s_{2}=1 \tag{11}\\
-i p_{b}^{1}-p_{b}^{2}, & s_{1}=1 & \text { and } & s_{2}=2 \\
-i p_{b}^{1}+p_{b}^{2}, & s_{1}=2 & \text { and } & s_{2}=1 \\
p_{a}^{0}+i p_{b}^{3}, & s_{1}=2 & \text { and } & s_{2}=2
\end{array}\right.
$$

HOW (Improve the fermion line calculation)

Step 4: Simplification of amplitude
(1) contract to vector boson propagator;
(2) contract the vector obtained in to other fermion line;
(3) finally, all fermion lines can be contracted to one fermion line or scalar.

HOW (Improve the fermion line calculation)

Step 4: Simplification of amplitude
(1) contract to vector boson propagator;
(2) contract the vector obtained in to other fermion line;
(3) finally, all fermion lines can be contracted to one fermion line or scalar.

$$
M=\bar{u}\left(p_{5}, s_{5}\right) \hat{V}_{3}(\hat{p}+m) \hat{V}_{1}\left(\hat{p}^{\prime}+m\right) \hat{V}_{2} u\left(p_{3}, s_{3}\right)
$$

RESULTS

Compare the calculation speed with other programs

process	$e^{+}+e^{-} \rightarrow c+\bar{c}+b+\bar{b}(8)$		$e^{+}+e^{-} \rightarrow c+\bar{c}+c+\bar{c}+c+\bar{c}(576)$	
program	FDC	MadGraph	FDC	MadGraph
$\sqrt{\sqrt{s}}$	0.6	2.26	103.4	4008
20	0.5	2.28	90.4	3936
50	0.5	2.23	111.4	3990
100	0.5	2.24	127.9	4044
200	0.5	2.24	154.2	4002
500	0.5	2.23	172.8	4002
1000				

Table: The expected time for generating 10000 events for a certain process. $(\sqrt{s}$ in unit of GeV and expected time in unit of second.)

RESULTS

group	$1\left(e^{+}+e^{-} \rightarrow c+\bar{c}+b+\bar{b}\right)$		$2\left(e^{+}+e^{-} \rightarrow c+\bar{c}+c+\bar{c}+c+\bar{c}\right)$	
program	FDC	WHIZARD	FDC	WHIZARD
\sqrt{s}	0.3	4	7.1	319
20	0.3	5	7.0	760
50	0.3	6	6.8	3935
100	0.2	8	6.8	6999
200	0.2	8	7.1	7905
500	0.2	11	7.0	6277
1000				

Table: Group 1 represents the subprocess of $e^{+}+e^{-} \rightarrow c+\bar{c}+b+\bar{b}$, which only contains the 4 diagrams of that. group 2 represents the subprocess of $e^{+}+e^{-} \rightarrow c+\bar{c}+c+\bar{c}+c+\bar{c}$, which only contains 12 diagrams of that.

SUMMARY

- The numerical calculation of the amplitude of multi fermion lines process is improved obviously, and the velocity is increased a lot.
- The improved algorithm has been programmed, and embedded into FDC. Any multi fermion lines process can be calculated.
- The article is in preparation and will be completed soon.

The End
 Thank you very much

Appendix

$$
A_{2}=\left(\begin{array}{cc}
p_{2} \cdot p_{1}-i \varepsilon_{i j k} p_{2}^{i} p_{1}^{j} \sigma^{k} & \left(p_{1}^{0} \overrightarrow{p_{2}}-p_{2}^{0} \overrightarrow{p_{1}}\right) \cdot \vec{\sigma} \tag{12}\\
\left(p_{1}^{0} \overrightarrow{p_{2}}-p_{2}^{0} \overrightarrow{p_{1}}\right) \cdot \vec{\sigma} & p_{2} \cdot p_{1}-i \varepsilon_{i j k} p_{2}^{i} p_{1}^{j} \sigma^{k}
\end{array}\right) .
$$

one can define two new p donated by p_{a}, p_{b}, which are

$$
\begin{align*}
p_{a} & =\left(p_{2} \cdot p_{1},-p_{2}^{0} \overrightarrow{p_{1}}+p_{1}^{0} \overrightarrow{p_{2}}\right) \\
p_{b} & =\left(0, \quad \varepsilon_{i j k} p_{2}^{i} p_{1}^{j}\right) \tag{13}
\end{align*}
$$

one can rewrite the form of Eq, which equals

$$
\begin{equation*}
A_{2}=\hat{p}_{a} \gamma^{0}-i \gamma_{5} \hat{p}_{b} \gamma^{0} \tag{14}
\end{equation*}
$$

Appendix

On the basis of the previous,

$$
\begin{align*}
A_{3}=\hat{p}_{3} \hat{p}_{2} \hat{p}_{1} & =\hat{p}_{3}\left(\hat{p}_{a} \gamma^{0}-i \gamma_{5} \hat{p}_{b} \gamma^{0}\right) \\
& =\hat{p}_{3} \hat{p}_{a} \gamma^{0}+i \gamma_{5} \hat{p}_{3} \hat{p}_{b} \gamma^{0} \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \hat{p}_{3} \hat{p}_{a}=\hat{p}_{a_{1}^{\prime}} \gamma^{0}-i \gamma_{5} \hat{p}_{b_{1}^{\prime}} \gamma^{0}, \\
& \hat{p}_{3} \hat{p}_{b}=\hat{p}_{a_{2}^{\prime}} \gamma^{0}-i \gamma_{5} \hat{p}_{b_{2}^{\prime}} \gamma^{0} \tag{16}
\end{align*}
$$

Hence, one can submit them into formula (15) and continue to calculate:

$$
\begin{align*}
A_{3} & =\left(\hat{p}_{a_{1}^{\prime}} \gamma^{0}-i \gamma_{5} \hat{p}_{b_{1}^{\prime}} \gamma^{0}\right) \gamma^{0}+i \gamma_{5}\left(\hat{p}_{a_{2}^{\prime}} \gamma^{0}-i \gamma_{5} \hat{p}_{b_{2}^{\prime}} \gamma^{0}\right) \gamma^{0} \\
& =\hat{p}_{a_{1}^{\prime}}-i \gamma_{5} \hat{p}_{b_{1}^{\prime}}+i \gamma_{5} \hat{p}_{a_{2}^{\prime}}+\hat{p}_{b_{2}^{\prime}} \tag{17}\\
& =\left(\hat{p}_{a_{1}^{\prime}}+\hat{p}_{b_{2}^{\prime}}\right)-i \gamma_{5}\left(\hat{p}_{b_{1}^{\prime}}-\hat{p}_{a_{2}^{\prime}}\right) .
\end{align*}
$$

Appendix

So one can also define two new p donate by $p_{a_{2}}, p_{b_{2}}$, where

$$
\begin{align*}
& p_{a_{2}}=p_{a_{1}^{\prime}}+p_{b_{2}^{\prime}} \tag{18}\\
& p_{b_{2}}=p_{b_{1}^{\prime}}-p_{a_{2}^{\prime}},
\end{align*}
$$

and get the final result:

$$
\begin{equation*}
A_{3}=\hat{p}_{a_{2}}-i \gamma_{5} \hat{p}_{b_{2}} \tag{19}
\end{equation*}
$$

