于改道研究听

Tsung-Dao Lee Institute

上海交通大學

Muon g-2/EDM experiments and their requirements to future muon sources Khaw Kim-Siang (许金祥) 2020 EMuS & MOMENT General Meeting Dec 11-12, 2020

Outline

- Physics Motivation
 - Muon magnetic dipole moment and electric dipole moment
- Muon g-2/EDM
 - Fermilab, J-PARC, PSI
- Future g-2/EDM
 - Possibilities at CSNS EMuS and HEMS
- Summary

About Magnetic Dipole Moment (MDM)

- For a charged, spin-1/2 particle, intrinsic angular momentum (spin) generates magnetic dipole moment
- g = 2 for a "free" Dirac particle, g > 2 due to quantum fluctuation
- Measurement of g-factor for proton (5.6) and neutron (-3.8) hinted at their internal structures
- Measuring the size of quantum corrections reveals particle and interaction content of the universe
- The "anomalous magnetic moment (AMM)"

$$a = \frac{g-2}{2}$$

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

T i i i

Muon g-2: A longstanding puzzle

What is the Nature trying to tell us? • Error in the theory? • Error in the experiment? **New Physics?**

Phys Rev D101 014029

Measurement

G.W.Bennett et al., Phys. Rev. D 73, 072003

Picture credit: BNL

Which BSM models can accommodate this deviation?

[e.g.: Cox, Han, Yanagida '18]:

Many models! General ideas still viable (SUSY, THDM, LQ, VLL, . . .) But: restricted parameter space! Specific scenarios excluded!

Dominik Stöckinger

g-2 Collaboration Meeting, 30th November 2020

Muon g-2: Very active community

T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

 $a_{\mu}^{\exp} = 116\,592\,089(63) \times 10^{-11}$

 $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM} = 279(76) \times 10^{-11}$

Muon g-2: Fermilab vs J-PARC

Very different systematics! Important crosschecks!

2018-2022++

Calorimetry

3.1 GeV/c μ⁺

Stati Mag Radi Cycle Prec Lifet Typi Bean Even 0.3 GeV/c μ⁺

istical goal	$100\mathrm{ppb}$	$400\mathrm{ppb}$
netic field	$1.45\mathrm{T}$	$3.0\mathrm{T}$
ius	$711\mathrm{cm}$	$33.3\mathrm{cm}$
otron period	$149.1\mathrm{ns}$	$7.4\mathrm{ns}$
ession frequency, ω_a	$1.43\mathrm{MHz}$	$2.96\mathrm{MHz}$
time, γau_{μ}	$64.4\mu{ m s}$	$6.6\mu{ m s}$
ical asymmetry, A	0.4	0.4
n polarization	0.97	0.50
nts in final fit	$1.8 imes 10^{11}$	$8.1 imes 10^{11}$

2025-

Tracking

6

Muon g-2 Collaboration (>200 collaborators, 35 institutes, 7 countries)

许金祥

(上海交大)

李亮

(上海交大)

U,

Muon g-2 collaboration meeting at Elba, Summer 2019

We include: Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theory Physicists And we combine our effort to measure a single value, g-2, to 140 ppb (BNL - 540 ppb)!

The Big Move (2013)

g-2 Magnet in Cross Section

ing	RMS [ppm]	p-p [ppm]
	10	75
	30	230

Principle of g-2 measurement

Modulation of energy spectrum vs g-2 phase

Parity violation in weak decay!

(rest frame)

Frequency extraction: fitting the modulation

Polarized muon beam from FNAL accelerator

- 8 GeV p batches into Recycler Ring
- Each batch split into 4 bunches of 10¹² protons
- Extract 1 by 1 to hit target
- Long beam line to collect $\pi^+ \rightarrow \mu^+$
- $p/\pi/\mu$ enter Delivery Ring
 - π decay away, μ extracted, p aborted
- 3.1 GeV/c μ^+ enter storage ring (~10⁶ μ +/bunch, 1-2% stored)
- Goal to collect ~ 21x BNL (1.6 x 10¹¹ detected positrons)

The Muon Campus and MC1

Calorimeters measure positron time and energy

SiPM

Decay positron curving in and striking a calorimeter

PbF₂

pileup separation

PMT-like signal, B-field operation, 100% separation > 2.5 ns

Opened up calorimeter

Stacking crystals

Trackers extrapolate e+ to much decay position

The SWISS KNIFE for g-2 experiment

Trackers extrapolate e⁺ to muon decay position

Chamber

16

NMR probes measure magnetic fields

A 25-element **pNMR Trolley** was used to map the field during rough shimming adjustments

(see video)

A 17-element **pNMR Trolley** maps the field IN VACUUM during running periods

 $\land \land \land \land$

378 Fixed Probes above and below the vacuum chamber measure the field continuously throughout the experiment

(FID) Waveforms with ~10 ppb resolution Large gradients Small gradients Shimming Trolley Probe Matrix

17

Combining 3 keys together

 Spin polarized muons from Fermilab beamline

Combining 3 keys together

378 NMR probes + trolley

- Spin polarized muons from Fermilab beamline
- 2. Magnetic storage ring & NMR probes measuring B-field

Combining 3 keys together

24 calorimeters

- Spin polarized muons from Fermilab beamline
- Magnetic storage ring & NMR probes measuring B-field
- Calorimeters measuring positron energy and time

A typical muon precession measurement

 $N(t) = N_0 \cdot e^{-t/\tau} [1 + A_0 \cos(\omega_a(R) + \phi_0)]$ A "naïve" 5-parameter fit $N(t) = N_0 \cdot \Lambda(t) \cdot N_{1CBO}(t) \cdot N_{2CBO}(t) \cdot N_{VW}(t) \cdot N_{VO}(t)$

A typical field measurement

- Trolley maps full azimuth every few days
- Fixed probes monitor between trolley runs
- Field map is interpolated between trolley runs using fixed probe information

Field map in muon region

Current status

Independent Analyses

Take home messages:

- Collected > 7x BNL data over 3 years
- Systematics well below statistics (~450 ppb) for Run 1
- We are almost there (really)
 - We are leaving no stone uncovered in checking and double/triple/quadruple check blinded results
- As we go "beyond BNL", we are learning a lot with much better instruments and modeling
- Thank you for your patience and interest!

Field and beam maps, systematics finalizing. Preliminary results showed small systematics < 100 ppb.

า

...

MDM vs Electric Dipole Moment (EDM)

• Elementary particles can have an EDM:

$$\vec{d} = \eta \frac{q}{2mc} \vec{s}$$

EDM
$$\vec{\mu} = g \frac{q}{2m} \vec{s}$$
MDM

• In electric and magnetic fields, the Hamiltonian is

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot$$

- A permanent EDM violates both P and T invariance.
- If CPT is an unbroken symmetry \rightarrow CP violation

$$\vec{E}$$

	E	B	μο
Р	-	+	+
С	_	-	-
Т	+	-	-

CP violation and Matter-antimatter asymmetry

- CP violation = One of the Sakharov conditions to create the Baryon Asymmetry in the Universe (BAU)
- Searching for non-zero EDM \rightarrow probing matter-antimatter imbalance!
- In the Standard Model, tiny EDMs are generated by the CP violating phase in the CKM matrix (~10⁻⁴⁰-10⁻³⁰ e cm)

A. D. Sakharov JETP Lett.-USSR 5,24 (1967)

• An EDM signal > SM prediction \rightarrow new source of CP violation \rightarrow new Physics!

About SM's EDM Prediction: M. Pospelov and A. Ritz,, Phys. Rev. D89, 056006 (2014)

EDM Overview

What is so special about muon?

- (2nd generation, the only direct measurement on a charged particle)
- Present limit from BNL, $d_{\mu} < 1.8 \times 10^{-19} e cm$ (95% C.L.)
- Linear mass scaling in the SM + d_e limits imply $d_{\mu} \sim 10^{-27} e cm$
- However, BSM models predict quadratic or even cubic scaling! \rightarrow d_µ could be as high as ~10⁻²² e cm
- Moreover, Muon g-2 experiments measure contributions from both MDM and EDM!

$$\omega_{tot} = \sqrt{\omega_a{}^2 + \omega_\eta{}^2}$$

• All searches involve 1st generation particles (e, p, n, Hg, ..), except for the muon

Parasitic approach for muon EDM search

Frozen-spin technique for EDM search

BNL, FNAL: use $\gamma = 29.3$ J-PARC: no E-field focusing

The "parasitic" approach with g-2 (performed or proposed at BNL, FNAL and J-PARC)

The "frozen-spin" approach (proposed at J-PARC, PSI)

Compact storage ring at PSI

- Weak focusing magnet
- Polarized µ-beam
- Trigger from beam telescope for start of inflector ramp (resonance ½ integer injection*)
- One muon at a time ~200 kHz rate
- Tracking detector for positrons (resolution ~0.25×0.25 mm²)
- Detector prototype:
 - Combination of scintillating tiles (timing) and thin MAPS (track, momentum)
 - Optional calorimeter

A. Adelmann *et al.* JPG 37(2010)085001 * H. Yamada et al. NIMA467/368(2001) A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg, Phys. Rev. D 98, 113002 (2018)

Current status: annual beam time at PSI

Test bea

Beam size

 R_{μ} : 6.2 × 10⁶ µ⁺/s @2.2 mA Horizontal emittance: 105.24 mm•mrad Vertical emittance: 33.28 mm•mrad

Test beam 2020 (I was supposed to be there, oh well)

How to go beyond 100 ppb?

- - Farley 15 GeV

Uniform field

Radial edges

• Taqqu 20-T field

 independent of radius (momentum) Vertical focusing from magnet edges Horizontal focusing from bends

F.J.M. Farley, 523 (2004) 251–255

High momentum and high B-field approaches are being proposed in the past

How to go beyond 10-23 ecm?

- proposed in the past

installed.

Beam quality for precision muon measurements

- A typical surface muon source has an emittance of $1000\pi\,\mathrm{mm}\cdot\mathrm{mrad}$
- Such a beam is not suitable for storage ring experiments (g-2/EDM)
 - Small acceptance for the storage ring (1-2% storage for FNAL Muon g-2)
 - Large systematic bias if there is a large momentum spread
 - Therefore cooling or phase-space compression is needed
- Available/proposed techniques (improvement in emittance/phase-space)
 - PSI muCool Helium gas target + E/B field (10¹⁰ phase space, 1 eV 1 mm)
 - PSI muE4 (muSR) Solid rare gases + re-acceleration (15 eV \rightarrow 0-30 keV, 20 eV spread)
 - J-PARC muon g-2/edm Mu production + ionization + re-acceleration (~ 1000)
 - US/UK/Japan MuCool Ionization cooling (a few hundreds)

General requirements for future experiments

- Quantity
 - At least 10¹⁴ muons will be needed to improve the experiments by an order of magnitude (10s of ppb for g-2, 10⁻²⁴ e·cm for EDM)
 - Assuming 3 years of data taking (50% duty cycle), a minimum of 2 x 10⁶/s "good" muons will be needed
 - A typical acceptance of 1% or less implies at least 2 x 10⁸/s of incoming muons (without cooling)
 - To reduce pileup rate, 100 bunch/s or more is desired
- Quality
 - Reducing beam emittance will be critical for compact storage ring experiments • Less important for lattice-type experiments but will help in reducing systematics

Possibilities at CSNS

参数	HEMS I	PSI	ISIS	JPARC
µSR应用				
重复频率[Hz]	100	CW	40	25
µ+强度[µ+/s]	2E6	1.5E7~4E8	5E5	3E6
探测器路数	256	6~12	96	128
极化率	90%	95%	95%	90%
e⁺/µ⁺	<1%	<1%	<1%	<1%
动量范围[MeV/c]	20-200	10-350	20-200	20-300
计数率[MEvent/h]	Up to 800	~20	20-200	180
粒子物理实验 HEMS II				
MuMuBar	3E8 µ⁺/s	8E6 µ⁺/s	NA	NA
Muon EDM	5E6 µ⁺/s	5E4 µ⁺/s	NA	NA

Courtesy 鲍煜

- High rEpetition rate Muon Source (HEMS) at CSNS
 - Still under R&D (Yu Bao)
 - HEMS I Could be used for the phase I of g-2/EDM experiments
 - HEMS II Could reach precision comparable with current g-2/ **EDM** experiments
 - Definitely worth exploring given that there are no dedicated muon source for muon physics experiments

Summary

- Muon is a highly sensitive probe for BSM physics
- Muon g-2 experiment at Fermilab is close in releasing the first result
- Will provide a hint to the community where the New Physics might be
- Various muon programs at the Intensity Frontier will benefit from it
 - Muon EDM? Muon-specific force? Lepton universality violation? etc
- Encouraging development for muon physics community in China:
 - The first high-intensity muon source EMuS will soon be built at CSNS (~ 5 years)
 - Another high-momentum (~GeV/c) muon beam a possibility at HIAF (5-10 years)
 - The MACE experiment (Mu-Mubar conversion) could reach world-best limit in 10 years
 - Both projects (Muon g-2 and EDM are supported by NSFC, Thank you very much!!!)

李政道研究听 Tsung-Dao Lee Institute

SHANGHAI JIAO TONG UNIVERSITY

Thanks!

New Idea: Crazy idea?

arXiv.org > hep-ph > arXiv:2012.02769

High Energy Physics – Phenomenology

[Submitted on 4 Dec 2020]

Probing the muon g-2 anomaly at a Muon Collider

Dario Buttazzo, Paride Paradisi

The capability of a foreseen Muon Collider to measure the muon g-2 is systematically investigated. We demonstrate that a Muon Collider, running at center-of-mass energies of several TeV, can provide the first model-independent determination of the muon g-2 in high-energy particle physics. This achievement would be of the utmost importance to shed light on the longstanding muon g-2 anomaly and to discover possible new physics directly in high-energy collisions.

$$\sigma_{\mu\mu\to c\bar{c}} \approx 100 \,\mathrm{fb} \left(\frac{\sqrt{s}}{3 \,\mathrm{TeV}}\right)^{-} \left(\frac{\Delta a_{\mu}}{3 \times 10}\right)^{-1} \left(\frac{\Delta a_{\mu}}{3 \times 10}\right)^{-1} \left(\frac{\Delta a_{\mu}}{3 \times 10}\right)^{-1} \left(\frac{\Delta a_{\mu}}{3 \times 10}\right)^{-1} \left(\frac{10 \,\mathrm{TeV}}{\sqrt{s}}\right)^{-1} \left(\frac{10 \,\mathrm{TeV}}{\sqrt{s}}\right$$

c

40 The HL-LHC will take over in 2026, with the goal of reaching **3000 fb**⁻¹ by **2037**.

References for Muon EDM

Year	Location	Publication	Limit [e cm] (95% C.L.)
1958	Columbia University	PRL 1, 144 (1958)	2.9 x 10 ⁻¹⁵
1960	Columbia University	PR 118, 1086 (1960)	3.3 x 10 ⁻¹⁶
1960	CERN	II Nuovo Cimento XVII 3 (1960)	1.5 x 10 ⁻¹⁶
1961	CERN	II Nuovo Cimento XXII 5 (1961)	2.8 x 10 ⁻¹⁷
1978	CERN	J. Phys. G 4, 345 (1978)	1.05 x 10 ⁻¹⁸
2003	J-PARC	2003 (LOI) [<u>J-PARC L22]</u>	O(10 ⁻²⁴)
2006	PSI	J. Phys. G 37, 085001 (2010)	7 x 10 ⁻²³
2009	BNL	PRD 80, 052008 (2009)	1.8 x 10 ⁻¹⁹
2022?	FNAL	[FERMILAB-PROPOSAL-0989] (2009)	O(10 ⁻²¹)
2026?	J-PARC	[KEK_J-PARC-PAC2009-06] (2009)	O(10 ⁻²¹)
2027?	PSI	PRD 98, 113002 (2018)	5 x 10 ⁻²³

