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About Magnetic Dipole Moment (MDM)
• For a charged, spin-1/2 particle, intrinsic angular momentum (spin) 

generates magnetic dipole moment

• g = 2 for a “free” Dirac particle, g > 2 due to quantum fluctuation
• Measurement of g-factor for proton (5.6) and neutron (-3.8) hinted at 

their internal structures
• Measuring the size of quantum corrections reveals particle and 

interaction content of the universe
• The “anomalous magnetic moment (AMM)”
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+ ???



Muon g-2: A longstanding puzzle
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What is the Nature trying to tell us? 
• Error in the theory?

• Error in the experiment?

• New Physics?

Picture credit: BNL

SM Prediction

G.W.Bennett et al., Phys. Rev. D 73, 072003

MeasurementPhys Rev D101 014029



Which BSM models can accommodate this deviation?
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Many models! General ideas still viable (SUSY, THDM, LQ, VLL, . . . ) 

But: restricted parameter space! Specific scenarios excluded!



Muon g-2: Very active community

6T. Aoyama et al., Phys. Rept. 887 (2020) 1-166

2018-2022++ 2025-
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Muon g-2 Collaboration
(>200 collaborators, 35 institutes, 7 countries)

We include: Particle-, Nuclear-, Atomic-, Optical-, Accelerator-, and Theory Physicists 
And we combine our effort to measure a single value, g-2, to 140 ppb (BNL - 540 ppb)!

Muon g-2 collaboration meeting at Elba, Summer 2019

许⾦祥

（上海交⼤）

李亮

（上海交⼤）



The Big Move (2013)
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BNLFermilab 

Oct 2015 à Sep 2016

Rough Shimming RMS [ppm] p-p [ppm]
FNAL 10 75
BNL 30 230

B=1.45 T

2013

2015

北京

⼴⻄

内蒙古



Principle of g-2 measurement
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CyclotronLarmor Thomas
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Modulation of energy spectrum vs g-2 phase
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Parity violation in weak decay!

High energy positron  
follows muon spin! 

(rest frame)

+

+

+ or



Frequency extraction: fitting the modulation
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θ

p

s

the g-2 “wiggle plot”

N(t) = N0e−t/τ [1 + Aμ cos(ωat + ϕ)]



Polarized muon beam from FNAL accelerator
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Intensity	profile	is	120	ns	
wide	with	“W”	shape

• 8 GeV p batches into Recycler Ring

• Each batch split into 4 bunches of 1012 

protons

• Extract 1 by 1 to hit target

• Long beam line to collect π+ → μ+

• p/π/μ enter Delivery Ring

• π decay away, μ extracted,  

p aborted

• 3.1 GeV/c μ+ enter storage ring 

(~106 μ+/bunch, 1-2% stored)

• Goal to collect ~ 21x BNL  

(1.6 x 1011 detected positrons)



The Muon Campus and MC1
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Muon beam

MC1



Calorimeters measure positron time and energy
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 e+ 

Stacking crystalsOpened up calorimeter

SiPM PbF2 pileup separation

PMT-like signal, B-field operation, 100% separation > 2.5 ns

6
9

Decay positron curving in and 
striking a calorimeter



Trackers extrapolate 𝒆+ to muon decay position
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Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	verticesBeam profile from Run 1

Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices

The SWISS KNIFE for g-2 experiment



Trackers extrapolate 𝒆+ to muon decay position
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Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices

Vacuum	Chamber

Calorimeters Tracker

extrapolated	decay	vertices



NMR probes measure magnetic fields
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A 25-element pNMR Trolley was used to map 
the field during rough shimming adjustments 
(see video) 


A 17-element pNMR Trolley maps the field IN 
VACUUM during running periods 

Large gradientsSmall gradients

(FID) Waveforms with ~10 ppb resolution

Shimming Trolley Probe Matrix

378 Fixed Probes above and below the vacuum chamber 
measure the field continuously throughout the experiment



Combining 3 keys together
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1. Spin polarized muons from 
Fermilab beamline

 µ+ 

 µ+ 



Combining 3 keys together
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1. Spin polarized muons from 
Fermilab beamline


2. Magnetic storage ring & NMR 
probes measuring B-field

 µ+ 

 µ+ 
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Combining 3 keys together
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1. Spin polarized muons from 
Fermilab beamline


2. Magnetic storage ring & NMR 
probes measuring B-field


3. Calorimeters measuring positron 
energy and time

 µ+ 

 µ+ 
 e+ 

 24 calorimeters 

ωa



A typical muon precession measurement
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A “naïve” 5-parameter fit

3 December 2020

TDR

Prelim
inary

Fermilab PAC
Muon precession data + Fit

With correct function, the residuals are flat (as they must be) and 
the c2 is good and fit results are stable

0-100

100-200

200-300

300-400

400-500

500-600

600-700

Understanding beam dynamics 

essential in nailing down the frequency



A typical field measurement
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• Trolley maps full azimuth every few days

• Fixed probes monitor between trolley runs

• Field map is interpolated between trolley 

runs using fixed probe information

E. Swanson

Field map in muon region
R. Osofsky

Fixed probes
M. Smith

S. Charity



Current status
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Ramping up Run 4 

right now!

Take home messages: 
• Collected > 7x BNL data over 3 years

• Systematics well below statistics (~450 ppb) for Run 1

• We are almost there (really)


• We are leaving no stone uncovered in checking and  
double/triple/quadruple check blinded results


• As we go “beyond BNL”, we are learning a lot with much  
better instruments and modeling


• Thank you for your patience and interest!

Field and beam maps, systematics finalizing. 

Preliminary results showed small systematics < 100 ppb.

Relative unblinding completed for Run 1

SJTU



MDM vs Electric Dipole Moment (EDM)
• Elementary particles can have an EDM:


• In electric and magnetic fields, the Hamiltonian is


• A permanent EDM violates both P and T invariance. 


• If CPT is an unbroken symmetry → CP violation

24

EDM MDM



CP violation and Matter-antimatter asymmetry
• CP violation = One of the Sakharov conditions 

to create the Baryon Asymmetry in the Universe (BAU)


• Searching for non-zero EDM  
→ probing matter-antimatter imbalance! 


• In the Standard Model, tiny EDMs are generated by the 
CP violating phase in the CKM matrix (~10-40-10-30 e cm)


• An EDM signal > SM prediction → new source of CP violation → new Physics!
25

A. D. Sakharov JETP Lett.-USSR 5,24 (1967)

About SM’s EDM Prediction: M. Pospelov and A. Ritz,, Phys. Rev. D89, 056006 (2014)



EDM Overview
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Least tested area of SM

Current muon limit



What is so special about muon?
• All searches involve 1st generation particles (e, p, n, Hg, ..), except for the muon 

(2nd generation, the only direct measurement on a charged particle)


• Present limit from BNL, dμ < 1.8 x 10-19 e cm (95% C.L.)


• Linear mass scaling in the SM + de limits 
imply dμ ~ 10-27 e cm


• However, BSM models predict quadratic 
or even cubic scaling! 
→ dμ could be as high as ~10-22 e cm


• Moreover, Muon g-2 experiments measure 
contributions from both MDM and EDM!

27 Electron EDM: V. Andreev et al. (ACME), Nature 562, 355 (2018)



Parasitic approach for muon EDM search
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Existence of an EDM causes the precession plane to tilt 
→ vertical oscillating of the positron emission angle  

MC

Data (BNL)



Frozen-spin technique for EDM search
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The “parasitic” approach with g-2 
(performed or proposed at BNL, FNAL and J-PARC)

BNL, FNAL: use γ = 29.3

J-PARC: no E-field focusing

The “frozen-spin” approach 
(proposed at J-PARC, PSI)

J-PARC, PSI: E ~ aBcβγ2 
J-PARC: storage ring lattice, <R> ~ 11 m

PSI: compact storage ring, <R> ~ 0.3 m

⃗ω s − ⃗ω c = −
e
m {a ⃗B + ( 1

γ2 − 1
− a)

⃗β × ⃗E
c

+
η
2 (

⃗E
c

+ ⃗β × ⃗B )}
ωa : AMM ωη: EDM



Compact storage ring at PSI
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Electrodes
−60kV

3cm

!

!

12
cm

6cm

~20 turn 
injection

Pertubator

Beam telescope (tr
igger)

"
(125

MeV
/c)

#(1.5T)

*
(234/5)

<
1m

0.28m

ground

magn. channel

scintillators

MAPS

• Weak focusing magnet 

• Polarized μ-beam 

• Trigger from beam telescope for start of  

inflector ramp (resonance ½ integer injection*)

• One muon at a time ~200 kHz rate

• Tracking detector for positrons 

(resolution ~0.25×0.25 mm2)

• Detector prototype:

• Combination of scintillating tiles (timing) 

and thin MAPS (track, momentum)

• Optional calorimeter

A. Adelmann et al. JPG 37(2010)085001
* H. Yamada et al. NIMA467/368(2001)

A. Crivellin, M. Hoferichter, and P. Schmidt-Wellenburg, Phys. Rev. D 98, 113002 (2018)



Current status: beam injection & storage simulation
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Systematics study on-going (gradient field)



Current status: annual beam time at PSI

32

Test beam 2019

Test beam 2020 
(I was supposed to be there,


oh well ……)



How to go beyond 100 ppb?
• High momentum and high B-field approaches are being proposed in the past

• Farley 15 GeV

• Taqqu 20-T field

33 D. Taqqu, Poster at PSI 2013, PSIF.J.M. Farley, 523 (2004) 251–255



How to go beyond 10-23 ecm?
• Low momentum lattice and compact storage ring approaches are being 

proposed in the past

• J-PARC PRISM 500 MeV/c - Lattice storage ring

• PSI 200 MeV/c - Compact storage ring

34

www-ps.kek.jp/jhf-np/LOIlist/pdf/L22.pdf



Beam quality for precision muon measurements
• A typical surface muon source has an emittance of 

• Such a beam is not suitable for storage ring experiments (g-2/EDM)

• Small acceptance for the storage ring (1-2% storage for FNAL Muon g-2)

• Large systematic bias if there is a large momentum spread

• Therefore cooling or phase-space compression is needed


• Available/proposed techniques (improvement in emittance/phase-space)

• PSI muCool - Helium gas target + E/B field (1010 phase space, 1 eV - 1 mm)

• PSI muE4 (muSR) - Solid rare gases + re-acceleration (15 eV→0-30 keV, 20 eV spread)

• J-PARC muon g-2/edm - Mu production + ionization + re-acceleration (~ 1000)

• US/UK/Japan MuCool - Ionization cooling (a few hundreds)

1000π mm ⋅ mrad

35



General requirements for future experiments
• Quantity

• At least 1014 muons will be needed to improve the experiments by an order of 

magnitude (10s of ppb for g-2, 10-24 e·cm for EDM)

• Assuming 3 years of data taking (50% duty cycle), a minimum of 2 x 106/s “good” 

muons will be needed

• A typical acceptance of 1% or less implies at least 2 x 108/s of incoming muons 

(without cooling)

• To reduce pileup rate, 100 bunch/s or more is desired


•  Quality

• Reducing beam emittance will be critical for compact storage ring experiments

• Less important for lattice-type experiments but will help in reducing systematics

36



Possibilities at CSNS

37
Courtesy 鲍煜

• High rEpetition rate Muon 
Source (HEMS) at CSNS

• Still under R&D (Yu Bao)

• HEMS I - Could be used for the 

phase I of g-2/EDM experiments

• HEMS II - Could reach precision 

comparable with current g-2/
EDM experiments


• Definitely worth exploring given 
that there are no dedicated 
muon source for muon physics 
experiments



Summary
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• Muon is a highly sensitive probe for BSM physics

• Muon g-2 experiment at Fermilab is close in releasing the first result

• Will provide a hint to the community where the New Physics might be

• Various muon programs at the Intensity Frontier will benefit from it

• Muon EDM? Muon-specific force? Lepton universality violation? etc


• Encouraging development for muon physics community in China:

• The first high-intensity muon source EMuS will soon be built at CSNS (~ 5 years)

• Another high-momentum (~GeV/c) muon beam a possibility at HIAF (5-10 years)

• The MACE experiment (Mu-Mubar conversion) could reach world-best limit in 10 years

• Both projects (Muon g-2 and EDM are supported by NSFC, Thank you very much!!!)



ThanksThanks！



New Idea: Crazy idea?
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https://arxiv.org/abs/2012.02769

The HL-LHC will take over in 2026, with the goal of reaching 3000 fb-1 by 2037.



References for Muon EDM
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Year Location Publication Limit [e cm] (95% C.L.)

1958 Columbia University PRL 1, 144 (1958) 2.9 x 10-15

1960 Columbia University PR 118, 1086 (1960) 3.3 x 10-16

1960 CERN Il Nuovo Cimento XVII 3 (1960) 1.5 x 10-16

1961 CERN Il Nuovo Cimento XXII 5 (1961) 2.8 x 10-17

1978 CERN J. Phys. G 4, 345 (1978) 1.05 x 10-18

2003 J-PARC 2003 (LOI) [J-PARC L22] O(10-24)

2006 PSI J. Phys. G 37, 085001 (2010) 7 x 10-23

2009 BNL PRD 80, 052008 (2009) 1.8 x 10-19

2022? FNAL [FERMILAB-PROPOSAL-0989] (2009) O(10-21)

2026? J-PARC [KEK_J-PARC-PAC2009-06] (2009) O(10-21)

2027? PSI PRD 98, 113002 (2018) 5 x 10-23

4 orders of m
agnitude in 50 years

http://www-ps.kek.jp/jhf-np/LOIlist/pdf/L22.pdf

