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Introduction
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Superconducting solenoids system

Huge number of secondary particles produced in the target



Introduction
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Forward collection in high magnetic field

High collection 
efficiency

Superconducting solenoids system
High radiation 
damage



Introduction

5

Need shields to protect the superconducting solenoids

High collection 
efficiency

Superconducting solenoids system
High radiation 
damage

Shielding system
Important and 
challenging!



The target station

◼ 1.6 GeV, 25 kW proton beam

◼ Conical carbon target (better for surface muon production and radiation)

◼ 4-coil/3-step superconducting adiabatic solenoid (high particle collection 
efficiency)

◼ Tungsten shields to protect the coils from irradiation
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◼ Shields are placed in between the beam and the solenoids in order to 
protect the cables from irradiation

◼ The design of the shields should consider
◼ Proton extraction

◼ Radiation limit on the super conducting solenoids

Shield design
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Proton extraction

◼ High momentum protons must be extracted out of the target station

◼ The high momentum proton trajectories constrain the overall layout

◼ Study the proton beam trajectories in strong magnetic field (5T/1T)
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Kinetic Energy (GeV/c)

@z = 250cm:
- Ekin > 1.5 GeV
- Ekin < 1.5 GeV

Some low momentum protons are focused. As the high 
momentum protons deposit most, we only take them into account



Proton beam in (x, y) (5T field)
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Target station exit

CS4 Shielding 
boundary

MS1 Shielding 
boundary



Proton beam in (x, y) (1T field)
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CS4 Shielding 
boundary

Target station exit

The exit positions of the beam for different fields locate in a 
“circle”, which means the beam can be extracted by a ring-like gap

MS1 Shielding 
boundary



Proton distribution in (r, z)
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The proton beam’s radius almost increases linearly, so the inner 
shielding should be in cone-shape (current shields can extract > 90% 
of the beam)



Dose limit

◼ The most restricted radiation limit is the maximum local radiation dose to the 
superconductor insulator over the lifetime of the experiment. 

◼ According to ref[1], after 100 MGy irradiation, glass fiber reinforced plastics 
(GFRPs) retains more than 88% of its flexural strength.

◼ In our study, we conservatively use 30 MGy as the radiation limit for the 
insulator

12[1] Fusion Engineering and Design 112 (2016) 418–424 



Shields optimization

◼ The thickness and the position are optimized according to the peak dose on 
the superconducting solenoids

◼ Various of shielding materials are considered

◼ Final design:

13

See Nitin’s report for optimization details

Key parameters:
✓ CS1 shield thickness: 43 cm
✓ MS1 shield thickness: 60 cm
✓ MS1 shield position: 218.7 cm
✓ Material: W + B4C (thickness: 7 cm 

(2 cm for inner MS))



Dose distribution
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For 30 MGy limit, 
✓ CS’s can stand for more than 30 years
✓ MS can stand for about 23 years



Radiation damage calculation 

◼ RRR limit (conductor)
◼ RRR is defined as the ratio of the electrical resistance at room temperature 

of a conductor to that at 4.5 K.

◼ RRR is an important parameter for the superconducting magnet design that 
affects the magnet performance during operation in superconducting 
mode and irreversible transition to the normal state (quench). 

◼ For a given sample exposed to various neutron spectra, the RRR will 
decrease. For the Al stabilizer, we require RRR is not larger than 100.

◼ Temperature limit (solenoid)
◼ The operation temperature of the superconducting coils should below the 

critical value with a sufficient margin. The limit is 6.2K for 5T magnetic field.
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Fast neutron flux distribution
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(> 200 keV)

• Peak fast neutron flux on solenoids is 4.5E20 n/m2

• RRR of the solenoid conductor can be decreased by exploding 
in neutron irradiation 



Neutron irradiation tests at Kyoto Univ. 
Research Reactor Institute

17[2] M. Yoshida et al., Proc. AIP Conf., 2011, vol. 1435, pp. 167–173.

Al stabilizer sample

Al’s electrical resistance in 
neutron irradiation environment

✓ Neutron induced resistance 
rate is 0.03 𝑛Ω ∙ 𝑚 for 1020

n/m2
✓ The resistance can be 

recovered by warming up to 
room temperature



◼ Effective RRR is calculated by 𝑅𝑅𝑅 =
𝜌𝑅𝑇

𝜌(𝑡)
=

𝜌𝑅𝑇

𝜌0+𝑟×Φ(𝑡)

◼ Input the following parameters to the formula

◼ Neutron induced resistance: 𝑟 = 0.03 𝑛Ω ∙ 𝑚 for 1020 n/m2 (last page)

◼ Initial RRR: 400 (𝜌𝑅𝑇 = 2.7 × 10−8Ω, 𝜌0 = 6.75 × 10−11Ω)

RRR estimation for Al stabilizer
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Limit

✓ The solenoid-system can run for 
a whole accelerator year.

✓ The RRR can be 100% recovered 
by warming up the system to 
room temperature.



Energy deposition distribution

19

6.5
4.4 3.0

3.6

3.71141.1

1055.4

Total power deposition: 5.6 kW out of 25 kW



Thermal analysis
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Cooling pipe number: 10-5-5-5
No Al thermal bridge

The temperatures are all below the 
6.2 K limit after 6-month operation. 
(See Zongtai’s report for details, and 
also for the quench analysis)



Summary

◼ A detail radiation study has been carried out
◼ W+ B4C shields are designed for the superconducting solenoid protection 

considering:

◼ Proton extraction: can extract in both 5T/1T fields

◼ Dose on coils: 30-year for CS, 23-year for MS

◼ Radiation damage is estimated

◼ RRR of conductor: can run for a whole accelerator year

◼ Temperature: can run for at least 6 months

◼ TDR is almost ready
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