





# PROSPECTS OF PROBING PHYSICS BEYOND THE STANDARD MODEL IN MOMENT

Sampsa Vihonen (SYSU)

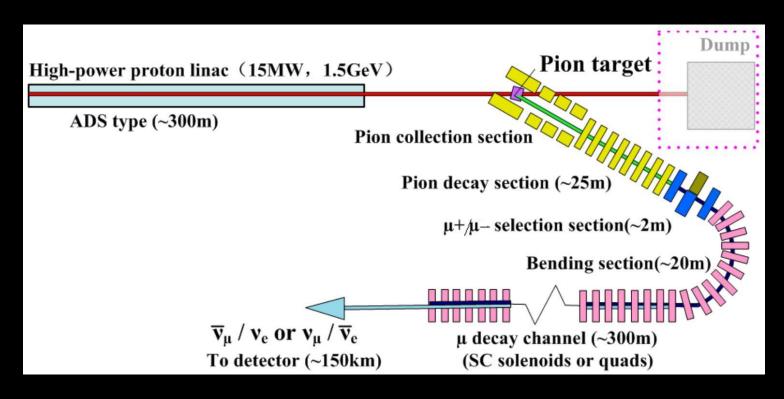
EMuS/MOMENT Annual Meeting 2020

CSNS 2020-12-11

 $v_e$ 

 $v_e$ 

 $^{\mathsf{v}}e$ 


 $v_{\mu}$   $v_{\mu}$ 

### TABLE OF CONTENTS

- Overview of MOMENT and its objectives
- CP-violation and precision on Dirac CP phase
- Shaping the physics program of MOMENT
- Is there hope for a Chinese accelerator neutrino experiment?


## OVERVIEW OF MOMENT AND ITS OBJECTIVES

MOMENT has numerous advantages over superbeam experiments:



- Access to eight oscillation channels
- Negligible beam background
- Very good control of the systematic uncertainties
- Extremely powerful neutrino beam

# OVERVIEW OF MOMENT AND ITS OBJECTIVES



#### MOMENT:

• Beam power: 15 MW

• Beam width: 100...300 MeV

**CAS-IMP** • Baseline length: 150 km

**Nanjing University** 

**CSNS** 

**SPPC** 

**CIADS** 

 $v_{\mu}$ 

# OVERVIEW OF MOMENT AND ITS OBJECTIVES

### MOMENT in comparison with the other laboratories:

#### MOMENI

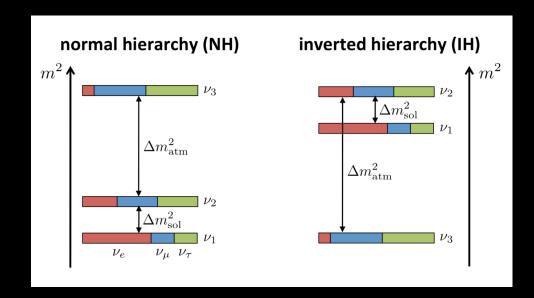
| Accelerator facility | Baseline | 1st max | 2nd max | Baseline | 1st max | 2nd max |
|----------------------|----------|---------|---------|----------|---------|---------|
| CAS-IMP              | 894 km   | 2.7 GeV | 600 MeV | 1742 km  | 3.5 GeV | 1.2 GeV |
| CSNS                 | 1329 km  | 2.8 GeV | 900 MeV | 84 km    | 170 MeV | 60 MeV  |
| Ciads                | 1389 km  | 1.8 GeV | 940 MeV | 146 km   | 300 MeV | 100 MeV |
| Nanjing University   | 1363 km  | 3.4 GeV | 1.1 GeV | 1189 km  | 2.4 GeV | 800 MeV |
| SPPC                 | 1736 km  | 3.5 GeV | 1.2 GeV | 1814 km  | 3.7 GeV | 1.2 GeV |

MOMENT beam width (100 MeV... 300 MeV) is enough to cover the first oscillation maximum and part of the second maximum.

### OVERVIEW OF MOMENT AND ITS **OBJECTIVES**

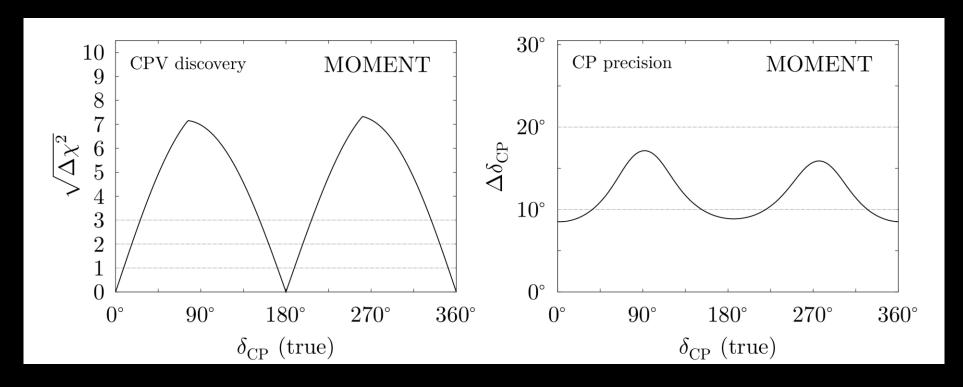
### Introduction to neutrino mixing:

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \\ \mathbf{v}_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$


#### Global fit to the world data (normal ordering, after July 2020):

| Parameter           | Central value                       | Error ( $1\sigma$ CL)               |  |  |
|---------------------|-------------------------------------|-------------------------------------|--|--|
| $	heta_{12}$        | 33.44°                              | 0.77°                               |  |  |
| $	heta_{13}$        | 8.57°                               | 0.12°                               |  |  |
| $	heta_{23}$        | 49.2°                               | 1.2°                                |  |  |
| $\delta_{	ext{CP}}$ | 197°                                | 27°                                 |  |  |
| $\Delta m^2_{21}$   | $7.42 \times 10^{-5} \text{ eV}^2$  | $0.21 \times 10^{-5} \text{ eV}^2$  |  |  |
| $\Delta m^2_{31}$   | $2.517 \times 10^{-3} \text{ eV}^2$ | $0.027 \times 10^{-3} \text{ eV}^2$ |  |  |

#### Unsolved problems:


- What is the value of δ<sub>CP</sub>?
  Is θ<sub>23</sub> > 0 or θ<sub>23</sub> < 0 ?</li>

  - What is the sign of  $\Delta m_{\rm atm}^2$



# CP-VIOLATION AND PRECISION ON DIRAC CP PHASE

The CP violation discovery potential and precision on the Dirac CP phase:



## CP-VIOLATION AND PRECISION ON DIRAC CP PHASE

#### Publication timeline:

- The search for CP violation was proposed as original goal (arXiv:1401.8125)
- MOMENT can compete with T2HK and DUNE, but it can not outperform them (arXiv:1511.02859)
- LBL experiments suffer from degeneracy with NC-NSI. MOMENT can rid them from this problem. (arXiv:1602.07099)
- Precision measurement of  $\delta_{CP}$  was later considered (arXiv:1909.01548)

#### The conclusion so far:

Altogether, MOMENT can not outperform other experiments but it can act as a decider in reaching important milestones.

νμ

## SHAPING THE PHYSICS PROGRAM OF MOMENT

What else can MOMENT do besides CP measurements?

- Non-standard interactions (arXiv:1705.09500)
- Invisible neutrino decay (arXiv:1811.05623)
- Flavour symmetries (e.g. tri-direct littlest seesaw arXiv:1907.01371)
- Sterile neutrinos (arXiv:2003.02792)

The answer: precision measurements and searches for physics beyond the Standard Model

### NON-STANDARD NEUTRINO INTERACTIONS

Charged-current NSI can affect neutrino production and detection:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle \qquad \langle \nu_{\beta}^{d}| = \langle \nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

$$\langle \nu_{\beta}^d | = \langle \nu_{\gamma} | \frac{(1 + \epsilon^d)_{\gamma\beta}}{N_{\beta}^d}$$

Neutral-current NSI alters the propagation in matter:

$$H = \frac{1}{2E} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} + V_{\text{CC}} U^{\dagger} \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix} U$$

## NON-STANDARD NEUTRINO INTERACTIONS

#### The present bounds on NSI parameters:

$$|\epsilon^{\mu e}| < \begin{pmatrix} 0.025 & 0.03 & 0.03 \\ 0.025 & 0.03 & 0.03 \\ 0.025 & 0.03 & 0.03 \end{pmatrix}$$

at 90 % CL

#### **MOMENT** sensitivities:

MOMENT can improve the bounds on muonbased source NSI.

$$|\epsilon^{\mu e}| < \begin{pmatrix} 0.020 & 0.017 & 0.069 \\ 0.018 & 0.020 & 0.054 \\ - & - & - \end{pmatrix}$$

at 90 % CL

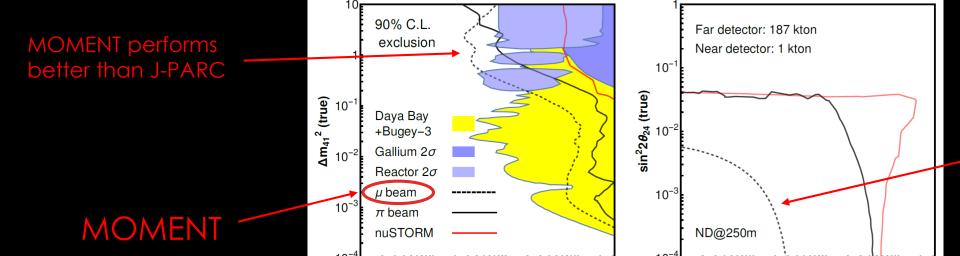
from arXiv:1705.09500

### STERILE NEUTRINOS

 MOMENT can probe the mixing with a sterile neutrino and limit its interference on the CP violation search with a suitable near detector.

10<sup>-1</sup>

 $10^{-3}$ 


 $10^{-2}$ 

 $\sin^2 2\theta_{14}$  (true)

 $10^{-1}$ 

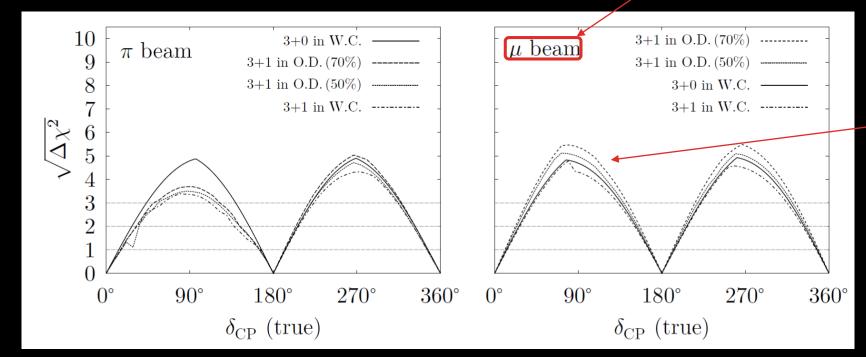
• In arXiv:2003.02792, we investigated a novel opaque detector technology in

this purpose:



 $10^{-2}$ 

 $\sin^2 2\theta_{14}$  (true)


A near detector of 1 kt is sufficient to surpass nuSTORM

### STERILE NEUTRINOS

Limiting the interference on the CP measurements:

MOMENT with 187 kton detector

Comparison with a beam from J-PARC



MOMENT does not suffer from the dip in 0...180° region.

### WHAT IS NEXT FOR MOMENT?

- Choosing the right physics program for MOMENT
  - Good results in CP violation, but it cannot outperform T2HK and DUNE
  - Precision measurements on  $\delta_{CP}$  and other oscillation parameters
  - Search for new physics and measure NSI in source and detector
- Now is the time to prepare a White paper
  - Update on the neutrino fluxes
  - Need to think about the near detector
  - A more careful evaluation of the atmospheric neutrino background

# IS THERE HOPE FOR A CHINESE ACCELERATOR NEUTRINO EXPERIMENT?

**M** ASTANA KAZAKHSTAN ULAANBAATAR # MONGOLIA Ourumgi YRGYZSTAN **CJPL** KOREA Fuzhou ~ BANGL BURMA

There are many accelerator laboratories and two under-ground laboratories in China.

**CAS-IMP** 

SPPC

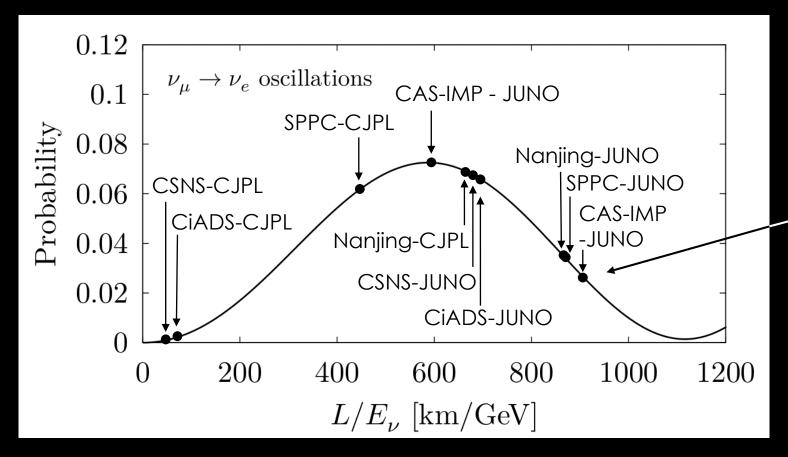
**Nanjing University** 

**CSNS** 

**CIADS** 

We are currently investigating the synergies of these sites in an accelerator experiment.

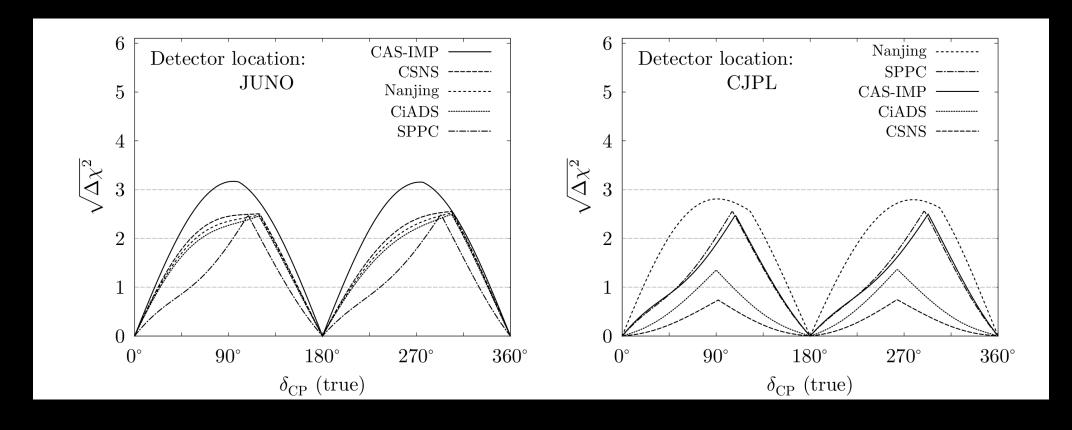
# IS THERE HOPE FOR A CHINESE ACCELERATOR NEUTRINO EXPERIMENT?


### Available baseline lengths and required energies:

| Accelerator facility | Baseline | 1st max | 2nd max | Baseline | 1st max | 2nd max |
|----------------------|----------|---------|---------|----------|---------|---------|
| CAS-IMP              | 894 km   | 2.7 GeV | 600 MeV | 1742 km  | 3.5 GeV | 1.2 GeV |
| CSNS                 | 1329 km  | 2.8 GeV | 900 MeV | 84 km    | 170 MeV | 60 MeV  |
| Ciads                | 1389 km  | 1.8 GeV | 940 MeV | 146 km   | 300 MeV | 100 MeV |
| Nanjing University   | 1693 km  | 3.4 GeV | 1.1 GeV | 1189 km  | 2.4 GeV | 800 MeV |
| SPPC                 | 1736 km  | 3.5 GeV | 1.2 GeV | 1814 km  | 3.7 GeV | 1.2 GeV |

 $v_{\mu}$ 

# IS THERE HOPE FOR A CHINESE ACCELERATOR NEUTRINO EXPERIMENT?


Oscillation probability vs  $L/E_{\nu}$ :



Markers show the projection for  $E_{\nu}$ ~ 2 GeV beam energy  $v_{\mu}$ 

# IS THERE HOPE FOR A CHINESE ACCELERATOR NEUTRINO EXPERIMENT?

CP violation discovery potential:



### SUMMARY

- MOMENT will do well in the CP violation search and precision measurements
- It also has a well-established case for searching for new physics
- The near detector will be an important part in new physics studies (see about light sterile neutrino in arXiv:2003.02792)
- Now is a good time to start preparing a white paper about MOMENT
- We are currently investigating the synergies of the different accelerator and underground laboratories in mainland China → stay tuned...