

Measurement of B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$ at CEPC

Yuexin Wang, Manqi Ruan 2020.12.02

Outline

- Introduction of B⁰ & Bs $\rightarrow \pi^{o}\pi^{o}$
- Reconstruction of π^{o}
- Separation of B⁰ and Bs
- Preliminary study on Bs $\rightarrow \pi^{\circ}\pi^{\circ}$
- Summary

Introduction of $B^0 \rightarrow \pi^0 \pi^0$

$\Gamma(\pi^0 \pi^0) / \Gamma_{\text{total}}$ in PDG 2018								
VALUE (units 10 ⁻⁶) CL%	DOCUMENT ID	TECN	COMMENT					
1.59±0.26 OUR AVERAGE	Error includes scal	e factor of 1	.4.					
$1.31 \pm 0.19 \pm 0.19$	¹ JULIUS	17 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$				
$1.83 \pm 0.21 \pm 0.13$	¹ LEES	13D BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$				

PHYSICAL REVIEW D 96, 032007 (2017)

Measurement of the branching fraction and *CP* asymmetry in $B^0 \rightarrow \pi^0 \pi^0$ decays, and an improved constraint on ϕ_2

T. Julius,⁴³ M. E. Sevior,⁴³ G. B. Mohanty,⁶⁶ I. Adachi,^{14,11} H. Aihara,⁷⁰ S. Al Said,^{65,32} D. M. Asner,⁵⁸ V. Aulchenko,^{3,56} T. Aushev,⁴⁶ R. Ayad,⁶⁵ V. Babu,⁶⁶ I. Badhrees,^{65,31} A. M. Bakich,⁶⁴ V. Bansal,⁵⁸ E. Barberio,⁴³ M. Barrett,¹³ M. Berger,⁶² V. Bhardwaj,¹⁶ B. Bhuyan,¹⁸ J. Biswal,²⁷ T. Bloomfield,⁴³ A. Bobrov,^{3,56} A. Bondar,^{3,56} G. Bonvicini,⁷⁵ A. Bozek,⁵³ M. Bračko,^{41,27} T. E. Browder,¹³ D. Červenkov,⁴ M.-C. Chang,⁹ Y. Chao,⁵² V. Chekelian,⁴² A. Chen,⁵⁰ B. G. Cheon,¹² K. Chilikin,^{37,45} K. Cho,³³ Y. Choi,⁶³ D. Cinabro,⁷⁵ N. Dash,¹⁷ S. Di Carlo,⁷⁵ Z. Doležal,⁴ D. Dossett,⁴³ Z. Drásal,⁴ D. Dutta,⁶⁶ S. Eidelman,^{3,56} H. Farhat,⁷⁵ J. E. Fast,⁵⁸ T. Ferber,⁷ B. G. Fulsom,⁵⁸ V. Gaur,⁷⁴ N. Gabyshev,^{3,56} A. Garmash,^{3,56} R. Gillard,⁷⁵ P. Goldenzweig,²⁹ J. Haba,^{14,11} T. Hara,^{14,11} K. Hayasaka,⁵⁵ H. Hayashii,⁴⁹ W.-S. Hou,⁵² C.-L. Hsu,⁴³ T. Iijima,^{48,47} K. Inami,⁴⁷ A. Ishikawa,⁶⁸ R. Itoh,^{14,11} Y. Iwasaki,¹⁴ W. W. Jacobs,²⁰ I. Jaegle,⁸ Y. Jin,⁷⁰ D. Joffe,³⁰ K. K. Joo,⁵ J. Kahn,³⁹ G. Karyan,⁷ P. Katrenko,^{46,37} T. Kawasaki,⁵⁵ C. Kiesling,⁴² D. Y. Kim,⁶¹ H. J. Kim,³⁵ J. B. Kim,³⁴ K. T. Kim,³⁴

We measure the branching fraction and *CP* violation asymmetry in the decay $B^0 \to \pi^0 \pi^0$, using a data sample of $752 \times 10^6 B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB e^+e^- collider. The obtained branching fraction and direct *CP* asymmetry are $\mathcal{B}(B \to \pi^0 \pi^0) = [1.31 \pm 0.19(\text{stat}) \pm 0.19(\text{syst})] \times 10^{-6}$ and $A_{CP} = +0.14 \pm 0.36(\text{stat}) \pm 0.10(\text{syst})$, respectively. The signal significance, including the systematic uncertainty, is 6.4 standard deviations. We combine these results with Belle's earlier measurements of $B^0 \to \pi^+\pi^-$ and $B^\pm \to \pi^\pm\pi^0$ to exclude the *CP*-violating parameter ϕ_2 from the range $15.5^\circ < \phi_2 < 75.0^\circ$ at 95% confidence level.

(Belle Collaboration)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.032007

Introduction of Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Experimental upper limit

$\Gamma(\pi^0 \pi^0) / \Gamma_{\text{total}}$ in PDG 2018							
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		
$<2.1 \times 10^{-4}$	90	¹ ACCIARRI	95H	L3	$e^+e^- \to$	Ζ	
¹ ACCIARRI 95н assumes $f_{B^0} = 39.5 \pm 4.0$ and $f_{B_s} = 12.0 \pm 3.0\%$.							

N.H. ELSEVIER	16 November 1995 Physics Letters B 363 (1995) 127-136	PHYSICS LETTERS B	Resolutions (a mass distribut B_s^0 branching the search for for one η and the efficiencie	τ of a (ion), e ratios. a four a sing s is sta
			Process	Re: (1
	Search for neutral charmless B decays	s at LEP	$B^0 \rightarrow nn$ (1)	10
	L3 Collaboration			

https://www.sciencedirect.com/science/ article/pii/0370269395010420

T-11. 0

Gaussian fit to the signal Monte Carlo invariant efficiencies and experimental limits for B_d^0 and The (I) and (II) modes refer respectively to r photon final state or one with a photon pair gle cluster for the other one. The first error on atistical, the second systematic.

Process	Resolution (MeV)	Efficiency (%)	Upper limit 90% C.L.
$B_d^0 \rightarrow \eta \eta$ (1)	107 ± 10	$2.5\pm0.2^{+0.2}_{-0.2}$	
$B_d^0 \rightarrow \eta \eta $ (11)	146 ± 11	$4.6\pm0.3^{+0.02}_{-0.2}$	
$B_d^0 \rightarrow \eta \eta$			$< 4.1 \times 10^{-4}$
$B_d^{()} \rightarrow \eta \pi^{()}$	79 ± 5	$4.5 \pm 0.3^{+0.05}_{-0.03}$	$< 2.5 \times 10^{-4}$
$B^0_d \rightarrow \pi^0 \pi^0$	97 ± 4	$7.6 \pm 0.4^{+0.2}_{-0.5}$	$< 6.0 \times 10^{-5}$
${ m B}^0_s{ ightarrow}\eta\eta$ (1)	101 ± 10	$2.4 \pm 0.2^{+0.2}_{-0.2}$	
$B^0_s{ o}\eta\eta$ (11)	129 ± 8	$4.8 \pm 0.3^{+0.2}_{-0.3}$	
$B_s^0 \rightarrow \eta \eta$			$< 1.5 \times 10^{-3}$
$B_s^{(i)} \rightarrow \eta \pi^{(i)}$	81± 1	$4.3 \pm 0.3 \substack{+0.02 \\ -0.1}$	$< 1.0 \times 10^{-3}$
$B_s^0 \rightarrow \pi^0 \pi^0$	99±4	$8.3 \pm 0.4^{+0.4}_{-0.7}$	$< 2.1 \times 10^{-4}$

Introduction of Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Theoretical estimation

ALI, KRAMER, LI, LÜ, SHEN, WANG, AND WANG

PHYSICAL REVIEW D 76, 074018 (2007)

TABLE III. The CP-averaged branching ratios ($\times 10^{-6}$) of $B_s \rightarrow PP$ decays obtained in the pQCD approach (This work); the errors for these entries correspond to the uncertainties in the input hadronic quantities, from the scale dependence, and the CKM matrix elements, respectively. We have also listed the current experimental measurements and upper limits (90% C.L.) wherever available [13]. For comparison, we also cite the theoretical estimates of the branching ratios in the QCD factorization framework [16] and in SCET [20], quoting two estimates in the latter case for some decays.

Modes	Class	QCDF	SCET	This work	Experiment
$ar{ar{B}^0_s} ightarrow K^+ \pi^-$	Т	$10.2^{+4.5+3.8+0.7+0.8}_{-3.9-3.2-1.2-0.7}$	$4.9 \pm 1.2 \pm 1.3 \pm 0.3$	$7.6^{+3.2+0.7+0.5}_{-2.3-0.7-0.5}$	$5.0 \pm 0.75 \pm 1.0$
$\bar{B}^0_s \longrightarrow K^0 \pi^0$	С	$0.49^{+0.28+0.22+0.40+0.33}_{-0.24-0.14-0.14-0.17}$	$0.76 \pm 0.26 \pm 0.27 \pm 0.17$	$0.16^{+0.05+0.10+0.02}_{-0.04-0.05-0.01}$	
$\bar{B}^0_s \longrightarrow K^+ K^-$	Р	$22.7^{+3.5+12.7+2.0+24.1}_{-3.2-8.4-2.0-9.1}$	$18.2 \pm 6.7 \pm 1.1 \pm 0.5$	$13.6^{+4.2+7.5+0.7}_{-3.2-4.1-0.2}$	$24.4 \pm 1.4 \pm 4.6$
$\bar{B}^0_s \longrightarrow K^0 \bar{K}^0$	Р	$24.7^{+2.5+13.7+2.6+25.6}_{-2.4-9.2-2.9-9.8}$	$17.7 \pm 6.6 \pm 0.5 \pm 0.6$	$15.6^{+5.0+8.3+0.0}_{-3.8-4.7-0.0}$	
$ar{B}^0_s o \pi^0 \eta$	$P_{\rm EW}$	$0.075\substack{+0.013+0.030+0.008+0.010\\-0.012-0.025-0.010-0.007}$	$0.014 \pm 0.004 \pm 0.005 \pm 0.004$	$0.05\substack{+0.02+0.01+0.00\\-0.02-0.01-0.00}$	<1000
			$0.016 \pm 0.0007 \pm 0.005 \pm 0.006$		
$ar{B}^0_s o \pi^0 \eta'$	$P_{\rm EW}$	$0.11\substack{+0.02+0.04+0.01+0.01\\-0.02-0.04-0.01-0.01}$	$0.006 \pm 0.003 \pm 0.002 \substack{+0.064 \\ -0.006}$	$0.11\substack{+0.05+0.02+0.00\\-0.03-0.01-0.00}$	
			$0.038 \pm 0.013 \pm 0.016 ^{+0.260}_{-0.036}$		
$\bar{B}^0_s \rightarrow K^0 \eta$	С	$0.34\substack{+0.19+0.64+0.21+0.16\\-0.16-0.27-0.07-0.08}$	$0.80 \pm 0.48 \pm 0.29 \pm 0.18$	$0.11\substack{+0.05+0.06+0.01\\-0.03-0.03-0.01}$	
			$0.59 \pm 0.34 \pm 0.24 \pm 0.15$		
$\bar{B}^0_s \rightarrow K^0 \eta'$	С	$2.0^{+0.3+1.5+0.6+1.5}_{-0.3-1.1-0.3-0.6}$	$4.5 \pm 1.5 \pm 0.4 \pm 0.5$	$0.72^{+0.20+0.28+0.11}_{-0.16-0.17-0.05}$	
			$3.9 \pm 1.3 \pm 0.5 \pm 0.4$		
$ar{B}^0_s o \eta \eta$	Р	$15.6^{+1.6+9.9+2.2+13.5}_{-1.5-6.8-2.5-5.5}$	$7.1 \pm 6.4 \pm 0.2 \pm 0.8$	$8.0^{+2.6+4.7+0.0}_{-1.9-2.5-0.0}$	<1500
			$6.4 \pm 6.3 \pm 0.1 \pm 0.7$	1.7 2.10 0.10	
$ar{B}^0_s o \eta \eta'$	Р	$54.0^{+5.5+32.4+8.3+40.5}_{-52-22.4-64-167}$	$24.0 \pm 13.6 \pm 1.4 \pm 2.7$	$21.0^{+6.0+10.0+0.0}_{-4.6-5.6-0.0}$	
			$23.8 \pm 13.2 \pm 1.6 \pm 2.9$	10 0.0 0.0	
$ar{B}^0_s o \eta' \eta'$	Р	$41.7^{+4.2+26.3+15.2+36.6}_{-4.0-17.2-8.5-15.4}$	$44.3 \pm 19.7 \pm 2.3 \pm 17.1$	$14.0^{+3.2+6.2+0.0}_{-2.7-3.9-0.0}$	
		10 172 0.0 10.1	$49.4 \pm 20.6 \pm 8.4 \pm 16.2$	2.7 5.9 6.6	
$ar{B}^0_s o \pi^+ \pi^-$	ann	$0.024^{+0.003+0.025+0.000+0.163}_{-0.003-0.012-0.000-0.021}$		$0.57^{+0.16+0.09+0.01}_{-0.13-0.10-0.00}$	<1.36
$\bar{B}^0_s \rightarrow \pi^0 \pi^0$	ann	$0.012\substack{+0.001 + 0.013 + 0.000 + 0.082 \\ -0.001 - 0.006 - 0.000 - 0.011}$		$0.28\substack{+0.08+0.04+0.01\\-0.07-0.05-0.00}$	<210
				~ 3×10)-7

$\label{eq:https://journals.aps.org/prd/abstract/10.1103/PhysRevD.76.074018$

Why choose B⁰/Bs $\rightarrow \pi^{\circ}\pi^{\circ}$?

- Clear dependence on detector and reconstruction performance
 - $\pi^{\circ} \rightarrow \gamma \gamma$, EM object, ECAL performance
 - Bs, b-tagging, background rejection
- CEPC can achieve Tera-Z (~10¹⁰ Bs) >> LEP
 - promising to observe this rare decay

NH	16 November 1995	
		PHYSICS LETTERS B
ELSEVIER	Physics Letters B 363 (1995) 127-136	
	Search for neutral charmless B decays a	t LEP
	L3 Collaboration	

Since no candidate event has been found in data for any of the eight final configurations, upper limits at 90% confidence level have been set using the following numerical values: $N_{had} = 3.088.053$ as the number of Z bosons decaying to hadrons, $\Gamma_{\tilde{b}}/\Gamma_{had} = 0.222 \pm$ $0.003(\text{stat.}) \pm 0.007(\text{syst.})$ as the partial width of Z decays into b quark with respect to the hadronic decays [20], $f(b \rightarrow B_d^0) = 39.5 \pm 4.0\%$ and $f(b \rightarrow B_s^0) =$ $12.0 \pm 3.0\%$ as the fractions of $B_{d(s)}^0$ produced in the fragmentation of b quarks at LEP, in agreement with the available measurements [21], $Br(\eta \rightarrow \gamma \gamma) =$ 38.8% and $Br(\pi^0 \rightarrow \gamma \gamma) = 98.8\%$ [22]. The errors on

The following results are all from fast simulation...

Reconstruction of π°

Decay channel: $\pi^{o} \rightarrow \gamma \gamma$

Pair up photons and select π^0 candidates according to the invariant mass

Optimize the mass window to get maximal efficiency × purity

$$\epsilon = \frac{Number \ of \ selected \ \pi^0 s \ that \ are \ true \ \pi^0 s \ in \ Monte \ Carlo}{Number \ of \ all \ generated \ \pi^0 s}$$

 $p = \frac{Number \ of \ selected \ \pi^0 s \ that \ are \ true \ \pi^0 s \ in \ Monte \ Carlo}{Number \ of \ all \ selected \ \pi^0 s}$

Reconstruction of π°

maximal efficiency × purity

Separation of B⁰ and Bs

MCTruth Distribution of Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Cut chain

134

L3 Collaboration / Physics Letters B 363 (1995) 127-136

Table 1

Final cuts for all the B_d^0 and B_s^0 decay modes. The (I) and (II) modes refer to the search for a four photon final state, or one with a photon pair for one η and a single cluster for the other one, respectively. "Kinematics" refers to global kinematic variables of the $B_{d(s)}^0$ candidate, "Photons", "Cluster" and "2nd cluster" to the cuts on purity of photons, single cluster or most energetic π^0 single cluster, if any.

	Cut	$B^{0}_{d(s)} \rightarrow \eta \eta \ (1)$	$B^0_{d(s)} \rightarrow \eta \eta$ (II)	$B^0_{d(s)} \rightarrow \eta \pi^0$	$B^0_{d(s)} \rightarrow \pi^0 \pi^0$
Kinematics	$M_{\gamma\gamma}$ (GeV)	0.51-0.58	0.530-0.564	0.530-0.564	-
	$\cos \theta^*$	0.7	0.775	0.75	0.6
	$\theta_{\rm mesons}$	28°	25°	26°	23°
	Total energy	17.0	27.5	25.0	22.0
Photons	Energy (GeV)	0.3	0.5	1.0	-
	$\chi^2_{ m em}$	10.0	8.0	8.0	-
	θ_{3D} (mrad)	30.0	50.0	50.0	-
Cluster	Energy (GeV)	_	10.0	13.0	6.0
	$\chi^2_{\rm em}$	-	-	8.0	30.0
	θ_{3D} (mrad)	-	50.0	50.0	40.0
2 nd cluster	Energy (GeV)	-	_	-	14.0
	$\chi^2_{\rm em}$	-	-	-	5.0
	θ_{3D} (mrad)	-	-	-	40.0

As a starting point, just use the values in L3 paper:

Pi0 Emin > 6GeV & Emax > 14GeV & Total E > 22GeV & angle < 23°

$Bs \rightarrow \pi^{o}\pi^{o}$

Cut chain

An artificial sample contains 1e4 Bs $\rightarrow \pi^{\circ}\pi^{\circ}$ signal and 2.5e7 Z \rightarrow qq bkg

		10000 E	Bk	g Z_qq				
Cut chain	3%+1%, Mass window: (5.22, 5.52) GeV							
	S	ignal	E	3kg	Bkg			
	Total In mass window		Total	In mass window	Total	In mass window		
No cut	9497 9401		393131	3905	996542768	8263449		
Emin > 6GeV	6002 5998		5082	10	7286782	2882		
Emax > 14GeV	5662 5660		3395	3395 6		321		
ESum > 22GeV	5641 5639		3285	6	1851167	253		
Angle < 23º	4973	4971	62 1		601410	40		

12

Just raw data, need to be scaled to Tera-Z

Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

Signal accuracy and significance

Summary

Fast simulation study

Reconstruction of π^{o}

relies on ECAL resolution and π^o energy (sample dependent) Separation of B^0 & Bs

strong limitation on ECAL resolution

stochastic term better than 1%

constant term better than 0.5%

Preliminary exercise on Bs $\rightarrow \pi^{\circ}\pi^{\circ}$

develop the reconstruction and analysis flow

Mixed measurement of B⁰ & Bs $\rightarrow \pi^{o}\pi^{o}$

need to be updated later...

Backup

Unique Opportunities at Z pole

Giga-Z, Tera-Z and $10 \times \text{Tera-}Z$: a phase of future linear/circular lepton colliders. [Fujii et al.(2019), Dong et al.(2018), Abada et al.(2019)]

Z factories are also $b(c/\tau)$ factories:

Channel	Belle II	LHCb	Giga-Z	Tera- Z	$10 imes extsf{Tera-}Z$
B^0 , $ar{B}^0$	$5.3 imes 10^{10}$	$\sim 6 imes 10^{13}$	1.2×10^8	1.2×10^{11}	1.2×10^{12}
B^{\pm}	$5.6 imes 10^{10}$	$\sim 6 imes 10^{13}$	1.2×10^8	$1.2 imes 10^{11}$	1.2×10^{12}
B_s , $ar{B}_s$	5.7×10^8	$\sim 2 \times 10^{13}$	$3.2 imes 10^7$	$3.2 imes 10^{10}$	$3.2 imes 10^{11}$
B_c^{\pm}	-	$\sim 4 \times 10^{11}$	$2.2 imes 10^5$	2.2×10^8	2.2×10^9
Λ_b , $ar{\Lambda}_b$	-	$\sim 2 imes 10^{13}$	$1.0 imes 10^7$	$1.0 imes 10^{10}$	$1.0 imes 10^{11}$

Separation of B0 and Bs

Separation of B0 and Bs

Separation of B0 and Bs

Signal accuracy and significance

b-tagging efficiency

Cut chain

				_				1			(I I I I I I I I I I I I I I I I I I I	
fraction	0.216	0.101	2.10E-04									
Z_qq	Z_bb	b_Bs	Bs_2Pi0	. 1.2	11. 15.1	しんかいしんしいと						
1.00E+12	2.16E+11	2.18E+10	4581360	← 技	北北的们	百异的科	本 叙					
2000000	4.32E+06	4.36E+05	91.6272				•					
24499982	5.29E+06	5.34E+05	112.2432375									
Signal Z bb Bs 2Pi0	10000		. 古	サニ ロコムム	14 - *	.						
Bkg Z_qq	24499982	4.08E+04	← ¥	、怀用的	件个纷	ζ			_			
0 = 11								Scale 到	10 ¹² Z	D	Αςςυ	iracv
										• •		
		10000 E	s 2Pi0		Bk	g Z aa				1	1	•
Cut chain		3%+	1%. Mass windo	w: (5.22, 5.52) Ge	٧	011		•		•		7
	Si	gnal	В	kg		Bkg		Bkg		Signal		
	Total	In mass window	Total	In mass window	Total	In mass window	Total	In mass window	efficiency	statistic	sqrt(S	5+B)/S
No cut	9497	9401	393131	3905	996542768	8263449	4.07E+13	3.37E+11	0.9497	4350917.592	0.133481	13.348%
Emin > 6GeV	6002	5998	5082	10	7286782	2882	2.97E+11	1.18E+08	0.6002	2749732.272	0.003990	0.399%
Emax > 14GeV	5662	5660	3395	6	2027790	321	8.28E+10	1.31E+07	0.5662	2593966.032	0.001527	0.153%
ESum > 22GeV	5641	5639	3285	6	1851167	253	7.56E+10	1.03E+07	0.5641	2584345.176	0.001390	0.139%
Angle < 23⁰	4973	4971	62	1	601410	40	2.45E+10	1.63E+06	0.4973	2278310.328	0.000868	0.087%
		5%+	1%, Mass windo	w: (5.17, 5.57) Ge	v							
	Si	gnal	В	kg		Bkg						
	Total	In mass window	Total	In mass window	Total	In mass window						
No cut	9373	9221	391802	5132	977467312	10865031	3.99E+13	4.43E+11	0.9373	4294108.728	0.155082	15,508%
Emin > 6GeV	5979	5975	5116	15	7314274	3894	2.99E+11	1.59E+08	0.5979	2739195.144	0.004642	0.464%
Emax > 14GeV	5638	5636	3420	9	2039971	431	8.33E+10	1.76E+07	0.5638	2582970.768	0.001739	0.174%
ESum > 22GeV	5616	5614	3301	9	1862127	342	7.60E+10	1.40E+07	0.5616	2572891.776	0.001580	0.158%
Angle < 23º	4953	4951	64	3	604305	64	2.47E+10	2.61E+06	0.4953	2269147.608	0.000974	0.097%
		15%	+1%. Mass wind	ow: (4.87. 5.87) G	eV							
	Si	gnal	В	kg		Bkg						
	Total	In mass window	Total	In mass window	Total	In mass window						
No cut	8703	8582	375216	12078	914833745	25133276	3.73E+13	1.03E+12	0.8703	3987157.608	0.254027	25,403%
Emin > 6GeV	5766	5755	5113	38	7261955	10001	2.96E+11	4.08E+08	0.5766	2641612.176	0.007673	0.767%
Emax > 14GeV	5448	5441	3409	29	2048452	1133	8.36E+10	4.62E+07	0.5448	2495924.928	0.002797	0.280%
ESum > 22GeV	5420	5413	3292	27	1870910	937	7.64E+10	3.82E+07	0.542	2483097.12	0.002570	0.257%
Angle < 239	4778	4774	79	16	607747	227	2.48F+10	9.27E+06	0.4778	2188973 808	0.001546	0.155%
Angle V20-	4//0	-7/7-	,5	10	007747	227	2.402.10	5.272100	0.4770	2100373.000	0.001340	0.13370