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Compton Scattering:  
witnesses the development of QFT

• One of the fundamental processes in Quantum Field Theory

• Compton effect (1923): quantum effect

λ′ − λ =
h

mec
(1 − cos θ)

• Klein-Nishina formula (1929):
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σ = πα2
2 (3m4 + 6m2s − s2) log ( s

m2 )
(m2 − s)3 +

m6 − m4s + 15m2s2 + s3

s2 (m2 − s)2 + 𝒪(α3) One of the first 
results in QED!



Motivation for studying Compton scattering
• Important in many aspects of physics: from X-

ray crystallography to astrophysics

• A luminosity monitor for the electron-photon 

collider

• A clean process: to measure the coupling 

constant

• In astrophysics: inverse Compton scattering

e.g. Sunyaev–Zeldovich effect

• Theoretical side:  

• the fundamental question: what is an 

electron?

• Total cross sections involve forward-

scattering region, where off-shell Glauber 
modes are essential.

[Sunyaev, Zeldovich, 1980] 



Motivation for studying Compton scattering: 
Forward scattering

• There is already a single log at the tree-level.
[1810.10022, Frye, Hannesdottir, Paul, Schwartz, Yan]

σ ∼
πα2

s [2 log ( s
m2 ) + 1], s ≫ m2

• Usually we expect a log to show up at 1-loop, and can be resummed with 
RG equations. For example, we introduce the running coupling to improve 
the efficiency in QED.

• Use dim reg and set , we see explicit divergence in the t-channel:m = 0

d = 4 − 2ϵσt =
16πα2

Q2
Γd (−

1
2ϵ

+ 1), with Γd = ( 4πe−γEμ4

Q2 )
ϵ

IR divergence comes from the outgoing  collinear to the incoming γ e− Collinear Logarithms



• IR finiteness requires the forward scattering included, where outgoing  
collinear to the incoming 

γ
γ

Motivation for studying Compton scattering: 
Forward scattering

[1810.10022, Frye, Hannesdottir, Paul, Schwartz, Yan]

CF F?

17

σt =
16πα2

Q2
Γd (−

1
2ϵ

+ 1)
σF =

16πα2

Q2
Γd ( 1

2ϵ
− 1)

cancel!

A hard photon and electron become effectively 
indistinguishable at high energies

• Kinoshita-Lee-Nauenberg (KLN) theorem: Unitarity guarantees the cancellation 
of infrared divergences when all final states and initial states are summed over.


• However, one only need to sum over initial or final states once the forward 
scattering is included. 


• If we want to resum the logarithms, we need NLO as a check



Compton scattering beyond leading order
• There are very few analytic results of the total cross section beyond LO in 

QED. For Compton,
• real emissions: e−(p1) + γ(k1) → e−(p2) + γ(k2) + γ(k3)
• virtual corrections: e−(p1) + γ(k1)

1−loop
→ e−(p2) + γ(k2)

• pair productions:e−(p1) + γ(k1) → e−(p2) + e+(k2) + e−(k3), e−(p2) + μ+(k2) + μ−(k3) . . .

• Several developments: 
•Brown and Feynman (1951): the virtual differential cross section regulated by the photon mass

•Mandl and Skyrme (1952): double Compton scattering: the amplitudes for the hard-photonic 
bremsstrahlung

•Milton, Tsai, De Raad (1972), Gongora-T. and Stuart (1989), Veltman (1989), Swartz, hep-
ph/9711447

•Denner and Dittmaier, hep-ph/9805443 polarized scattering; numerical total cross section

•Lee, Lyubyakin, Stotsky, 2010.15430
first analytic result for real emissions 
and pair productions!



• The main difficulties:

• two-loop massive diagrams are hard to evaluate, even after region expansions

• cannot separate different processes (difficult to separate elliptical sectors)

Compton scattering beyond leading order
Failure: discontinuities of forward amplitude

78 the cancellation of the infrared divergence in the differ-
79 ential cross section was shown using a photon mass cutoff.
80 The double Compton process was studied by Mandl and
81 Skyrme in 1952 [16]. Recently, the total cross section for
82 double Compton scattering has been calculated in
83 Ref. [11]. The asymptotic behavior of Compton scattering
84 at high energy at the amplitude level has been examined
85 by numerous authors (e.g., Refs. [17–19]). Polarized
86 differential Compton scattering at NLO was studied by
87 Swartz [20] and by Denner and Dittmaier [21]. Although
88 numerical results for the total NLO cross section can be
89 obtained by integrating these differential cross sections
90 over the scattering angle, no analytic formula has yet been
91 produced. The result of this Letter is that final missing
92 analytic form.
93 To compute the total cross section, one approach
94 is to use the optical theorem to extract it from the
95 imaginary part of the e−γ → e−γ forward scattering
96 amplitude. However, rather than compute the full
97 two-loop forward amplitude and then take its imaginary
98 part, it is simpler to compute the cut diagrams
99 directly. These diagrams are shown in Fig. 1. The cuts

100 that put e−γ on shell are the virtual corrections, while
101 those putting e−γγ on shell correspond to real emission.
102 There are also contributions to the total e−γ cross section
103 at order α3 from final states with three charged particles.
104 These were computed in Ref. [11] so we do not consider
105 them here.
106 To compute the cuts, we apply integration by parts and
107 differential equations to two or three particle cuts sepa-
108 rately. For example, one of the two-particle cut master
109 integrals of interest looks like

ð1Þ

110Applying loop computation technology to cut graphs
111significantly simplifies the problem: the extra δ functions
112reduce the number of master integrals and, therefore, the
113size of the differential system. Even more important, the
114cuts relevant for the NLO correction to the Compton
115scattering cross section prevent the appearance of the
116nonpolylogarithmic master integrals—the massive sunrise
117graphs.
118The main tool we use for the IBP (integration-by-parts)
119reduction is LiteRed [22,23] which allows for the account of
120the individual cuts. For the reduction of the differential
121system to ϵ form we use the Libra package [24]. It is helpful
122to rewrite the integrals in terms of threshold variables like

x ¼ s −m2

m2
; y ¼

ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r
: ð2Þ

123124A variable like y can be used to rationalize the weights of
125the appearing iterated integrals. Both x and y vanish at
126threshold s → m2. We find that using the threshold limit to

F1:1 FIG. 1. Cut Feynman diagrams contributing to the NLO cross section. Cuts drawn in blue indicate double-Compton contributions
F1:2 and red cuts indicate loop contributions. The last eight diagrams involve an insertion of the mass counterterm and require
F1:3 separate integrals.
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Instead we use 
direct phase space 
integrations  
and evaluate the 
forward diagrams in 
Fiesta as numerical 
checks



NLO total cross section
• Real emissions: e−(p1) + γ(k1) → e−(p2) + γ(k2) + γ(k3)

�

�

�
�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�
�

�

�

�

�

�

�

�

�

σ(R) ∼ ∫ dLIPS3 ∑ |M(R) |2

2 sectors:  
14 master 
integrals

• Virtual corrections: e−(p1) + γ(k1)
1−loop

→ e−(p2) + γ(k2)

σ(V) ∼ ∫ dLIPS2 ∫
ddk3

iπd/2 ∑ 2Re [M(V) × M(T)*]
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2 sectors:  
24 master 
integrals

IBP reduction: LiteRed2; 
Canonical form: Libra



Boundary conditions for DE
• Real emissions: only 1 nonzero boundary; similar to tree-level

• Virtual corrections: 4 nonzero boundaries

• Remarkably, the loop integral and phase space integral factorizes at threshold 

 or s → m2 = 1 y = (s − m2)/(s + 3m2) → 0

ℐ =
(2π)2

2iπd ∫ ddk3ddp2ddk2δ(p2
2 − m2)θ(p0

2)δ(k2
2)θ(k0

2)

× δd(p1 + k1 − p2 − k2)
1

k2
3[(p1 − k2 − k3)2 − m2]

∫
ddk3

iπd/2

1
k2

3[(p1 − k2 − k3)2 − m2]
p1⋅k2→2y2

≈ ∫ dx1dx2δ(1 − x1 − x2)Γ(ϵ)(x1 + x2)2ϵ−2x−ϵ
2 (4x1y2 + x2)−ϵ

ℐ factorizes≈ (∫ dLIPS(soft)
2 ) × (feynman integral)

no long depends on any 
outgoing momentum!



NLO total cross section
• on-shell renormalization scheme σNLO = σNLO

bare + (Z2
ψZ2

AZ2
α − 1)σborn + δσm

σNLO =
α3

m2x3 { −
x (273x3 − 982x2 − 2960x − 1744)

24(x + 1)2

+
37x4 − 54x3 − 339x2 − 428x − 184

4(x + 1)2
ln(x + 1)+

x2 (14x4 + 17x3 − 17x2 − 22x − 8)
2(1 − x)(1 + x)3

ln x

−
4x6 + 35x5 − 31x4 − 755x3 − 1765x2 − 1506x − 440

2(x + 1)2(x + 4)
ln2(x + 1)+(x2 − x + 2) [Li2(1 − x) −

π2

6 ]
−

x6 + 7x5 − 28x4 − 239x3 − 449x2 − 338x − 88
(x + 1)2(x + 4)

Li2(−x)+
x4 + 7x3 + x2 − 3x − 2

(x + 1)2
ln(x + 1)ln x

−
4 (x5 + 26x4 + 146x3 + 316x2 + 288x + 96)

(x + 1)2(x + 4)
G(−2, − 1; x)+

3x4 + 18x3 + 44x2 − 8x − 64
x

yG(y, − 1; x) + T3(x)} + 𝒪(ϵ)

transcendental weight 3 

G(a, a1, …, an; x) = ∫
x

0
dwa(x′ )G(a1, …, an; x′ ),

dwy(x) =
ydx
x

, dwa(x) =
dx

x − a
(a = − 4, − 2, − 1,0)

x =
s − m2

m2
y =

s − m2

s + 3m2

where



NLO total cross section
T3(x) = (x2 + 2x − 6) g1 −

1
3 (x2 − 16x − 23) g2 + 8 (x2 − 4x − 6) g3 + 4(2x2 − x − 6)g4 + 2 (2x2 − 7x − 12) g5

−(5x2 + 32x − 8)g6 − 3(x − 2)(x + 4)yg7 + 3 (3x2 − 8) g10 −
8y (x4 + 3x3 − 18x2 − 68x − 24)

(x + 4)x
g8

+
3y (5x4 + 14x3 − 96x2 − 352x − 128)

(x + 4)x
g9 −

16y (x4 + 2x3 − 24x2 − 80x − 48)
(x + 4)x

g11 −
6y (x3 − 12x − 8)

x
g12

transcendental weight 3 bases 

g1 = [Li3(x2) − Li2(x2)ln x], g2 = ln3(x + 1), g3 = G(−1, − 2, − 1; x), g4 = G(−1, − 1,0; x), g5 = G(−1,0, − 1; x),

g6 = G(0, − 1, − 1; x), g7 = [G(0,y, − 1; x) + 2G(y, − 1,0; x)], g8 = G(y,0, − 1; x), g9 = G(y, − 1, − 1; x),

g10 = G(y, y, − 1; x), g11 = G(y, − 2, − 1; x), g12 = G(−4,y, − 1; x)

G(a, a1, …, an; x) = ∫
x

0
dwa(x′ )G(a1, …, an; x′ ),

dwy(x) =
ydx
x

, dwa(x) =
dx

x − a
(a = − 4, − 2, − 1,0)

where
x =

s − m2

m2
y =

s − m2

s + 3m2



Discussions
• Bloch-Nordsieck theorem: IR divergences cancel when both real and 

virtual contributions are summed over

• Thirring’s theorem: near the threshold , NLO cross section vanishess → m2

[9704368, Dittmaier]

σ =
πα2

m2 [ 8
3

−
8
3

x + ⋯] +
α3

m2
x2 [−

16
9

ln x +
7
15

+ ⋯], x =
s − m2

m2Threshold:

High energy: σ =
πα2

s [2 ln
s

m2
+ 1 + ⋯] +

α3

s [ 1
3

ln3 s
m2

−
1
2

ln2 s
m2

+
17
4

ln
s

m2
−

75
8

−
π2

2
+ 4ζ3 + ⋯]
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Asymptotics



Total Cross Sections in QED

• DGLAP equations cannot reproduce all logarithms: 


PDFs predict  at NLO (collinear logarithms)


• It is important to understand these logarithms (Glauber modes) and resum 
them in the future.


• It is also essential to construct IR finite cross section beyond LO.

α3

s
ln2 s

m2

• Compton scattering: e−γ → e−γ

• Pair production: γγ → e+e−

σ =
2πα2

s
ln

s
m2 (1+

α
6π

ln2 s
m2

+⋯)
σ =

4πα2

s
ln

s
m2 (1+

α
12π

ln2 s
m2

+⋯)
• Annihilation: e+e− → γγ σ =

2πα2

s
ln

s
m2 (1+

α
6π

ln2 s
m2

+⋯)

[1703.08572, Schwartz, Yan, Zhu]

[Bhattacharya, Schwartz, in progress]


