Shielding design and radiation damage for the target station

Guang Zhao, Nitin Yadav, Zongtai Xie, Zhilong Hou,

Nikos Vassilopoulos, Yuan Ye

zhaog@ihep.ac.cn

EMuS General Meeting 2020 @ CSNS

Outline

Introduction

Shielding design

- Proton extraction
- Optimization based on dose calculation

Radiation damage

- Conductor stability based on neutron fluence
- Thermal analysis based on energy deposition

Summary

Introduction

Superconducting solenoids system

Huge number of secondary particles produced in the target

Introduction

Forward collection in high magnetic field

Introduction

Need shields to protect the superconducting solenoids

The target station

- 1.6 GeV, <u>25 kW</u> proton beam
- Conical carbon target (better for surface muon production and radiation)
- 4-coil/3-step superconducting adiabatic solenoid (high particle collection efficiency)
- Tungsten shields to protect the coils from irradiation

Shield design

- Shields are placed in between the beam and the solenoids in order to protect the cables from irradiation
- The design of the shields should consider
 - Proton extraction
 - Radiation limit on the super conducting solenoids

Proton extraction

- High momentum protons must be extracted out of the target station
- The high momentum proton trajectories constrain the overall layout
- Study the proton beam trajectories in strong magnetic field (5T/1T)

Some low momentum protons are focused. As the high momentum protons deposit most, we only take them into account

Proton beam in (x, y) (5T field)

9

Proton beam in (x, y) (1T field)

The exit positions of the beam for different fields locate in a "circle", which means the beam can be extracted by a ring-like gap

Proton distribution in (r, z)

Proton distribution

The proton beam's radius almost increases linearly, so the inner shielding should be in cone-shape (current shields can extract > 90% of the beam)

Dose limit

- The most restricted radiation limit is the maximum local radiation dose to the superconductor insulator over the lifetime of the experiment.
- According to ref[1], after 100 MGy irradiation, glass fiber reinforced plastics (GFRPs) retains more than 88% of its flexural strength.
- In our study, we conservatively use 30 MGy as the radiation limit for the insulator

[1] Fusion Engineering and Design 112 (2016) 418–424

Shields optimization

- The thickness and the position are optimized according to the peak dose on the superconducting solenoids
- Various of shielding materials are considered
- Final design:

Capture Solenoid Coils	Length cm	Start Position cm	Max. Field T	Inner Radius cm	Inner W Shielding radius (min, max) cm	W shielding thickness (min, max) cm
CS1	100.35	-49.5	5	67	15	43
CS2	36.5	55.75	-	76	29.5, 42.7	36.5, 23.3
CS3	34.5	100.75	-	84	42.7, 52.7	32.3, 22.3
CS4	31.9	141.7	-	92	52.7, 60	28.3, 21
MS1	30.0	218.7	-	28	15	60

Key parameters:

- ✓ <u>CS1 shield thickness:</u> 43 cm
- ✓ MS1 shield thickness: 60 cm
- ✓ MS1 shield position: 218.7 cm
- ✓ <u>Material:</u> W + B₄C (thickness: 7 cm (2 cm for inner MS))

See Nitin's report for optimization details

Dose distribution

For 30 MGy limit,

- ✓ CS's can stand for more than 30 years
- ✓ MS can stand for about 23 years

Radiation damage calculation

RRR limit (conductor)

- RRR is defined as the ratio of the electrical resistance at room temperature of a conductor to that at 4.5 K.
- RRR is an important parameter for the superconducting magnet design that affects the magnet performance during operation in superconducting mode and irreversible transition to the normal state (quench).
- For a given sample exposed to various neutron spectra, the RRR will decrease. For the Al stabilizer, <u>we require RRR is not larger than 100.</u>

Temperature limit (solenoid)

The operation temperature of the superconducting coils should below the critical value with a sufficient margin. <u>The limit is 6.2K for 5T magnetic field.</u>

Fast neutron flux distribution

- Peak fast neutron flux on solenoids is 4.5E20 n/m²
- RRR of the solenoid conductor can be decreased by exploding in neutron irradiation

Neutron irradiation tests at Kyoto Univ. Research Reactor Institute

Al stabilizer sample

FIGURE 2. The aluminum sample cut from the aluminum stabilized superconductor attached with a voltage sense wire.

Al's electrical resistance in neutron irradiation environment

Period	Temperature	Integrated Fast-Neutron Fluence	Measured Resistance	\checkmark
Before cool-down	300 K	0	1.37 mΩ	
After cool-down	10 K	0	3.0 μΩ	
During irradiation	12 K - 15 K	(flux : 1.4×10 ¹⁵ n/m ² /s)	3.1 μΩ – 5.7 μΩ	
			(increased monotonically with	
			fluence)	\checkmark
After irradiation	12 K	$2.3 \times 10^{20} \text{ n/m}^2$	5.6 μΩ	
After warm-up to room	302 K	$2.3 \times 10^{20} \text{ n/m}^2$	1.36 mΩ	
temperature				
After the second cool-down	12 K	$2.3 \times 10^{20} \text{ n/m}^2$	3.0 μΩ	

TABLE 2. Summary of the Resistance Changes Observed in the Experiment

- Neutron induced resistance rate is $0.03 \ n\Omega \cdot m$ for 10^{20} n/m2
- The resistance can be recovered by warming up to room temperature

[2] M. Yoshida et al., Proc. AIP Conf., 2011, vol. 1435, pp. 167–173.

RRR estimation for Al stabilizer

- Effective RRR is calculated by $RRR = \frac{\rho_{RT}}{\rho(t)} = \frac{\rho_{RT}}{\rho_0 + r \times \Phi(t)}$
- Input the following parameters to the formula
 - Neutron induced resistance: $r = 0.03 n\Omega \cdot m$ for 10²⁰ n/m² (last page)
 - Initial RRR: 400 ($\rho_{RT} = 2.7 \times 10^{-8} \Omega$, $\rho_0 = 6.75 \times 10^{-11} \Omega$)

- ✓ The solenoid-system can run for a whole accelerator year.
 - The RRR can be 100% recovered by warming up the system to room temperature.

Energy deposition distribution

Total power deposition: 5.6 kW out of 25 kW

Thermal analysis

Cooling pipe number: 10-5-5-5 No Al thermal bridge

The temperatures are all below the 6.2 K limit after 6-month operation. (See Zongtai's report for details, and also for the quench analysis)

Summary

A detail radiation study has been carried out

- W+ B₄C shields are designed for the superconducting solenoid protection considering:
 - Proton extraction: can extract in both 5T/1T fields
 - Dose on coils: 30-year for CS, 23-year for MS
- Radiation damage is estimated
 - RRR of conductor: can run for a whole accelerator year
 - Temperature: can run for at least 6 months

TDR is almost ready

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	<image/> <image/> <caption></caption>		<figure></figure>	<section-header><section-header><section-header><section-header><text><figure><figure><text></text></figure></figure></text></section-header></section-header></section-header></section-header>	<figure><figure><figure><figure></figure></figure></figure></figure>
---	---------------------------------------	--	-------------------	--	--