Application of SOI-3D in the Vertex detector

Yunpeng Lu

on behalf the CPV4 design team

2020/12/2

Contents

- Two topics are covered in this report
 - Introduction of SOI-3D: why it is suitable for the Vertex detector
 - First experience: practical aspects of the CPV4 design
- Discussion and comments are welcome any time

Specification of Vertex detector

- High resolution of reconstruction of secondary vertex required by the flavor tagging, which needs high performance pixel sensor: high spatial resolution, low material budget and fast readout
 - Pixel sensor is the core part to construct a vertex detector

- Two options to pursue:
 - Option #1: implement the specs in two **complementary** design (CDR baseline scheme)
 - Option #2: **explore new technology**, promote the performance (advanced scheme)

Introduction of SOI-3D: design resources

- In each process node, shrinking pixel size has been pushing to the physical limit
 - 0.35um process: ~10 transistors and 4 metal layers, pixel size ~ 20*20 um²
 - 0.18um process: ~100 transistors and 6 metal layers, pixel size ~ 26*28 um²
 - 0.2um SOI-3D process can accommodate ~100 transistors and 5 metal layers in each tier
 - lower tier: sensing diode and analog front-end
 - upper tier: digital readout
 - Pixel size can be cut half without compromise of functionality

lower

tier

A minimum increase of material in SOI-3D

- The bulk of upper tier is removed by wet-etching
 - 260 um \rightarrow 10 um thick
 - Wet-etching is stopped by the box layer automatically, which makes SOI quite compatible with 3D integration
- Lower tier can be thinned as a conventional sensor
 - 75 um in SOI case and 50 um in CMOS case (not necessarily an SOI sensor)
 - The order of thinning and 3D integration is to be discussed with the 3D partner in the industry
 - * Currently SOI-3D is demonstrated on a lower tier of 260 um thick

*Credit of the conceptual drawing: Miho Yamada

Multiple vertical connections per pixel

- Front side
 - 3 um cylindrical Au bump (diameter)
 - 4 connections per pixel: power/ground, analog signal and comparator output in the SOFIST4 by KEK, first demonstration of SOI-3D

lower pixel upper pixel

Au bumps

Back side

- SOI-3D is Through Box Via (TBV), not the famous Through Silicon Via (TSV)
- 0.32 um hole which is implemented already in the SOI process
- Additional met layer is formed for the bonding pad

 $20 \times 20 \ \mu m^2$

Design flow established

- Conventional SOI tape-out and a special 3D add-on process are ready for users
 - Upper and lower chips are manufactured with the LAPIS 0.2um process
 - Chip-to-chip 3D integration is implemented by T-Micro originated in Tohoku-U.
 - Driven rules of 3D design and verification have been integrated into the EDA tools

PDD sensing diode system

- Not 3D-specific, but the most active part of study in SOI pixel sensor technology
 - Evolution of 15-years development: BPW, Nested-wells, Double SOI, and PDD (Pinned Depleted Diode)
- All-in-one solution:
 - Control back-gate of transistors
 - Maximize charge collection efficiency
 - Suppress leakage current of Si-SiO₂ interface
 - Minimize the capacitance of electrode (Cd)
 - Shield the capacitive coupling between

the sensor and pixel circuit

Ref: doi:10.3390/s18010027 by Shoji Kawahito

- Transition from technology to design
 - Two proficient designers spending 90 work days

CPV4 design scheme

- Low power front-end: amplifier and comparator
 - Using its leading edge for timing < 1us
- Data-driven readout (Asynchronous Encode Reset Decode*)
 - Two readout modes: continuous and triggered
- Power consumption ~ 50mW/cm²

*Ping Yang, NIMA 785 (2015) 61-69

Explanatory diagram of CPV4 design scheme

Division of upper and lower functionality

- Lower tier: PDD sensing diode + amplifier/comparator
- Upper tier: Hit D-Flipflop + Control register + AERD readout
- 2 vertical connections in each pixel: comparator output and test switch
 - Analog and Digital power/ground are separated, a common practice in mixed-signal design

Management of Vth shift

- Operation of PDD requires -4V applied on the **back-gate** of MOS transistors (BPW shown below) in order to minimize electrode capacitance Cd.
 - Vth decreased 70 mV for PMOS and increased 50 mV for NMOS
 - Characterized and modeled in HSPICE by KEK
- Influence on the front-end assessed
 - Current mirror branch outside pixel matched by applying -4V as well (M0, M4, M7)
 - The other transistors compensated by proper Input offset on their bias voltage (VCASN e.g.)
 - Confirmed by circuit simulation

PDD requires -4V applied on BPW

Pixel design

- Transistor size selected roughly according to ALPIDE design* to minimize Fixed Pattern Noise as a first order approximation
 - Statistical parameters of SOI process is not sufficient to perform a reliable MC simulation

Transistor	M0	M1	M2	M3	M4	M5	M6	M7	M8	M9
W/L	1.8/8.5	1/0.4	1/0.4	1/5	2/8.05	0.63/4.94	0.63/3	1/5	1/0.4	1/1

Simulation results of threshold and noise

	Threshold	Gain@Thr	Vnoise@Thr	ENC
Pre-layout	75 e⁻	32mV/10e ⁻	4.33 mV	1.34 e⁻
Post-layout	125 e ⁻	8.6mv/10e⁻	2.92 mV	4 e⁻

- TID radiation enhancement
 - H-gate transistors used for M5 in test pixels for TID
 - Compensation of TID-induced Vth shift to be applied on the back-gate of transistors

*Ref: D. Kim et al., 2016 JINST 11 C02042

H-gate NMOS layout

Pixel layout

- A lot of efforts to minimize the layout size
 - 21.04 um * 17.24 um
- Y-axis mirrored, sensitive input nodeprotected against the output node
 - To minimize the crosstalk

4 pixels arranged in two columns

3D bumps marked with

Dummy 3D bumps

- To relieve the stress of upper tier, dummy 3D bumps have to be put and fill the empty space
 - Generated automatically in the user-designated area
- Excluded area for the dummy 3D bumps
 - The pixel matrix, to reduce the risk of short failure
 - The p-stop of guard ring, where the potential distribution on the surface is critical
 - The alignment marks, to facilitate the observation with an IR microscope

Pixel 3D bumps and dummy 3D bumps

Design for test

- Signal and power access to the chips
 - Conventional IO pad equipped on both lower and upper chips, accessible before 3D integration
 - Signal IO always stacked up with dummy IO to avoid conflicts of buffers
- Internal signal waveform are routed out of test pixels and buffered for oscilloscope observation
 - OUT_A and OUT_D from 64 pixels
 - Two-stage buffers: Source-Follower and Operational Amplifier

Summary

- Exploration of SOI-3D has started with the first design of CPV4
 - Targeting on a single design that fulfils all the specs of pixel sensors
 - The CPV4 design is to examine the scheme, implementation and yield of SOI-3D
 - Expected separate tests in the 1st half of 2021, 3D tests in the 2nd half of 2021
 - Plan to participate 2 ~3 Multi-Project-Wafer run in 5 years

Backup slides

18

Address Encoder Reset Decoder principle

- Hierarchical arbiter tree structure -> reduces loads, 5 hierarchy to encode 1024 pixels
- Fully combinatorial asynchronous circuit without clock propagating into the matrix -reduction of power & noise

Readout Architecture

Readout mode

Continuous mode

- Valid asserted by the falling edge of pixel_out1
- Pixel_out2 froze before pixel_out1 is done
- Timing resolution of falling edge < 1us

Triggered mode

- Strobe as the gate control
- Readout after trigger (strobe)
- Timing resolution of pulse width < 10us

