

2020 EMuS & MOMENT General Meeting

EMuS Capture Solenoids Thermal Analysis & Quench Protection

Accelerator Division, IHEP Superconducting Magnet Group

Reporter: Zongtai XIE (xiezt@ihep.ac.cn) Guang ZHAO, Zhilong HOU, Guoqing ZHANG, Zian ZHU 2020.12.11- CSNS

中国科学院高能物理研究所 Institute of High Energy Physics, CAS

Contents

- Magnet Characteristics
 - Radiation Environment
 - Degradation of Magnet Materials
 - Magnet Structure
- Thermal Analysis
 - Beam Operation Time
 - LHe Piping & Insulation
 - Pure Aluminum Strip

- Quench Protection
 - Dump Resistor & Varistor
 - Analysis of Parameters
 - Safety at 150days Operation
- Brief Summary & Next Focus

1. Magnet Characteristics

- Radiation Environment
- Degradation of Magnet Materials
- Magnet Structure

Radiation Environment

Degradation of Magnet Materials

COMET Research:

Period	Temperature	Integrated Fast-Neutron Fluence	Measured Resistance
Before cool-down	300 K	0	1.37 mΩ
After cool-down	10 K	0	3.0 μΩ
During irradiation	12 K - 15 K	$(flux : 1.4 \times 10^{15} n/m^2/s)$	3.1 μΩ – 5.7 μΩ
			(increased monotonically with fluence)
After irradiation	12 K	2.3×10 ²⁰ n/m ²	5.6 μΩ
After warm-up to room temperature	302 K	2.3×10 ²⁰ n/m ²	1.36 mΩ
After the second cool-down	12 K	2.3×10 ²⁰ n/m ²	3.0 μΩ

Degradation of:

- Thermal Conductivity↓
- Electrical Conductivity↓

 $RRR = \frac{\rho_{RT}}{\rho_0 + r \times \Phi_n \times t_{op}}$ Assume neutron induced resistance: $r = 0.03 n\Omega \cdot m$ for $10^{20} n/m^{2}$ [1] **Operation time(days)** 150 200 30 60 90 120 0 Neutron Fluence(N/m²) 0 6.75E19 1.35E20 2.03E00 2.70E20 3.38E20 4.50E20 RRR 400 308 250 211 182 160 133

77%

62.5%

100%

RRR Residual Coeff(%)

Wiedemann-Franz Law :

52.75%

45.5%

40%

33.25%

$$\lambda \cdot \rho = L \cdot T$$

References: M. Yoshida et al., "Low-temperature neutron irradiation tests of superconducting magnet materials using reactor neutrons at KUR," in Proc. AIP Conf., 2011, vol. 1435, pp. 167–173.

Magnet Structure

Thermosiphon Cooling Piping

2. Thermal Analysis

- Beam Operation Time
- LHe Piping & Insulation
- Pure Aluminum Strip

Beam Operation Time

Current capacity of Magnet Cable

- Ic of strand@5.5 K ,5.5 T = 570 A
- Ic of cable @5.5 K ,5.5 T = 570 *16* 85% = 7752 A (16 strand)
- Iop = Jcoil*2I* (a2-a1) /N = 3255A (I: half height of coil , a1、a2: radius of coil)

• With continuous operation, the **Temperature** of the magnet will **Gradually Increase** due to the decrease of the thermal conductivity of the material.

Beam Operation Time

LHe Piping & Insulation

LHe Piping & Insulation

Pure Aluminum Strip (Also called: Quench Propagator)

Steady-state Thermal:

• Increase temperature margin

Quench Characteristics:

- Increase quench propagation speed
- Shorten the overall quench time

days	v _{cable}	$ au_{cable}$	v_{axial}	$ au_{axial}$	v_{thick}	$ au_{thick}$
0	1.547m/s	1481ms	0.209m/s	2259ms		334ms
60	1.547m/s	1481ms	0.263m/s	1796ms	0.447m/s	268ms
120	1.547m/s	1481ms	0.307m/s	1539ms	0.516m/s	233ms
150	1.547m/s	1481ms	0.326m/s	1448ms	0.546m/s	219ms
			Ţ			
days	v _{cable}	$ au_{cable}$	v _{axial}	$ au_{axial}$	v_{thick}	$ au_{thick}$
days 0	V _{cable} 1.547m/s	τ _{cable} 1481ms	v _{axial} 0.289m/s	τ _{axial} 1629ms	v_{thick} 0.359m/s	τ _{thick} 334ms
days 0 60	<i>v_{cahle}</i> 1.547m/s 1.547m/s	<i>τ_{cable}</i> 1481ms 1481ms	<i>V_{axial}</i> 0.289m/s 0.366m/s	<i>τ_{axial}</i> 1629ms 1292ms	<i>V_{thick}</i> 0.359m/s 0.447m/s	T _{thick} 334ms 268ms
days 0 60 120	<i>V_{cahle}</i> 1.547m/s 1.547m/s 1.547m/s	<i>τ_{cable}</i> 1481ms 1481ms 1481ms	<i>V_{axial}</i> 0.289m/s 0.366m/s 0.427m/s	τ _{axial} 1629ms 1292ms 1105ms	<i>v_{thick}</i> 0.359m/s 0.447m/s 0.516m/s	τ _{thick} 334ms 268ms 233ms
days 0 60 120 150	<i>V_{cahle}</i> 1.547m/s 1.547m/s 1.547m/s 1.547m/s	<i>τ_{cable}</i> 1481ms 1481ms 1481ms 1481ms	Vaxial 0.289m/s 0.366m/s 0.427m/s 0.455m/s	<i>τ_{axial}</i> 1629ms 1292ms 1105ms 1037ms	v _{thick} 0.359m/s 0.447m/s 0.516m/s 0.546m/s	τ _{thick} 334ms 268ms 233ms 219ms

3. Quench Protection

- Dump Resistor & Varistor
- Analysis of Parameters
- Safety at 150days Operation

Dump Resistor & Varistor

Dump Resistor _{R_{dump}}

- Liner U-I
- Stainless-steel (Air or Water cooling)
- High reliability

Varistor $R_{var} = KI_{t1}^{\beta-1}$

- Nonlinear U-I
- SiC or ZnO Assembly
- Fast current decay
- Lower temperature rise & MIITs

Dump Resistor & Varistor 25kW Baseline Design Unit Value Parameter 4.8 Η Inductance 3255 А Current **Storage Energy** 25 MJ V 500 **Design Voltage Dump resistor Parameter** Value $150 \mathrm{m}\Omega$ Rdump tdelay 100ms Varistor Value **Parameter** Κ 160 0.14 β 100ms tdelay

Analysis of Parameters

	Dumn	resistor					
RRR Degradation	Dump	Rdump(mΩ)	tdelay(ms)	Current decay time (s, 1% Iop)	Magnet Voltage (V)	Max Temperature rise (K)	Storage Energy Dumpling rate (%)
				Beam Operation	on Time: 0day		
Rdump		150mΩ		121.3s	511.51V	50.98K	87.15%
Kaamp		200mΩ	— 100ms	97.5s	672.17V	45.81K	91.18%
		250mΩ		80.9s	833.32V	42.26K	93.42%
tdelay=100ms		300mΩ		68.9s	994.14V	39.64K	94.81%
				Beam Operation	n Time: 150days		
		150mΩ		70.8s	591.14V	71.41K	62.59%
		200mΩ	100	67.0s	731.94V	64.85K	72.09%
		250mΩ	TOOMS	61.5s	884.64V	59.81K	78.40%
		300mQ		55.9s	1040 85V	55 89K	82 71%

Analysis of Parameters

Κ, β	V O	
------	-----	--

Vari	stor													
		K		β		Curren time (s,	nt decay 1% Iop)	Magne	et Volta (V)	ige	Max Temperatu rise (K)	are	Storage Ene Dumpling r (%)	rgy ate
						Bear	n Operat	ion Time	: Oday	/ /				
		140	-			3	8.1s	47	3.01V		46.47K		90.86%	
		160		11		3	3.8s	53	2.03V		44.25K		92.39%	
		180		J.14		3	0.4s	59	1.77V		42.42K		93.54%	
		200				2	7.6s	652.01V			40.86K		94.44%	
						Beam	Operatio	n Time:	150da	ys				
		140				3	0.5s	62	6.44V		65.77K		70.79%	
		160		11		2	8.1s	66	9.32V		62.68K		74.92%	
		180	(J.14		2	6.0s	71	6.15V		60.01K		78.22%	
		200				2.	4.2s	76	5.91V	$ \leq $	57.69K		80.90%	

Safety at 150days Operation: Dump resistor Baseline

	Dumn resisto	r 🗌 🖉							
RRR Degradation		f _{rrr}	Beam (Time)peratio (day)	on Cu time	rrent decay e (s, 1% Iop)	Magnet Voltage (V)	Max Temperature rise (K)	Storage Energy Dumpling rate (%)
		1		0		121.3s	511.51V	50.98K	87.15%
Rdumn=150mO		0.77		30		110.2s	522.07V	56.36K	82.04%
Roump=1001132		0.625		60	\frown	99.1s	534.77V	61.00K	76.82%
).5275		9 0	$\overline{\ }$	89.0s	549.67V	64.94K	71.84%
tdelay=100ms		0.455	1	20		79.2s	568.16V	68.41K	67.04%
	×	0.4	1	50		70.8s	591.14V	71.41K	62.59%
).3325	2	00		59.2s	643.33V	75.59K	55.97%

Safety at 150days Operation: Varistor Baseline

	Varisto	r 🗌 🗌					
RR Degradation	Valisto	f _{RRR}	Beam Operation Time (day)	Current decay time (s, 1% Iop)	Magnet Voltage (V)	Max Temperature rise (K)	Storage Energy Dumpling rate (%)
		1	0	33.8s	532.03V	44.25K	92.39%
K=160 B=0 14		0.77	30	32.8s	551.15V	48.80K	89.16%
R=100; β=0.14		0.625	60	31.7s	574.64V	52.85K	85.69%
		0.5275	90	30.6s	601.78V	56.42K	82.16%
tdelay=100ms		0.455	120	29.4s	633.56V	59.70K	78.52%
		0.4	150	28.1s	669.32V	62.68K	74.92%
		0.3325	200	26.1s	737.74V	67.06K	69.07%

RRR

A Brief Summary

Steady-state Thermal Characteristics:

- Under 6.2K
- Max Temperature: CS1

Quench Characteristics:

- Main Danger: Magnet Voltage
- Safe: Max Temperature
- Protection Design : Acceptable at any time

Magnet Design:

- Thermosiphon LHe Piping
- Pure Aluminum Strip
- Possibility of Applying Varistor
 Ensure Coil Safety in 200days Operation (at least 150days 5T)

EMuS Capture Solenoids

—Thermal Analysis & Quench Protection

中科院高能所超导磁体组 Superconducting Magnet Group, IHEP

Next Focus

- Aluminum Stabilizer
- Insulation
- Multi-layer Coil Winding Methods
- Updates of Calculation

Zongtai XIE Superconducting Magnet Group 2020.12.11- CSNS

Main References:

- 1. M. Yoshida et al., "Low-temperature neutron irradiation tests of superconducting magnet materials using reactor neutrons at KUR," in Proc. AIP Conf., 2011, vol. 1435, pp. 167–173.
- 2. Y. Yang et al., "Study of Irradiation Effects on Thermal Characteristics for COMET Pion Capture Solenoid," in IEEE Transactions on Applied Superconductivity, vol. 28, no. 3, pp. 1-5
- 3. X. Tong, et al." 铝稳定体卢瑟福缆剩余电阻率的测量." 低温工程.05(2018):39-44. doi:.
- 4. Z. Hou et al., "Conceptual Design of the Capture Superconducting Solenoid for Experimental Muon Source," in IEEE Transactions on Applied Superconductivity, vol. 30, no. 5, pp. 1-7

EMuS Capture Solenoids

—Thermal Analysis & Quench Protection

Zongtai XIE Superconducting Magnet Group 2020.12.11- CSNS