
Computer Physics Communications 209 (2016) 96–115
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Near-threshold production of heavy quarks with
QQbar_threshold✩

M. Beneke a, Y. Kiyo b, A. Maier c,∗, J. Piclum d,e

a Physik Department T31, James-Franck-Straße, Technische Universität München, D-85748 Garching, Germany
b Department of Physics, Juntendo University, Inzai, Chiba 270-1695, Japan
c Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
d Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, 57068 Siegen, Germany
e Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, 3012 Bern, Switzerland

a r t i c l e i n f o

Article history:
Received 24 May 2016
Received in revised form
24 May 2016
Accepted 11 July 2016
Available online 26 August 2016

Keywords:
Perturbative calculations
Quantum chromodynamics
Heavy quarks

a b s t r a c t

We describe the QQbar_threshold library for computing the production cross section of heavy
quark–antiquark pairs near threshold at electron–positron colliders. The prediction includes all presently
known QCD, electroweak, Higgs, and nonresonant corrections in the combined nonrelativistic and weak-
coupling expansion.

Program summary

Program title: QQbar_threshold
Program Files doi: http://dx.doi.org/10.17632/883wgrb86h.1
Licensing provisions: GNU GPLv3.
Programming language: C++, Wolfram Language.
External Routines: Boost (http://www.boost.org), GSL (http://www.gnu.org/software/gsl/).
Nature of problem: Precision predictions for the pair-production cross section near threshold are essential
in order to determine the properties of heavy quarks.
Solution method: Formulas for all known perturbative corrections are implemented, so that QQbar_
threshold provides a state-of-the-art theory prediction.
Restrictions: Non-perturbative effects are not accounted for. This limits the applicability in the case of
bottom quarks and excludes all lighter quarks. Due to the nonrelativistic approximation predictions for
the cross section are only reliable near threshold.
Running time: Typically about 5 ms per parameter point.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

One of the main physics goals of envisaged high-energy
electron–positron colliders is to precisely measure the properties
of the top quark. It is expected that the top quark mass and

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
∗ Corresponding author.

E-mail address: andreas.maier@durham.ac.uk (A. Maier).

http://dx.doi.org/10.1016/j.cpc.2016.07.026
0010-4655/© 2016 Elsevier B.V. All rights reserved.
width can be determined with high accuracy by measuring the
shape of the top-antitop production cross section around threshold
[1,2]. Due to strong non-perturbative effects such an analysis is
not possible for the lighter quarks observed at present low-energy
electron–positron colliders. For bottom quarks, however, ϒ sum
rules can be used to extract the mass from moments of the pair-
production cross section near threshold [3–5]. In both cases, a
precise theory prediction of the cross section is indispensable.

Near the production threshold, the Coulomb interaction be-
tween the quark and the antiquark leads to a strong enhancement
of the cross section, and has to be included to all orders in perturba-
tion theory. This is achieved in the effective theory frameworks of

http://dx.doi.org/10.1016/j.cpc.2016.07.026
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.026&domain=pdf
http://dx.doi.org/10.17632/883wgrb86h.1
http://www.boost.org
http://www.gnu.org/software/gsl/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:andreas.maier@durham.ac.uk
http://dx.doi.org/10.1016/j.cpc.2016.07.026

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 97
potential nonrelativistic quantum chromodynamics (PNRQCD) [6]
and velocity nonrelativistic quantum chromodynamics [7]. Correc-
tions from strong interactions up to next-to-next-to leading or-
der (N2LO) have been known for more than a decade [8] and are
available in both formalisms. More recently, also the calculation
of the third-order QCD corrections within PNRQCD has been fin-
ished [9]. Furthermore, corrections from P-wave production [10],
non-resonant production [11–14], Higgs effects [15–19], and fur-
ther electroweak interactions [20,16,21,22] are known. While all
of these parts are available, it is non-trivial to combine all formu-
las consistently and evaluate the result numerically.

The QQbar_threshold library provides functions to compute
the production cross section of heavy quark pairs near threshold
and related quantities like S-wave binding energies and bound
state residues. It is intended to be as flexible as possible, sup-
porting a plethora of options and tunable input parameters. All of
the functionality documented in this work can be accessed eas-
ily from both C++ and Wolfram Mathematica programs. In the
followingwe give an overview of the library and its main function-
ality. An up-to-date comprehensive documentation can be found
on https://qqbarthreshold.hepforge.org/. After a short description
of the installation process in Section 2, we explain the basic usage
with some examples in Section 3. Section 4 describes the struc-
ture of the cross section, which allows us to give a more detailed
account of all optional settings in Section 5. We then proceed to
discuss somemore advanced applications in Section 6. Finally, Sec-
tion 7 describes the generation of auxiliary grids.

2. Installation

2.1. Linux

The easiest way to install QQbar_threshold is via the
included installation script. The following software has to be
available on the system:

• a compiler complying with the C++11 standard (e.g. g++ 4.8 or
higher);

• cmake (http://cmake.org/);
• GSL, the GNU scientific library (http://www.gnu.org/software/

gsl);
• the QCD library (included in the installation script);
• the QCD library requires odeint from the boost libraries

(http://www.boost.org/).

It is recommended to run the installation script in a separate
build directory, e.g. /tmp/build/. After changing to such a
directory, the following code can be run in a terminal to download
QQbar_threshold and install it to the directory /my/path/:

wget https://www.hepforge.org/archive/
qqbarthreshold/install.tar.gz

tar xzf install.tar.gz
cd QQbar_threshold_source
./install.sh /my/path/

If /my/path/ is omitted, a default directory (usually /usr/
local/) will be used.

During installation there is the opportunity to change some
predefined physical constants like the W and Z masses and the
default settings for some of the options discussed in Section 5.
A table of the default values is given in Appendix A. Changing
these values after installation will have no effect at best and might
even lead to inconsistent results. If Mathematica is available on
the system1 the QQbarThreshold package will also be installed
automatically.

Before using the C++ library part, it may also be necessary to
adjust certain environment variables. After installation to the base
directory /my/path/ the following settings are recommended:

LIBRARY_PATH="/my/path/lib:$LIBRARY_PATH"
LD_LIBRARY_PATH="/my/path/lib:$LD_LIBRARY_PATH"
CPLUS_INCLUDE_PATH="/my/path/include:

$CPLUS_INCLUDE_PATH"

2.2. OS X

Under OS X, QQbar_threshold can be installed like under
Linux, apart from two exceptions. First, the environment variable
DYLD_LIBRARY_PATH should be set in place of LD_LIBRARY_
PATH. Second, typicalMathematica installations do not provide the
required math executable and the QQbarThresholdMathemat-
ica package will not be installed automatically. One way around
this is to locate theWolframKernel (orMathKernel) executable
included in the Mathematica installation and provide a small
wrapper script. Assuming WolframKernel can be found under
/Applications/Mathematica.app/Contents/MacOS/ the
following shell script can be used:

#!/bin/sh

MATH_PATH=/Applications/Mathematica.app/Contents/
MacOS/

DYLD_LIBRARY_PATH="$DYLD_LIBRARY_PATH:$MATH_PATH"

$MATH_PATH/WolframKernel "$@"

For the installation of the Mathematica package to work, the script
file has to be in the executable path andmust be namedmath. After
installing the QQbarThresholdMathematica package, the above
script is no longer required and can be safely removed.

3. Basic usage and examples

In this section, we give a brief overview over QQbar_
threshold’s main functionality and show several code examples.
For the sake of a more accessible presentation we postpone the
discussion of most details to later sections.

The main observables that can be computed with QQbar_
threshold are the total cross section and the energy levels and
residues of quarkonium bound states. The cross section is calcu-
lated in picobarn, whereas all other dimensionful quantities are
given in (powers of) GeV. While the examples below demonstrate
the usage of specialised C++ header files, we also provide a header
QQbar_threshold.hpp which exposes all functionality offered by
the QQbar_threshold library. Functions related to t t̄ produc-
tion start with the prefix ttbar_; correspondingly bbbar_ des-
ignates bb̄ functions. All (public) parts of the library are in the
QQbar_threshold namespace.

The C++ examples below have to be compiledwith a reasonably
recent compiler (complying with the C++11 standard) and linked
to theQQbar_threshold library. For example, one could compile
the first code snippet resonance.cpp with the g++ compiler
(version 4.8 or higher) with the command

1 More precisely, the math program to start the Mathematica command line
interface must be in the executable path.

https://qqbarthreshold.hepforge.org/
http://cmake.org/
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
http://www.boost.org/

98 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
g++ -o resonance -std=c++11 resonance.cpp \-
lQQbar_threshold

and run it with

./resonance

The code for all examples will also be installed alongside with
the library. Assuming again /my/path as the base directory, it
can be found under /my/path/include/QQbar_threshold/
examples.

3.1. Mathematica usage

While the following main text generally describes the usage
in C++ programs, the C++ code examples are also followed by
equivalent Mathematica code. After loading the package with
Needs["QQbarThreshold‘"] an overview over the available symbols
can be obtained with Names["QQbarThreshold‘*"].

QQbarThreshold follows the usual conventions for docum-
enting symbols; e.g. Information[TTbarXSection] or ?TTbarXSection
explains the TTbarXSection function and Options[TTbarXSection]

shows its options and their default settings.

3.2. Resonances

QQbar_threshold can calculate the binding energy of the S-
wave Q Q̄ resonances. As a first example, we calculate the binding
energy of theϒ(1S) resonance at leading order. The binding energy
ERS
1 depends on the chosen renormalisation scheme and is defined

by ERS
1 = Mϒ(1S) − 2mRS

b , where mRS
b is the bottom-quark mass

in the given scheme RS, and Mϒ(1S) refers to the theoretically
computed mass of the ϒ(1S). By default, the quark masses are
defined in the PS-shift scheme (cf. Section 4.10). All masses and
energies are in GeV, so the output implies that at leading order
EPS
1 = 0.273409 GeV.

examples/C++/resonance.cpp

#include <iostream>
#include "QQbar_threshold/energy_levels.hpp"

int main(){
namespace QQt = QQbar_threshold;

const double mb_PS = 4.5 ; // bottom mass

// in PS scheme
double E_1 = QQt::bbbar_energy_level(

1, // principal quantum number
mb_PS, // renormalisation scale
mb_PS, // quark mass
QQt::LO // perturbative order

);
std::cout << E_1 << ’\n’;

}

examples/Mathematica/resonance.m

Needs["QQbarThreshold ‘"];

With[
{mbPS = 4.5, scale = 4.5},
E1 = BBbarEnergyLevel[1, scale, mbPS, "LO"]

];
Print[E1];
The corresponding residue (see Eq. (27) for a definition) can be
computed in very much the same way using the bbbar_residue

function in C++ or BBbarResidue in Mathematica. The calculation
of the (scheme-dependent) nonrelativistic wave function at the
origin is slightly more involved and is covered in Section 6.1.

Higher-order corrections can be included by changing the last
argument to QQt::NLO, QQt::N2LO, or QQt::N3LO ("NLO", "N2LO", or
"N3LO" in Mathematica). It should be noted that at the highest
order, i.e. N3LO, energy levels and residues are only implemented
for the six lowest resonances. At lower orders, however, the
principal quantum number can be an arbitrary positive integer.

3.3. Cross sections

One of the most interesting phenomenological applications is
the threshold scan of the t t̄ production cross section. The functions
ttbar_xsection and bbbar_xsection compute the cross sections

σt(s) = σ(e+e−
→ W+W−bb̄), (1)

σb(s) = σ(e+e−
→ bb̄), (2)

in picobarn. The name ttbar_xsection is justified by the fact that
near the t t̄ threshold σt is dominated by the production and
subsequent decay of a t t̄ pair near mass shell; see Section 4.3 for
details. Here is an example for computing the cross section at a
single point at next-to-leading order for mPS

t (20 GeV) = 168 GeV
and a top width of 1.4 GeV with the result σt


(340 GeV)2


=

0.724149 pb:

examples/C++/xsection_0.cpp
#include <iostream>
#include "QQbar_threshold/xsection.hpp"

int main(){
namespace QQt = QQbar_threshold;
std::cout
// QQt::ttbar_xsection(

// sqrt_s, {scales} , {mass, width}, order
//)

<< QQt::ttbar_xsection(
340., {80., 350.} , {168., 1.4}, QQt::NLO

)
<< ’\n’;

}

examples/Mathematica/xsection_0.m
Needs["QQbarThreshold ‘"];

Print[TTbarXSection[
340., {80., 350.}, {168., 1.4}, "NLO"

]];

Note that in this example two scales appear. As before, the first
scale is the overall renormalisation scale. The second scale is due
to the separation of resonant and nonresonant contributions to
the cross section (cf. Section 4.3). It exclusively appears in the top
cross section, all other functions only take a single scale as their
argument.

3.3.1. Grids
For N2LO and N3LO corrections to the cross section, it is

necessary to load a precomputed grid first. Some default grids
can be found in the grids subdirectory of the installation.
The generation of custom grids is explained in Section 7. For
convenience, the grid_directory function returns the directory
containing the default grids. The following code performs a
threshold scan at N3LO and prints a table of the cross sections for
centre-of-mass energies between 330 and 345 GeV:

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 99
examples/C++/xsection_1.cpp
#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"
#include <iostream>

int main(){
namespace QQt = QQbar_threshold;
QQt::load_grid(
QQt::grid_directory() + "ttbar_grid.tsv"

);
const double mu = 50.;
const double mu_width = 350.;
const double mt_PS = 168.;
const double width = 1.4;
for (double sqrt_s = 330.; sqrt_s < 345.; sqrt_s

+= 1.0) {
std::cout << sqrt_s << ’\t’

<< QQt::ttbar_xsection(
sqrt_s ,{mu, mu_width} ,{mt_PS , width},

QQt::N3LO
)
<< ’\n’;

}
}

examples/Mathematica/xsection_1.m
Needs["QQbarThreshold ‘"];

LoadGrid[GridDirectory <> "ttbar_grid.tsv"];
With[

{
mu = 50.,
mtPS = 168.,
width = 1.4,
muWidth = 350.,
order = "N3LO"

},
Do[

Print[
sqrts, "\t",
TTbarXSection[sqrts, {mu, muWidth}, {mtPS,

width}, order]
],
{sqrts, 330., 345., 1.}

]
];

Grids cover a specific range in the rescaled energy and width
coordinates

Ẽ = −4/(α2
s C

2
F mQ)E, (3)

Γ̃ = −4/(α2
s C

2
F mQ)Γ , (4)

wheremQ is the pole quarkmass, E =
√
s−2mQ the kinetic energy,

and CF = 4/3. If the arguments of the cross section functions lead
to rescaled coordinates outside the range covered by the grid an
exception is thrown. In theMathematica package an errormessage
is displayed and the cross section function will return a symbolic
LibraryFunctionError.

After loading a grid, its coordinate range can be identified as
shown in the following example. For the default top grid, the range
is −10.4956 ≤ Ẽ ≤ 17.0554 and −1.83673 ≤ Γ̃ ≤ −0.918367.
For the default bottom grid we would find −37.1901 ≤ Ẽ ≤

−9.29752×10−6 and−9.29752×10−8
≤ Γ̃ ≤ −4.55432×10−15.

examples/C++/grid_range.cpp
#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"
#include <iostream>

int main(){
namespace QQt = QQbar_threshold;
QQt::load_grid(
QQt::grid_directory() + "ttbar_grid.tsv"

);
auto range = QQt::grid_range();
std::cout << "Et range: (" << range.Et_min

<< ", " << range.Et_max << ")\n";
std::cout << "Gammat range: (" << range.
Gammat_min

<< ", " << range.Gammat_max << ")\n";
}

examples/Mathematica/grid_range.m
Needs["QQbarThreshold ‘"];

LoadGrid[GridDirectory <> "ttbar_grid.tsv"];
Print["Et range: ", {GridEtMin[], GridEtMax[]}];
Print["Gammat range: ", {GridGammatMin[],

GridGammatMax[]}];

If no grid is loaded 0 will be returned for all coordinate limits.
Note that at most one grid can be used at any given time; if a

second grid is loaded it will replace the first one. Loading a grid is
not thread safe, i.e. one should not try to load more than one grid
in parallel. See Section 6.2 for more details on parallelisation.

3.3.2. Thresholds
For convenience, there are also the functions ttbar_threshold

and bbbar_threshold to compute the naïve production threshold,
which is given by twice the pole mass. In the following example, a
scan around this naïve threshold is performed. The centre-of-mass
energy ranges from 2mt − 3 GeV to 2mt + 5 GeV, where the pole
massmt is calculated from the input mass in the PS scheme.

examples/C++/xsection_2.cpp
#include <iostream>
#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"

int main(){
namespace QQt = QQbar_threshold;
QQt::load_grid(
QQt::grid_directory() + "ttbar_grid.tsv"

);
const double mu = 50.;
const double mu_width = 350.;
const double mt_PS = 168.;
const double width = 1.4;
const auto order = QQt::N3LO;
const double thr = QQt::ttbar_threshold(mu, mt_PS

, order);
for(double E = -3.; E < 5.; E += 1.0){

double sqrt_s = thr + E;
std::cout << sqrt_s << ’\t’

<< QQt::ttbar_xsection(
sqrt_s, {mu, mu_width}, {mt_PS, width},

order
)
<< ’\n’;

}
}

examples/Mathematica/xsection_2.m
Needs["QQbarThreshold ‘"];

LoadGrid[GridDirectory <> "ttbar_grid.tsv"];
With[

{
mu = 50.,
muWidth = 350.,
mtPS = 168.,
width = 1.4,
order = "N3LO"

},
With[

{thr = TTbarThreshold[mu, mtPS, order]},
Do[

Print[
thr + energy, "\t",
TTbarXSection[

thr + energy, {mu, muWidth}, {mtPS,
width}, order

]
],

100 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
{energy, -3., 5., 1.}
]

]
];

For the case that the centre-of-mass energy is not required
anywhere else in the program, the C++ threshold class allows a
more concise notation. If used inside the first argument of a cross
section function, itwill be equivalent to amatching ttbar_threshold

or bbbar_threshold functionwith the arguments of the surrounding
cross section function. Thus, in this example the bb̄ cross section at
threshold σb(4 × m2

b) = 167.214 pb is evaluated:

examples/C++/xsection_3.cpp
#include <iostream>
#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"
#include "QQbar_threshold/threshold.hpp"

int main(){
namespace QQt = QQbar_threshold;
QQt::load_grid(
QQt::grid_directory() + "bbbar_grid.tsv"

);
std::cout

<< bbbar_xsection(QQt::threshold()+1e-3, 4.5,
4.5, QQt::N3LO)
// equivalent to
// << QQt::bbbar_xsection(
// QQt::bbbar_threshold(4.5, 4.5, QQt::N3LO
) // + 1e-3
// 4.5, 4.5, QQt::N3LO
//)
<< ’\n’;

}

InMathematica, we can use the symbol QQbarThreshold to the same
effect.

examples/Mathematica/xsection_3.m
Needs["QQbarThreshold ‘"];

LoadGrid[GridDirectory <> "bbbar_grid.tsv"];
Print[BBbarXSection[QQbarThreshold + 10^-3, 4.5,

4.5, "N3LO"]];

Note that for the bottom quark the width is considered to be
zero and thus the continuum cross section is discontinuous at the
production threshold. In fact, the expression for the cross section
directly at threshold is currently not known to N3LO and it is
necessary to add a small positive offset to the energy, which was
somewhat arbitrarily set to 1 MeV in the above examples.

3.4. Basic options

The functions provided by QQbar_threshold support a
plethora of optional settings to control their behaviour. In this
section we only discuss a small selection; a short summary of
all options (Table 1) followed by a comprehensive discussion is
given in Section 5. The default settings for the options are given by
top_options() for top-related functions and bottom_options() for
the bottom-related counterparts.

As an example let us have another look at the t t̄ threshold scan.
Here, we change the renormalisation scheme for themass from the
default PS-shift scheme to the MS scheme and discard all Standard
Model corrections beyond QCD.

examples/C++/opt_0.cpp
#include <iostream>
#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"

int main(){
namespace QQt = QQbar_threshold;
QQt::load_grid(
QQt::grid_directory() + "ttbar_grid.tsv"

);
const double mu = 50.;
const double mu_width = 350.;
const double mt_MS = 160.; // mass mt(mt) in the

// MSbar scheme
const double width = 1.4;
QQt::options opt = QQt::top_options();
// MSbar scheme with mu_MSbar = mt_MS
opt.mass_scheme = {QQt::MSshift, mt_MS};
// turn off all non-QCD corrections
opt.beyond_QCD = QQt::SM::none;
for(double sqrt_s = 330.; sqrt_s < 345.; sqrt_s

+= 1.0){
std::cout << sqrt_s << ’\t’

<< QQt::ttbar_xsection(
sqrt_s, {mu, mu_width}, {mt_MS, width},

QQt::N3LO,
opt

)
<< ’\n’;

}
}

examples/Mathematica/opt_0.m
Needs["QQbarThreshold ‘"];

LoadGrid[GridDirectory <> "ttbar_grid.tsv"];
With[

{
mu = 50.,
muWidth = 350.,
mtMS = 160., (* mass mt(mt) in the MSbar
scheme *)
width = 1.4,
order = "N3LO"

},
Do[

Print[
sqrts, "\t",
TTbarXSection[

sqrts, {mu, muWidth}, {mtMS, width},
order,

MassScheme -> {"MSshift", mtMS},
BeyondQCD -> None

]
],
{sqrts, 330., 345., 1.}

]
];

Another useful option allows to modify the reference value for the
strong coupling at the scale of the Z boson mass:

examples/C++/opt_1.cpp
#include <iostream>
#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"

int main(){
namespace QQt = QQbar_threshold;
QQt::load_grid(
QQt::grid_directory() + "ttbar_grid.tsv"

);
const double mu = 50.;
const double mu_width = 350.;
const double mt_PS = 168.;
const double width = 1.4;
QQt::options opt = QQt::top_options();
opt.alpha_s_mZ = 0.1174;
for(double sqrt_s = 330.; sqrt_s < 345.; sqrt_s

+= 1.0){
std::cout << sqrt_s << ’\t’

<< QQt::ttbar_xsection(
sqrt_s, {mu, mu_width}, {mt_PS, width},

QQt::N3LO,
opt

)
<< ’\n’;

}
}

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 101
examples/Mathematica/opt_1.m
Needs["QQbarThreshold ‘"];

LoadGrid[GridDirectory <> "ttbar_grid.tsv"];
With[

{
mu = 50.,
muWidth = 350.,
mtPS = 168.,
width = 1.4,
order = "N3LO"

},
Do[

Print[
sqrts, "\t",
TTbarXSection[

sqrts, {mu, muWidth}, {mtPS, width},
order,

alphaSmZ -> 0.1174
]

],
{sqrts, 330., 345., 1.}

]
];

For debugging purposes it can be quite helpful to print the current
option settings. The following example shows the default options
for top-related functions. Note that for some options the default is
signified by a physically meaningless sentinel value.

examples/C++/opt_2.cpp
#include <iostream>
#include "QQbar_threshold/parameters.hpp"

int main(){
std::cout << QQbar_threshold::top_options();

}

In theMathematica package the current option settings if different
from the default are always visible through their specification in
the function call. The default settings for a given function can be
inspected with Options[function].

It is also possible to inspect the settings used internally for the
actual calculation:

examples/C++/opt_3.cpp
#include <iostream>
#include "QQbar_threshold/parameters.hpp"

int main(){
namespace QQt = QQbar_threshold;
const double sqrt_s = 340.;
const double mu = 50.;
const double mu_width = 350.;
const double mt_PS = 168.;
const double width = 1.4;
const auto order = QQt::N3LO;
// internal settings for top cross section
std::cout << QQt::top_internal_settings(

sqrt_s, {mu, mu_width}, {mt_PS, width}, order
,
QQt::top_options()

);
// internal settings for energy levels and

residues
std::cout << QQt::top_internal_settings(

mu, mt_PS, order,
QQt::top_options()

);
}

examples/Mathematica/opt_3.m
Needs["QQbarThreshold ‘"];

With[
{

sqrts = 340.,
mu = 50.,
muWidth = 350.,
mtPS = 168.,
width = 1.4,
order = "N3LO"

},
Print[

TopInternalSettings[sqrts, {mu, muWidth}, {
mtPS, width}, order]

];
Print[TopInternalSettings[mu, mtPS, order]];

];

Correspondingly, for bottom quarks the function
bottom_internal_settings can be used. The arguments match the
respective energy level, residue, or cross section function.

3.5. Scheme conversion

While the PS scheme is appropriate for the description of
threshold observables, in other kinematic regions schemes like MS
may be more suitable. For converting masses to the pole scheme,
QQbar_threshold provides the functions top_pole_mass and
bottom_pole_mass. As shown in the following example, using these
functions iteratively then allows conversions between arbitrary
schemes. For the input PS massmPS

t (20 GeV) = 168 GeV we find a
pole mass of mt = 169.827 GeV and an MS mass of mMS

t (m
MS
t) =

160.035 GeV.

examples/C++/scheme_conversion.cpp
#include <iostream>
#include "QQbar_threshold/scheme_conversion.hpp"

int main(){
namespace QQt = QQbar_threshold;
const double mt_PS = 168.;
const double mu = 50.;
//convert to pole scheme
const double mt_Pole = QQt::top_pole_mass(mu,

mt_PS, QQt::N3LO);
//convert to MSbar scheme
const double precision = 1e-4;
QQt::options opt = QQt::top_options();
double mt_MS = mt_PS;
double delta_M;
do{

opt.mass_scheme = {QQt::MSshift, mt_MS};
delta_M = QQt::top_pole_mass(mu, mt_MS, QQt::
N3LO, opt) - mt_Pole;
mt_MS -= delta_M;

} while(std::abs(delta_M) > precision);
std::cout << "pole mass: " << mt_Pole << ’\n’

<< "MSbar mass: " << mt_MS << ’\n’;
}

examples/Mathematica/scheme_conversion.m
Needs["QQbarThreshold ‘"];

With[
{mtPS = 168., mu = 50., precision = 10^-4},
(* convert to pole scheme *)
mtPole = TopPoleMass[mu, mtPS, "N3LO"];
(* convert to MSbar scheme *)
mtMS = mtPS;
For[

deltaM = TopPoleMass[
mu, mtMS, "N3LO", MassScheme -> {"MSshift"

, mtMS}
] - mtPole,
Abs[deltaM] > precision ,
deltaM = TopPoleMass[

mu, mtMS, "N3LO", MassScheme -> {"MSshift"
, mtMS}
] - mtPole,
mtMS -= deltaM

];
Print["pole mass: ", mtPole];
Print["MSbar mass: ", mtMS];

];

102 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
3.6. Top quark width

The width of the top quark is an external parameter of
the ttbar_xsection function and independent of other input
parameters like the mass and the strong coupling. In order
to ensure consistency with the Standard Model prediction, the
top_width function can be used. It is recommended to always use
the highest available order (i.e. N2LO) for the top width, even if
the cross section is computed at a lower order. The following code
computes a width of 1.36003 GeV from the given input:

examples/C++/top_width.cpp
#include <iostream>
#include "QQbar_threshold/width.hpp"

int main(){
namespace QQt = QQbar_threshold;
const double mt_PS = 171.5;
const double mu = 50.;
std::cout << QQt::top_width(mu, mt_PS, QQt::N2LO)

<< ’\n’;
}

examples/Mathematica/top_width.m
Needs["QQbarThreshold ‘"];

With[
{

mtPS = 171.5,
mu = 50.

},
Print[TopWidth[mu, mtPS, "N2LO"]];

];

It should be noted that top_width behaves very differently from
the other functions contained in QQbar_threshold. Since N3LO
corrections are unknown the order is limited to N2LO. However,
internally the input mass is converted to the pole mass using
N3LO conversion regardless of the order argument of the top_width

function. AtN2LO, an approximation of the electroweak corrections
based on the exact results from [23,24] is included in addition to
the first [25] and second [26–28] order QCD corrections, for which
we use the expressions from [29] and [26], respectively. More
precisely, the electroweak corrections are assumed to be a flat 1.7%
of the leading-order width. In contrast to all other functions, we
use the Fermi constant GF instead of the running QED coupling as
input parameter. Finally, a number of options available for other
functions are ignored. In particular, the electroweak corrections
cannot be turned off or altered in any way and the bottom quark is
always assumed to be massless.

4. Structure of the cross section

Before discussing the optional settings in detail, we first give
an overview over the structure of the cross section as defined in
Eqs. (1), (2) up to N3LO in PNRQCD. A more detailed account of the
effective field theory framework is given in [30,31].

4.1. Power counting

In PNRQCD, an expansion in αs ∼ v ≪ 1 is performed,
where v = [

√
s/mQ − 2]1/2 is the non-relativistic velocity of the

quarks and mQ their pole mass. The Coulomb interaction leads to
terms scaling with powers of αs/v ∼ 1, which are resummed
to all orders. Concerning the electroweak interactions including
the Higgs boson, we choose the power counting α ∼ y2t ∼ α2

s
for the QED coupling constant and the top Yukawa coupling. We
include pure QCD corrections up to N3LO, i.e. order α3

s ∼ α2
s v ∼

αsv
2

∼ v3 relative to the leading-order cross section. Similarly,
Higgs corrections are considered to the same order αsy2t , and the
Higgs mass counts as a hard scale, i.e. mH ∼ mt . The remaining
electroweak corrections are mostly only included at lower orders,
as detailed in the following.

4.2. Resummation of QED effects

It is customary to absorb large logarithmic corrections due to
vacuum polarisation into a running QED coupling constant α(µα),
which coincides with the fine structure constant α ≡ α(0) in
the Thomson limit. The total cross section σ(e+e−

→ qq̄) is then
proportional to α(µα)2. We therefore factorise the cross sections
σQ with Q = b, t defined in Eqs. (1), (2) as follows.

σQ =
4πα(µα)2

3s
RQ . (5)

RQ then depends on the QED coupling only through higher-order
corrections.

A further source of large logarithms is given by photon
initial state radiation off the electron–positron pair. Currently, we
exclude this correction and all other QED corrections to the initial
state.

4.3. Nonresonant cross section

Since for top quarks the width is non-negligible, it is necessary
to consider the full process e+e−

→ W+W−bb̄ instead of just
the production of an on-shell t t̄ pair. A systematic analysis in the
framework of unstable particle effective theory [32,33] shows that
the cross section can then be written as the sum of resonant and
non-resonant production:

RQ (s) = Rres(s)+ Rnon-res(s). (6)

While the resonant part by construction only contains the
contributions from top quarks near their mass shell, the invariant
mass of the final state W b pair in the nonresonant part can be
quite different from the top quark mass. In order to reduce such
background contributions, it is possible to specify a cut on the
invariant mass (see Section 5). The current implementation in
QQbar_threshold only includes the NLO [11] nonresonant cross
section.

Both the resonant and the non-resonant part are separately
divergent.We remove thepoles usingMS subtraction and associate
the remaining logarithms with a new scale µw (cf. Section 3.3).
While these logarithms cancel order by order in the sum (Eq. (6)),
a dependence on µw remains in the present implementation at
N2LO and N3LO, since the N2LO and N3LO corrections to the non-
resonant cross section are still unknown. However, it has already
been checked [13] that the logarithms indeed cancel at N2LO once
the N2LO non-resonant contribution is included.

During the evaluation of the nonresonant cross section,
interpolation on a precomputed grid is performed. While physical
values of the W and the top quark mass are covered by a built-
in grid, exotic parameter settings may require the generation of
a custom nonresonant grid. This is covered in Section 7. Custom
grids can be loaded with load_nonresonant_grid(gridfile) (or, in
Mathematica, LoadNonresonantGrid[gridfile]).

4.4. Production channels

While the resonant quark pair is mostly produced in an S wave,
there is also a subleading P-wave contribution starting at N2LO.
Thus, the resonant cross section can be decomposed as

Rres(s) = RS(s)+ RP(s). (7)

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 103
RS and RP can be expressed in terms of the imaginary parts of
the vector and axialvector polarisation functions, respectively. One
obtains

RS(s) = RS,QCD(s)+ RS,EW(s), (8)

RS,QCD(s) =

C (v)

2
+ C (a)

2
12π Im[Π

(v)
PR (s)], (9)

RP(s) = a2Q

a2e + v2e

 s2

(s − m2
Z)

2
12π Im[Π

(a)
PR (s)], (10)

C (v) = eeeQ + vQ ve
s

s − m2
Z
, (11)

C (a) = −vQ ae
s

s − m2
Z
, (12)

where vf is the vector coupling of a fermion to the Z boson and af
the corresponding axialvector coupling given by

vf =
T f
3 − 2ef s2w
2swcw

, af =
T f
3

2swcw
. (13)

ef is the fermion charge in units of the positron charge, T f
3 its third

isospin component, cw = mW/mZ the cosine of the Weinberg
angle, and sw = (1− c2w)

1/2. RS,EW(s) is the electroweak correction
to S-wave production [20,16,21,22]; more details are given in
Section 4.6.2.

4.5. Pole resummation

The polarisation functions exhibit poles at E = EN − iΓ , where
E =

√
s−2mQ is the kinetic energy, Γ the quark width, and EN the

(real) binding energy of the Nth bound state. For reasons detailed
in [34] the pole contributions to the polarisation functions should
be resummed by subtracting the contribution expanded around
the leading-order pole position and adding back the unexpanded
contributions, i.e.

Π
(v)
PR (s) = Π (v)(s)+

NC

2m2
Q

∞
N=1

 
ZN


expanded

EN − E − iΓ

unexpanded

−


ZN

EN − E − iΓ


expanded


, (14)

and similar for the axialvector polarisation function Π (a)
PR (s) with

the P-wave energy levels EP
N and residues ZP

N . A more precise
definition of ZN is given in Section 4.9. It should be emphasised
that in the limit of a vanishing width, i.e. for bottom quarks, pole
resummation has no effect on the (continuum) cross section.

In the actual implementation, it is of course not possible
to evaluate the sum in Eq. (14) up to infinity. The number of
resummed poles is instead set via an option of the cross section
functions and defaults to 6. From the scaling of the residues with
N the resulting error on the cross section can be estimated to be
comparable to the difference between resumming 4 and 6 poles
and is typically at most about 2 per mille.

4.6. Hard matching

4.6.1. QCD and Higgs
The polarisation functions without pole resummation are a

product of hard current matching coefficients and the non-
relativistic Green functions G,GP ,

Π (v)(s) =
2Nc

s
cv


cv −

E + iΓ
mQ

dv
3


G(E)+ · · · , (15)

Π (a)(s) =
2Nc

m2
Q s

d − 2
d − 1

c2aG
P(E)+ · · · . (16)
HereG(E)denotes theGreen function at complex energy E+iΓ and
d the space-time dimension in dimensional regularization. It is also
understood that the products are consistently expanded to N3LO
and higher-order terms are dropped. The perturbative expansions
of the matching coefficients of the non-relativistic currents up to
the required order can be put into the following form:

cv = 1 +
αs(µ)

4π
c(1)v +


αs(µ)

4π

2

c(2)v +


αs(µ)

4π

3

c(3)v

+
y2Q
2


c(2)vH +

αs(µ)

4π
c(3)vH


, (17)

dv = d(0)v +
αs(µ)

4π
d(1)v , (18)

ca = 1 +
αs(µ)

4π
c(1)a , (19)

where numerically d(0)v = 1. The index H indicates corrections
where a Higgs boson couples exclusively to the heavy quark.
αs(µ) denotes the strong coupling constant in the MS scheme
at the overall renormalisation scale µ. Explicit formulas for the
coefficients can be found in [18,30,35].

4.6.2. Electroweak
The electroweak correction in Eq. (8) can be written (up to the

N2LO considered here) as

RS,EW(s) =
12Nc

s
α(µα)cv Im


(C (v)C (v)EW + C (a)C (a)EW)GPR(E)


+ · · · . (20)

In contrast to the QCD and Higgs hard matching coefficients
discussed in Section 4.6.1 the electroweak Wilson coefficients C (v)EW

and C (a)EW have a non-vanishing imaginary part that contributes to
the cross section. They can be decomposed further into a pure
QED contribution and corrections involving at least one W , Z , or
Goldstone boson2

C (v,a)EW = C (v,a)QED + C (v,a)WZ . (21)

Note that C (v)WZ and C (a)WZ do not contain corrections from Higgs
bosons coupling exclusively to heavy quarks; these are instead
absorbed into cv (cf. Eq. (17)). As already mentioned in Section 4.2,
C (v)QED and C (a)QED do not include purely photonic corrections that
couple only to the initial-state leptons, yet.

GPR(E) is the pole-resummed Green function (see also Sec-
tion 4.5) given by

GPR(E) = G(E)+

∞
N=1

 
|ψN(0)|2


expanded

EN − E − iΓ

unexpanded

−


|ψN(0)|2

EN − E − iΓ


expanded


, (22)

where ψN(0) is the quarkonium wave function at the origin. Like
in the QCD pole resummation (Eq. (14)), EN denotes the binding
energy to the same order as the total cross section, i.e. N2LO or
N3LO.

According to the power counting outlined in Section 4.1,
the electroweak correction first contributes at N2LO. N3LO
contributions arise from QCD corrections to either of cv , G(E), or
C (v,a)EW . Since the corrections to C (v,a)EW are not known completely, we

2 We also include the Higgs-loop correction to the s-channel Z propagator in
C (v,a)WZ .

104 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
currently only include the N3LO contributions due to corrections
to cv and G(E).

Since the mass of the bottom quark lies significantly below
the electroweak scale, corrections due to W , Z , and Higgs bosons
should be considered in an effective (Fermi) theory, if at all. For
this reason we discard all corrections contributing to C (v,a)WZ when
computing the bottom production cross section. Technically, these
corrections are excluded whenever mQ < mZ , so for unphysical
values of the top mass also the top production cross section would
be affected.

4.7. Green functions

The expansion of the S-wave Green function to third order can
be written as

G(E) = ⟨0|Ĝ0(E)|0⟩ + ⟨0|Ĝ0(E) i δV i Ĝ0(E)|0⟩
+ ⟨0|Ĝ0(E) i δV i Ĝ0(E) i δV i Ĝ0(E)|0⟩
+ ⟨0|Ĝ0(E) i δV i Ĝ0(E) i δV i Ĝ0(E) i δV i Ĝ0(E)|0⟩
+ δusG(E)+ · · · . (23)

Here, Ĝ0(E) is the Green function operator of unperturbed PNRQCD
and δV denotes a correction to the leading-order potential. δusG(E)
stands for the ultrasoft correction contributing only at third order.
Again, Eq. (23) is to be understood as consistent expansions to
N3LO.

For the P-wave Green function an analogous formula holds. In
this case, there is an additional insertion of p ·p′, where p and p′ are
the momenta of the initial and final state. Only the first two terms
(no perturbation and a single insertion) are needed at N3LO, cf. [10]
for details.

4.8. Potentials

The corrections to the potential up to third order can be
classified in the following way:

δV = δCV + δQEDV  
NLO

+ δ1/r2V + δδV + δpV + δkin  
N2LO

+ δHV
N3LO

, (24)

• δCV : Corrections to the colour Coulomb potential.
• δQEDV : QED Coulomb potential.
• δ1/r2V : Potential proportional to 1/r2 (equivalently 1/m).
• δδV : Potential proportional to δ(r) (equivalently 1/m2).
• δpV : Momentum-dependent potential.
• δHV : Potential due to Higgs exchange.
• δkin: Kinetic energy correction.

The braces indicate the order at which these potential corrections
first appear. While all QCD corrections to the potentials are
implemented up to N3LO, we generally do not include N3LO
electroweak corrections for the sake of consistency with the
electroweak corrections to the hard matching discussed in
Section 4.6.2.

In this vein, we exclude the QED corrections to both the colour
Coulombpotential (cf. Fig. 1) and the delta potential δδV . For δQEDV ,
the one-loop (orderα2) QED contribution, corresponding to a N3LO
correction, is also excluded. Togetherwith other N3LO electroweak
corrections we neglect the potential induced by the exchange of
Z bosons. Note that W exchange is formally beyond third order
according to our power counting. Finally, the nonrelativistic quark
pair can annihilate into a virtual photon or Z that again produces a
nonrelativistic quark pair. This also constitutes a N3LO electroweak
correction and is therefore not taken into account. Note that we do
include multiple insertions of the QED Coulomb potential δQEDV
into the Green function (see Eq. (23)). For the similar case of the
colour Coulomb potential, this prescription has been shown to lead
to better agreement with numerical solutions to the Schrödinger
equation [36].

For the case of a non-zero light quark (e.g. charm) mass,
the potentials receive further contributions, which are known to
N2LO [37–39]. Up to this order, only the colour Coulomb potential
is affected. It can be decomposed as

δCV = δC,0V + δC,mlV , (25)

where δC,0V corresponds to the contribution for a vanishing light
quark massml.

Because of the strongmass hierarchy, corrections to top-related
observables due to a non-zero light-quark mass are negligible.
However, in the case of the bottom quark the charm-quark mass
is of the same order as the heavy-quark momentum. According to
our power counting (Section 4.1) the charm contributions to the
colour Coulomb potential are therefore formally of the same order
as the contributions from massless quarks.

In practice, charm-mass effects are found to be numerically
small but computationally rather expensive, typically requiring
numerical Mellin–Barnes integrations. Therefore, we liberally
discard sub-leading effects during calculations. For the continuum
cross section, at most the single insertion of the potential δC,mlV at
NLO into the S-wave Green function is taken into account (cf. first
line of Eq. (23)). The bound state energies and residues also contain
the single insertion of the N2LO potential and the double insertion
of the NLO potential [40].3 Note that for the pole resummation
Eqs. (14), (22) also at most the single insertion of δC,mlV at NLO
is considered.

4.9. Energy levels and residues

As noted in Section 4.5, the S-wave energy levels EN are given
by the position of the poles in the vector polarisation function,
or, equivalently, the S-wave Green function G(E). The residues of
the Green function then correspond to the modulus squared of the
wave function at the origin:

G(E)
E+iΓ→EN
−−−−−→

|ψN(0)|2

EN − E − iΓ
. (26)

Since ψN(0) is a factorisation scheme dependent quantity, the
bbbar_residue and ttbar_residue functions instead compute ZN ,
which is defined as

ZN =
4m2

Q

sN
cv


cv −

EN
mQ

dv
3


|ψN(0)|2 (27)

with sN = (2mQ + EN)2.

4.10. Mass schemes

So far, all formulas have been expressed in terms of the pole
mass of the heavy quark. Mass values in other schemes RS can be
converted via relations of the form

mQ = mRS
Q +

o
i=0

δmRS
i , (28)

where 0 ≤ o ≤ 3 is the considered order according to the PNRQCD
power counting summarised in Section 4.1. The polemass can now
be substituted in two different ways [31]:

3 This double insertion correction is available, but not included by default. See
the option double_light_insertion in Section 5.

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 105
Fig. 1. Third-order potential corrections that are not included in QQbar_threshold. From left to right: (a) QED correction to the colour Coulomb potential; (b) one-loop
correction to the QED Coulomb potential; (c) Z potential; (d) annihilation followed by pair production.
• First compute the numerical value of the pole mass from the
mass value in the scheme RS by using relation (28). The value
obtained for the pole mass in this way will strongly depend on
the order o used in Eq. (28). Then evaluate the expressions for
the cross section, residues, and energy levels in the pole scheme
with the pole mass mQ as determined above. This is the shift
prescription.

• Symbolically replace the pole mass in all expressions by
the mass in the scheme RS via relation (28). Then perform
a systematic expansion wherever δmRS

i constitutes a small
correction. To ensure both a consistent expansion and order-by-
order renormalon cancellation, δmRS

0 has to be of order E ∼ v2.
Finally, insert the numeric value of the mass in the scheme RS.
This corresponds to the insertion prescription.
Deviating from this general rule, in the present version of the
code the residue ZN in the insertion scheme is computed as
(mRS

Q)
2

× [ZN/m2
Q]RS where the quantity in square brackets

is transformed from the pole scheme to RS according to the
general rule. That is, we perform the naïve replacement mQ →

mRS
Q without the correction terms δmRS

i in the factors 4m2
Q /sN

in Eq. (27) and also in NC/(2m2
Q) in Eq. (14). This has no effect

on the cross section, since mQ cancels in the product of these
factors. However, ZN as defined above differs slightly from the
value [ZN]RS it would attain, if the general rule were applied to
ZN directly.
The insertion prescription leads to unphysical oscillations of
the cross section near threshold [31]. What is more, for the
bottom quark the cross section is only defined in the sense of
a distribution. This is due to the expansion of the threshold step
function θ(s − 4m2

b) in δm
RS
i <

√
s for i > 0. It is therefore

recommended to use the shift prescription instead.

In both prescriptions, the energy variable ERS is defined as ERS
=√

s − 2mRS
Q , and similarly the binding energies are defined by the

bound state masses minus 2mRS
Q so that sN = (2mRS

Q + ERS
N)

2 is
scheme independent (see also Section 3.2).

So far, apart from the pole scheme, the following schemes are
implemented in QQbar_threshold:

• The potential-subtracted (PS) scheme [41] up to N3LO [36]. Cor-
rections from a non-zero light-quark mass are only contained
up to N2LO [40]. We define the subtraction potential to not in-
clude any electroweak corrections. Because of this, the first-
order QED corrections leads to a visible shift of the t t̄ cross sec-
tion peak for fixed input PS mass, but contrary to QCD, higher-
order QED and electroweak corrections are rapidly convergent.

• The 1S scheme [42]. Up to N3LO the conversion formula to the
pole scheme (cf. Eq. (28)) is given by

mQ = m1S
Q −

E1(mQ)

2

= m1S
Q −

E1(m1S
Q)

2
+

E1(m1S
Q)

4

∂E1(m1S
Q)

∂m1S
Q

+ · · · . (29)

Since the 1S scheme is closely connected to the bound state
energy levels, corrections are implemented to the same order,
i.e. N3LO for the QCD and Higgs corrections and N2LO for the
electroweak corrections.
• The MS scheme in QCD. For this scheme, we keep δmMS
0 at LO

in Eq. (28), δmMS
1 at NLO, and so on. Corrections are available

at order α4
s [43], which corresponds to N3LO as required at the

present highest accuracy. Since δmMS
0 is of the same order as

v (rather than v2 as in the PS and 1S scheme), only the shift
prescription is self-consistent with the convention adopted
here. We also include corrections from a non-zero light-quark
mass to N2LO [44]. We define this scheme via the pure QCD
relation to the pole mass and therefore do not include any
electroweak corrections to the mass conversion.

5. Options

Options are set by passing an options struct as the last
function argument in the C++ library or by the conventional
option -> value arguments in the Mathematica package. A short
overview over all options is given in Table 1. In the C++ case, it
is recommended to modify an object initialised with the helper
functions top_options() or bottom_options() as demonstrated
in Section 3.4. It should be noted that exotic option settings
(especially for the contributions option) can easily lead to scheme-
dependent or otherwise unphysical results.

Note that in many cases there is more than one option
that disables certain parts. In case of conflicting settings, a
contribution is discarded. For example, if all QED contribu-
tions are switched off through the beyond_QCD option, setting
contributions.v_QED_Coulomb[0] = 1. will not re-enable the QED
Coulomb potential.

The options struct has the following members:

• contributions: Specifiesmultiplicative factors for the potentials
(cf. Eq. (24)) and current matching coefficients (Eqs. (17), (18)).
For example, setting

options opt;
opt.contributions.v_delta = {{0., 1.}};

implies that corrections due to the leading-order delta potential
are discarded, but corrections from the next-to-leading delta
potential are kept, i.e. multiplied by 1. Table 2 lists the relations
to the definitions in Eqs. (24), (17), (18).
In Mathematica, the Contributions option expects a list of all
contributions with their coefficients:

Contributions -> {
vCoulomb -> {1., 1., 1.},
vdelta -> {0., 1.},
...

}

To facilitate the usage, the QQbarThreshold package
provides the auxiliary functions ExceptContributions and
OnlyContributions which set the factors for all contributions
that are not listed explicitly to 1 or 0, respectively. For exam-
ple, to discard only the leading-order delta potential one could
use

106 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
Table 1
Members of the C++ structure and equivalent Mathematica options.

C++ name Mathematica name Description

contributions Contributions Fine-grained control over higher-order corrections.
alpha_s_mZ alphaSmZ Value of αs(mZ).
alpha_s_mu0 alphaSmu0 Values of µ0 and αs(µ0).
m_Higgs mHiggs Value of mH .
Yukawa_factor YukawaFactor Multiplier for heavy-quark Yukawa coupling.
resonant_only ResonantOnly Toggle for non-resonant contribution.
invariant_mass_cut InvariantMassCut Cut on W b invariant mass.
ml ml Value of light-quark mass.
r4 r4 Value of parameter in N3LO MS to pole scheme conversion.
alpha alpha Value of α(µα).
mu_alpha muAlpha Value of scale µα for QED coupling.
resum_poles ResumPoles Number of resummed poles.
beyond_QCD BeyondQCD Toggle for higher-order corrections beyond QCD.
mass_scheme MassScheme Mass renormalisation scheme.
production Production Toggle for production channels.
expand_s ExpandEnergyFactor Toggle for expansion of 1/s prefactors.
double_light_insertion DoubleLightInsertion Toggle for double insertions of light-quark potential.
Table 2
List of potential and matching coefficient corrections that can be modified with the contributions option. In general superscripts refer to the number of loops associated
with a correction. For cvH we instead follow the notation of [19], where the superscript indicates the PNRQCD order. Ď δCV (1) multiplies both the contributions from the NLO
colour Coulomb potential and the QED Coulomb potential.

C++ name Mathematica name Corrections Defined eq.

v_Coulomb vCoulomb {δCV (1)
Ď
, δCV (2), δCV (3)} (24)

v_delta vdelta {δδV (0), δδV (1)} (24)
v_r2inv vr2inv {δ1/r2V

(1), δ1/r2V
(2)

} (24)

v_p2 vp2 {δpV (0), δpV (1)} (24)

v_kinetic vkinetic {δkin} (24)
ultrasoft ultrasoft {δusG(E)} (23)
v_Higgs vHiggs {δHV (0)} (24)
v_QED_Coulomb vQEDCoulomb {δQEDV (0)} (24)

cv cv {c(1)v , c
(2)
v , c

(3)
v } (17)

cv_Higgs cvHiggs {c(2)vH , c
(3)
vH } (17)

Cv_QED CvQED {C (v)QED} (21)

Ca_QED CaQED {C (a)QED} (21)

Cv_WZ CvWZ {C (v)WZ} (21)

Ca_WZ CaWZ {C (a)WZ} (21)

dv dv {d(0)v , d
(1)
v } (18)

ca ca {c(1)a } (19)
Contributions -> ExceptContributions[vdelta ->
{0., 1.}]

• alpha_s_mZ or alpha_s_mu0 specifies the input value for the
strong coupling constant. If the option alpha_s_mZ is used,
it is assumed that the given value corresponds to αs(mZ).
alpha_s_mu0 specifies both a reference scale and the value of αs
at that scale. For example

options opt;
opt.alpha_s_mu0 = {10., 0.22};

sets αs(10 GeV) = 0.22. If both options are set, the value for
alpha_s_mZ is ignored.
The input value for the strong coupling is evolved automatically
to the overall renormalisation scale using four-loop evolution.
For bottom-related functions decoupling to the four-flavour
theory is performed only if the input scale is above the
decoupling scale mu_thr defined in the constants.hpp
header. With the current default settings, decoupling is
performed at twice the scale-invariant mass mMS

b (m
MS
b) =

4.203 GeV. Note that for top-related functions the input value
for the strong coupling is always assumed to refer to the five-
flavour theory and no decoupling is performed.
The final values used for the actual calculations can be
inspected with the alpha_s_bottom and alpha_s_top functions
from the header alpha_s.hpp (or alphaSBottom, alphaSTop in
Mathematica), which take the renormalisation scale as their
first argument and the value of either alpha_s_mZ or alpha_s_mu0
as their second argument.

• m_Higgs: Specifies the value of the Higgs boson mass.
• Yukawa_factor: Specifies a multiplier for the top-quark Yukawa

coupling. This can be used to parametrise a possible deviation
from the Standard Model relation between the top-quark mass
and the coupling to the Higgs boson.
We assume that this deviation is caused by the dimension-6
operator

∆L = −
cNP
Λ2
(φĎφ)(Q̄3iσ 2φ∗tR)+ h.c., (30)

which implies the relation [19]

Yukawa_factor = 1 +
cNP
Λ2

v3
√
2mt

. (31)

While this operator modifies the coupling to the physical
Higgs boson, the couplings to the Goldstone bosons remain

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 107
unchanged, provided they are expressed in terms of the top-
quark mass. The operator also generates four- and five-point
vertices. Since we count the coupling cNPv2/Λ2 as N2LO, similar
to α and y2t (c.f. Section 4.1), these vertices contribute only
through a Higgs tadpole diagram to the top self-energy, which
has no effect in the top mass renormalisation schemes adopted
here. Hence in the present approximation, the only effect of the
dimension-6 operator is a rescaling of the Yukawa coupling.

• resonant_only: If set to true, the nonresonant contribution to
the cross section (cf. Eq. (6)) is discarded.

• invariant_mass_cut: Specifies an invariant mass cut for the
nonresonant contribution in Eq. (6). The invariant mass of each
W b pair in the final state is restricted to the region between
mt −invariant_mass_cut andmt +invariant_mass_cut.
By default, the loosest possible cut invariant_mass_cut =

mt − mW is taken, which yields the total cross section.
• ml: Specifies the value of the light (e.g. charm or bottom) quark

mass. The input value should be the MS quark mass at the
overall renormalisation scale µ. This option only affects the
mass of light quarks in virtual corrections, the bottom quarks
in the final state of the process e+e−

→ W+W−bb̄ are always
assumed to be massless.

• r4: Specifies the four-loop coefficient for the conversion
between the pole and the MS scheme (see Eq. (28)). More
precisely, r4 is defined by the relation

mQ = mMS
Q


mMS

Q


×


1 + r1as + r2a2s + r3a3s + r4 a4s + O


a5s


, (32)

where as = α
(nl)
s


mMS

Q


/π . Note that only the nl massless

quark flavours contribute to the running of the strong coupling;
r4 therefore differs slightly from the constant c(4)m


µ =

mMS

mMS


of [43], which refers to the theory with nl + 1 active

flavours.
This option is only relevant if the MS scheme was chosen and
only affects the conversion at N3LO.

• alpha: Specifies the value of the QED coupling constant at the
scale mu_alpha. This mainly affects the overall normalisation
factor in Eq. (5), but also all electroweak corrections.

• mu_alpha: Specifies the scale for the QED coupling constant.

Let us comment on the usage of the two previous options by
adopting two examples. (I) We want to compute the top cross
section using a different value for α(mZ), say α(mZ) = 1/130. (II)
We think that the default scaleµα = mZ is too low andwant to use
α(mt) as input. In scenario (I) we set alpha = 1./130. and we are
done. In scenario (II), we first have to look up or compute α(mt)
elsewhere. For the sake of the argument, let us assume α(mt) =

1/125. Then we set alpha = 1./125. and mu_alpha = mt . Setting
mu_alpha is necessary, because µα appears explicitly (i.e. not only
as an argument of α) in the formula for the cross section.

• resum_poles: Specifies the number of bound states that
are resummed into the vector polarisation function and the
electroweak contribution to the cross section (cf. Eqs. (14),
(22)). At N3LO the current maximum value is 6; at lower orders
there is no such upper limit. This option does not affect the
pole resummation for the axialvector polarisation function,
where in the current version always the three leading poles are
resummed.

• beyond_QCD: Specifies the Standard Model corrections beyond
QCD that should be taken into account. More precisely, each
setting defines the Lagrangian of the underlying full theory,
from which the higher-order corrections in the effective
nonrelativistic theory are then derived. For example, with
the setting beyond_QCD = SM::Higgs corrections involving Higgs
bosons coupling to the heavy quarks are added to the usual
PNRQCD corrections. Note that this option does not affect the
leading-order production process, i.e. s-channel production via
a virtual Z or photon is still taken into account with the above
setting, although higher-order corrections due to photons or Z
bosons are disabled. Nonresonant production is also unaffected
by this option. The possible settings are shown in Fig. 2.
LQCD and LSM denote the usual QCD and Standard Model
Lagrangians. Furthermore, we use

LQED = −
1
4
FµνFµν +


l∈leptons

ψ li/∂ψl −


f∈fermions

efψ f /Aψf ,

(33)

LHiggs =
1
2
(∂µH)2 −

1
2
m2

HH
2
−


λ

2
mHH3

−
λ

4
H4

−
yt
√
2
ttH,

(34)

where λ =
παm2

H
2m2

W s2w
.

• mass_scheme: Specifies the renormalisation scheme and scale of
the quark mass. Note that in the C++ library it is mandatory to
specify a scale:

options opt;
opt.mass_scheme = {PSshift, 20.};
opt.mass_scheme = {Pole, 0.};

For schemes without intrinsic scale (e.g. the pole scheme) the
second value can be set arbitrarily. In theMathematica package,
it can also be omitted completely:

MassScheme -> {"PSshift", 20.}
MassScheme -> "Pole"

A list of the available schemes is given in Table 3.
• production: Specifies which production channels are taken into

account. The possible settings are:
– photon_only: Production only via a virtual photon. This

effectively discards the P-wave contribution from Eq. (7),
the second term in the vector production operator, and the
axialvector production operator defined in Eqs. (11) and (12).
In addition, box corrections and corrections to the production
via a virtual Z boson are discarded in the electroweak
contribution to the cross section (Eq. (20)).

– S_wave_only: Production only via an S-wave photon or Z ,
i.e. the P-wave contribution in Eq. (7) is discarded.

– all: All possible production channels.
The corresponding Mathematica settings are "PhotonOnly",
"SWaveOnly", and "All" (or All).

• expand_s:
Specifies the treatment of the overall factor 1/s in the
polarisation functions defined in Eqs. (15), (16) and the
electroweak correction (Eq. (20)). If set to true, s = (2mQ + E)2
is expanded in E/mQ ∼ v2 ≪ 1 to the appropriate order. This
also affects the prefactor 1/sN in the residue ZN (Eq. (27)).

• double_light_insertion: Specifies whether double insertions
(second line of Eq. (23)) of the light-quark potential correction
δC,mlV defined in Eq. (25) are taken into account. This option
only affects the calculation of the energy levels and residues;
in the continuum cross section double insertions are always
neglected.
The impact on observables that can be computed reliablywithin
perturbation theory is typically small. For example, in the
determination of the bottomquarkmass from the 10thmoment
of the cross section the end result is changed by about 0.1 per
mille, compared to an overall change of around 0.5 per mille

108 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
Fig. 2. Possible settings for the beyond_QCD option and the associated Lagrangians defining the perturbative corrections that are included. See Eq. (33) for a definition of
LQED and LHiggs .
Table 3
List of available schemes. For details, see Section 4.10.
when combined with the dominant single insertions [40]. In
infrared-sensitive quantities like binding energies and residues
of bound states with principal quantum number N > 5 the
effects can become significant.
The calculation of the double insertions is computationally
very expensive, requiring the evaluation of an infinite sum
over integrals (cf. [40]). Therefore, setting this option to true

leads to a considerable slowdown by a factor between 100
and 1000. In order to avoid an even more severe slowdown as
well as numerical instabilities, the current implementation only
computes the first few terms of the sum, so that the result is
not very precise. Furthermore, the implementation is not thread
safe (cf. Section 6.2).

Finally, the default values for version 1.0 of QQbar_threshold
are shown in Table 4. Since default settings may change in
later versions, it is recommended to also consult the online
documentation under https://qqbarthreshold.hepforge.org/.

6. Advanced usage

In the followingwe discuss several more complicated examples
that require some knowledge of the options discussed in Section 5
and the structure of the cross section outlined in Section 4.

6.1. Wave function at the origin

While the quarkonium wave function at the origin is not a
physical observable, it serves as a good example to illustrate some
of the more advanced options. Our starting point is Eq. (27), the
definition of the residue ZN . The following assumes that wewish to
determine the wave function at the origin in the PS-shift scheme

https://qqbarthreshold.hepforge.org/

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 109
Table 4
Default option settings in version 1.0 for top and bottom related functions. Variables in the second and third column are defined in the header constants.hpp and can be
adjusted during or before installation. The default value for r4 is adjusted automatically if the number of light flavours is changed in constants.hpp.

Option Default for top Default for bottom

contributions All set to 1 All set to 1
alpha_s_mZ alpha_s_mZ = 0.1184 alpha_s_mZ = 0.1184
alpha_s_mu0 (not set) (not set)
m_Higgs m_Higgs = 125. m_Higgs = 125.
Yukawa_factor 1 0
resonant_only

invariant_mass_cut mt−mW N/A
ml 0 0
r4 824.12 for nl_top = 5 1220.3 for nl_bottom = 4
alpha alpha_mZ = 1/128.944 alpha_Y = 1/132.274
mu_alpha mZ = 91.1876 mu_alpha_Y = 10.2
resum_poles 6 6
beyond_QCD SM::all SM::QED
mass_scheme {PSshift, mu_f_top} {PSshift, mu_f_bottom}

with mu_f_top = 20. with mu_f_bottom = 2.
production production_channel::all production_channel::all
expand_s

double_light_insertion
and that the expand_s option is set to false (which is the default
for bottom quarks). In a first step, we eliminate dv and the higher-
order corrections to cv with the contributions option. We then
cancel the remaining prefactor by multiplying with sN/(4m2

Q),
wheremQ is the (order-dependent) pole mass computed frommPS

Q
according to the shift scheme prescription. To this end, we need
to calculate the binding energy EPS

N and convert the input mass
from the PS scheme to the pole scheme with the bottom_pole_mass

function presented in Section 3.5. The following code computes
|ψ1(0)|2 = 0.721131 GeV3 for the ϒ(1S) resonance:

examples/C++/wave_function.cpp
#include <iostream>

#include "QQbar_threshold/scheme_conversion.hpp"
#include "QQbar_threshold/energy_levels.hpp"
#include "QQbar_threshold/residues.hpp"

int main(){
namespace QQt = QQbar_threshold;
const double mb_PS = 4.5;
const double mu = 4.5;
QQt::options opt = QQt::bottom_options();
opt.contributions.cv = {0., 0., 0.};
opt.contributions.dv = {0., 0.};
const double E_1_PS = QQt::bbbar_energy_level(

1, mu, mb_PS, QQt::N3LO, opt
);
const double s_1 = (2*mb_PS + E_1_PS)*(2*mb_PS +

E_1_PS);
const double mb_pole = QQt::bottom_pole_mass(

mu, mb_PS, QQt::N3LO, opt
);
std::cout

<< s_1/(4*mb_pole*mb_pole)*QQt::bbbar_residue(
1, mu, mb_PS, QQt::N3LO, opt

)
<< ’\n’;

}

examples/Mathematica/wave_function.m
Needs["QQbarThreshold ‘"];

With[
{

mbPS = 4.5,
mu = 4.5,
opt = Contributions -> ExceptContributions[

cv -> {0, 0, 0},
dv -> {0, 0}

]
},
E1PS = BBbarEnergyLevel[1, mu, mbPS, "N3LO", opt
];

s1 = (2*mbPS + E1PS)^2;
mbPole = BottomPoleMass[mu, mbPS, "N3LO", opt];
Print[s1/(4*mbPole^2)*BBbarResidue[1, mu, mbPS,
"N3LO", opt]];

];

Since sN = (2mQ +EN)2 = (2mPS
Q +EPS

N)
2 is a scheme-independent

quantity we could also have computed the binding energy in the
pole scheme and combined it with the pole mass. This method
works analogously in the other shift schemes. In an insertion
scheme,we proceed the sameway. However, in this case one needs
to multiply by sN/(4(mRS

Q)
2).

6.2. Parallelisation

While the observables for a single given set of parameters
can be calculated rather quickly, computing e.g. the cross section
over a range of centre-of-mass energies and parameter settings
can become somewhat time consuming. In such a situation
parallelisation can lead to significant speed-ups.

As an example, we show how to perform a threshold scan
similar to the one discussed in Section 3.3, but including scale
variation. Our strategy is to generate a list containing the centre-
of-mass energy, the cross section obtained with a default scale of
80 GeV, the minimum and the maximum cross section obtained
through scale variation for each point in parallel. Since the
mechanisms typically used in C++ vs. Mathematica programs are
rather different, we discuss these languages separately in the
following sections.

6.2.1. C++
Since we use threads for parallelisation it may be necessary to

add additional flags for compilation. The g++ compiler for instance
requires the -pthread option:

g++ -o parallel -std=c++11 parallel.cpp -pthread \
-lQQbar_threshold

As in the previous examples we use an abbreviation for the
somewhat unwieldy QQbar_threshold namespace:

namespace QQt = QQbar_threshold;

110 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
First, we set up a struct comprising the minimum, maximum, and
default cross sections obtained for a given centre-of-mass energy:

struct xs_point{
double sqrt_s;
double xs_default;
double xs_min;
double xs_max;

};

Since we call the cross section function many times with mostly
the same arguments, it is also useful to define an auxiliary function
that has only the energy and the scale as remaining arguments:

double xsection(double sqrt_s, double mu){
static constexpr double mu_width = 350.;
static constexpr double mt = 171.5;
static constexpr double width = 1.33;
return QQt::ttbar_xsection(

sqrt_s,
{mu, mu_width},
{mt, width},
QQt::N3LO

);
}

Using this function, we can then define the scale variation for a
single centre-of-mass energy. For the sake of simplicity, we use a
rather crude sampling of the cross section to estimate the extrema.

xs_point xsection_scale_variation(double sqrt_s){
static constexpr double mu_default = 80.;
static constexpr double mu_min = 50.;
static constexpr double mu_max = 350.;
static constexpr double mu_step = 5.;
xs_point result;
result.sqrt_s = sqrt_s;
result.xs_default = xsection(sqrt_s, mu_default);
result.xs_min = result.xs_default;
result.xs_max = result.xs_default;
for(double mu = mu_min; mu < mu_max; mu +=

mu_step){
double current_xsection = xsection(sqrt_s, mu);
if(current_xsection < result.xs_min){

result.xs_min = current_xsection;
}
else if(current_xsection > result.xs_max){

result.xs_max = current_xsection;
}

}
return result;

}

The code to actually calculate the scale variation for various
energies in parallel is then rather short:

std::vector<std::future<xs_point>> results;
for(double sqrt_s = 340.; sqrt_s < 349.; sqrt_s +=

0.2){
results.emplace_back(

std::async(
std::launch::async,
xsection_scale_variation , sqrt_s

)
);

}

For each energy, a new thread is launched for computing the scale
variation. While this can be rather inefficient in practice, it still
illustrates how parallelisation can be achieved in principle.

To complete the example, we should also include the appropri-
ate headers, load a grid, and produce some output. While all these
steps are straightforward, some care should be taken when load-
ing the grid. As already stated in Section 3.3, the load_grid func-
tion must not be called concurrently from more than one thread.
All other functions provided by QQbar_threshold can, however,
be safely used in a multithreaded environment. There is one addi-
tional exception: if the option double_light_insertion is set to true,
the functions for energy levels and residues must not be invoked
explicitly from different threads at the same time.4

Finally, here is the full code for the parallelised threshold scan
with scale variation:

examples/C++/parallel.cpp
#include <iostream>
#include <iomanip>
#include <vector>
#include <thread>
#include <future>

#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"

namespace QQt = QQbar_threshold;

struct xs_point{
double sqrt_s;
double xs_default;
double xs_min;
double xs_max;

};

double xsection(double sqrt_s, double mu){
static constexpr double mu_width = 350.;
static constexpr double mt = 171.5;
static constexpr double width = 1.33;
return QQt::ttbar_xsection(

sqrt_s,
{mu, mu_width},
{mt, width},
QQt::N3LO

);
}

xs_point xsection_scale_variation(double sqrt_s){
static constexpr double mu_default = 80.;
static constexpr double mu_min = 50.;
static constexpr double mu_max = 350.;
static constexpr double mu_step = 5.;
xs_point result;
result.sqrt_s = sqrt_s;
result.xs_default = xsection(sqrt_s, mu_default);
result.xs_min = result.xs_default;
result.xs_max = result.xs_default;
for(double mu = mu_min; mu < mu_max; mu +=

mu_step){
double current_xsection = xsection(sqrt_s, mu);
if(current_xsection < result.xs_min){

result.xs_min = current_xsection;
}
else if(current_xsection > result.xs_max){

result.xs_max = current_xsection;
}

}
return result;

}

int main(){
QQt::load_grid(
QQt::grid_directory() + "ttbar_grid.tsv"

);
std::vector<std::future<xs_point>> results;
for(double sqrt_s = 340.; sqrt_s < 349.; sqrt_s

+= 0.2){
results.emplace_back(

std::async(
std::launch::async,
xsection_scale_variation , sqrt_s

)
);

}
std::cout << std::fixed;

4 As already mentioned in Section 5, for the cross section including pole
resummation the double_light_insertion option is ignored, so cross section
calculations are always thread safe.

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 111
std::cout<<"sqrt_s
\tcentral \tmin
\tmax\n";
for(auto & res: results){

xs_point current_point = res.get();
std::cout << current_point.sqrt_s << ’\t’

<< current_point.xs_default << ’\t’
<< current_point.xs_min << ’\t’
<< current_point.xs_max << ’\n’;

}
}

6.2.2. Mathematica
For parallelisation inMathematica, we have to ensure that each

kernel knows all relevant definitions and has its own precomputed
grid:

Needs["QQbarThreshold ‘"];
LaunchKernels[];

ParallelEvaluate[Needs["QQbarThreshold ‘"]];
ParallelEvaluate[LoadGrid[GridDirectory <>
"ttbar_grid.tsv"]];

This is very different from the parallelisation at thread level we
used in the C++ case. In the present example, the kernels are
independent processes and therefore unable to share a common
grid. It is not only safe, but even necessary to load multiple copies
of a grid at the same time.

For the actual threshold scan, we first define an auxiliary
function for the cross section with fixed top quark properties and
width scale:

XSection[sqrts_, mu_] := With[
{muWidth = 350, mt = 171.5, width = 1.33},
TTbarXSection[sqrts, {mu, muWidth}, {mt, width},
"N3LO"]

];

To perform the scale variation, we use Mathematica’s built-in
NMinValue and NMaxValue functions:

XSectionScaleVariation[sqrts_] := Module[
{

muDefault = 80, muMin = 50, muMax = 350,
xsDefault , xsMin, xsMax, mu

},
xsDefault = XSection[sqrts, muDefault];
xsMin = NMinValue[

{XSection[sqrts, mu], muMin <= mu <= muMax},
mu,
Method -> "SimulatedAnnealing"

];
xsMax = NMaxValue[

{XSection[sqrts, mu], muMin <= mu <= muMax},
mu,
Method -> "SimulatedAnnealing"

];
Return[{sqrts, xsDefault , xsMin, xsMax}];

];

After this, the code for the actual parallelised scan is again rather
compact:

results = ParallelTable[
XSectionScaleVariation[sqrts],
{sqrts, 340, 349, 0.2}

];

We complete the example by adding some code for the output:
examples/Mathematica/parallel.m
LaunchKernels[];

Needs["QQbarThreshold ‘"];
ParallelEvaluate[Needs["QQbarThreshold ‘"]];
ParallelEvaluate[LoadGrid[GridDirectory <>
"ttbar_grid.tsv"]];

XSection[sqrts_, mu_] := With[
{muWidth = 350, mt = 171.5, width = 1.33},
TTbarXSection[sqrts, {mu, muWidth}, {mt, width},
"N3LO"]

];

XSectionScaleVariation[sqrts_] := Module[
{

muDefault = 80, muMin = 50, muMax = 350,
xsDefault , xsMin, xsMax, mu

},
xsDefault = XSection[sqrts, muDefault];
xsMin = NMinValue[

{XSection[sqrts, mu], muMin <= mu <= muMax},
mu,
Method -> "SimulatedAnnealing"

];
xsMax = NMaxValue[

{XSection[sqrts, mu], muMin <= mu <= muMax},
mu,
Method -> "SimulatedAnnealing"

];
Return[{sqrts, xsDefault , xsMin, xsMax}];

];

results = ParallelTable[
XSectionScaleVariation[sqrts],
{sqrts, 340, 349, 0.2}

];

PrependTo[results, {"sqrt_s", "central", "min", "
max"}];

Print[TableForm[results]];

6.3. Moments for nonrelativistic sum rules

Next to threshold scans for t t̄ production, the calculation of
moments for ϒ sum rules is one of the key applications for
QQbar_threshold. It is conventional to consider the normalised
cross section (cf. Eq. (5)) Rb = σb/σpt with σpt = 4πα(µα)2/(3s),
which can be calculated with the bbbar_R_ratio function. The
moments of Rb are then defined as

Mn =


∞

0

Rb(s)
sn+1

. (35)

Splitting the moments into the contribution from the narrow ϒ

resonances and the remaining continuum contribution we obtain

Mn =
12π2Nce2b

m2
b

∞
N=1

ZN
s2n+1
N

+


∞

4m2
b

ds
Rb(s)
sn+1

. (36)

We now show how this formula can be evaluated with QQbar_
threshold. Since discussing numerical integration is clearly
outside the scope of this work, we assume the existence of
a C++ header integral.hpp that provides a suitable integral

function.5 The example code moments.cpp distributed together
with QQbar_threshold in fact includes such a header. Since this
header uses the GSL library, the code example has to be compiled
with additional linker flags, e.g.

g++ -o moments -std=c++11 moments.cpp\
-lQQbar_threshold -lgsl -lgslcblas

5 For theMathematica corresponding code, we can and do of course use the built-
in NIntegrate function.

112 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
For the sake of simplicity, we use the standard bottom options
and only keep the bottom quark mass and n as free parameters in
our example.We can then define auxiliary functions for the energy
levels, residues, and the continuum cross section:

static constexpr double pi =
3.14159265358979323846264338328;

double Z(int N, double mb_PS){
return QQt::bbbar_residue(N, mb_PS, mb_PS, QQt::

N3LO);
}

double E(int N, double mb_PS){
return QQt::bbbar_energy_level(N, mb_PS, mb_PS,

QQt::N3LO);
}

double Rb(double s, double mb_PS){
try{

return QQt::bbbar_R_ratio(std::sqrt(s), mb_PS,
mb_PS, QQt::N3LO);

}
catch(std::out_of_range){

return std::numeric_limits <double >::quiet_NaN()
;

}
}

Note that for the bottom cross section we have to handle the case
that the centre-of-mass energy is outside the region covered by the
precomputed grid. In fact, we assume that the value obtained for
the continuum integral in Eq. (36) is reliable in spite of the limited
grid size. For a more careful analysis, this assumption should of
course be checked, for example by varying the upper bound of the
integral.

Let us first consider the resonance contribution. For the
prefactor, we have to convert the input mass from the PS
scheme to the pole scheme, which can be done with the function
bottom_pole_mass (see Section 3.5). The remaining code is then
rather straightforward:

double M_resonances(int n, double mb_PS){
static constexpr int N_c = 3;
static constexpr double e_b = QQt::e_d;

double sum_N = 0.0;
for(int N = 1; N <= 6; ++ N){

sum_N += Z(N, mb_PS)*std::pow(2*mb_PS + E(N,
mb_PS), -2*n-1);

}
const double mb_pole = QQt::bottom_pole_mass(

mb_PS, mb_PS, QQt::N3LO);
return 12*pi*pi*N_c*e_b*e_b/(mb_pole*mb_pole)*

sum_N;
}

Since at N3LO, only the first six resonances can be computed with
QQbar_threshold, we have cut off the sum at N = 6.

For the continuumcontribution,we encounter the problem that
typical C++ integration routines can only evaluate integrals over a
finite interval. To deal with this we perform a substitution, e.g. s =

s(x) = 4m2
b +

x
1−x , so we have

∞

4m2
b

ds
Rb(s)
sn+1

=

 1

0

dx
(1 − x)2

Rb

s(x)


s(x)n+1

. (37)

The continuummoments can then be computedwith the following
code:

double M_continuum(int n, double mb_PS){
double const s0 =
pow(QQt::bbbar_threshold(mb_PS, mb_PS, QQt::
N3LO), 2);

auto s = [=](double x){
return s0 + x/(1-x);

};
auto integrand = [=](double x){

return Rb(s(x), mb_PS)*std::pow(s(x), -n-1)*std
::pow(1 - x, -2);

};
return integral(0, 1, integrand);

}

All that remains is then to add up both contributions and add the
standard boilerplate code for including headers, loading the grid,
etc. It is also convenient to rescale the moments to be of order one.
For this, we multiply them by a factor of (10 GeV)2n. Finally, here
is the complete code for our example:

examples/C++/moments.cpp
#include <cmath>
#include <limits>
#include <iostream>

#include "QQbar_threshold/load_grid.hpp"
#include "QQbar_threshold/xsection.hpp"
#include "QQbar_threshold/threshold.hpp"
#include "QQbar_threshold/residues.hpp"
#include "QQbar_threshold/energy_levels.hpp"
#include "QQbar_threshold/scheme_conversion.hpp"

#include "integral.hpp"

namespace QQt = QQbar_threshold;

static constexpr double pi =
3.14159265358979323846264338328;

double Z(int N, double mb_PS){
return QQt::bbbar_residue(N, mb_PS, mb_PS, QQt::

N3LO);
}

double E(int N, double mb_PS){
return QQt::bbbar_energy_level(N, mb_PS, mb_PS,

QQt::N3LO);
}

double Rb(double s, double mb_PS){
try{

return QQt::bbbar_R_ratio(std::sqrt(s), mb_PS,
mb_PS, QQt::N3LO);

}
catch(std::out_of_range){

return std::numeric_limits <double >::quiet_NaN()
;

}
}

double M_resonances(int n, double mb_PS){
static constexpr int N_c = 3;
static constexpr double e_b = QQt::e_d;

double sum_N = 0.0;
for(int N = 1; N <= 6; ++ N){

sum_N += Z(N, mb_PS)*std::pow(2*mb_PS + E(N,
mb_PS), -2*n-1);

}
const double mb_pole = QQt::bottom_pole_mass(

mb_PS, mb_PS, QQt::N3LO);
return 12*pi*pi*N_c*e_b*e_b/(mb_pole*mb_pole)*

sum_N;
}

double M_continuum(int n, double mb_PS){
double const s0 =

pow(QQt::bbbar_threshold(mb_PS, mb_PS, QQt::
N3LO), 2);

auto s = [=](double x){
return s0 + x/(1-x);

};
auto integrand = [=](double x){

return Rb(s(x), mb_PS)*std::pow(s(x), -n-1)*std
::pow(1 - x, -2);

};

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 113
return integral(0, 1, integrand);
}

double M(int n, double mb_PS){
return pow(10, 2*n)*(M_resonances(n, mb_PS) +

M_continuum(n, mb_PS));
}

int main(){
QQt::load_grid(
QQt::grid_directory() + "bbbar_grid.tsv"

);
std::cout << M(10, 4.5322) << ’\n’;

}

In units of (10 GeV)−20, we find M10 = 0.264758, which is in
good agreement with the experimental value M10 = 0.2648(36).
In other words, our determination of the PS mass agrees very well
with the central valuemPS

b = 4.532 GeV found in [40].6
ForMathematica, the structure is quite similar. To avoid clashes

with built-in functions, we have renamed some of the variables.

examples/Mathematica/moments.m
Needs["QQbarThreshold ‘"];

ZN[i_, mbPS_] := BBbarResidue[i, mbPS, mbPS, "N3LO"
];

EN[i_, mbPS_] := BBbarEnergyLevel[i, mbPS, mbPS, "
N3LO"];

Rb[s_, mbPS_] := BBbarRRatio[Sqrt[s], mbPS, mbPS, "
N3LO"];

Mresonances[n_, mbPS_] := With[
{

Nc = 3, eb = eD,
mbPole = BottomPoleMass[mbPS, mbPS, "N3LO"]

},
12*Pi^2*Nc*eb^2/mbPole^2*Sum[

ZN[i, mbPS]/(2*mbPS + EN[i, mbPS])^(2*n+1),
{i, 1, 6}

]
];

Mcontinuum[n_, mbPS_] := Module[
{s0, s, x},
s0 = BBbarThreshold[mbPS, mbPS, "N3LO"]^2;
s[x_] := s0 + x/(1 - x);
Return[

NIntegrate[
Rb[s[x], mbPS]/(s[x]^(n+1)*(1 - x)^2),
{x, 0, 1},
AccuracyGoal -> 5

]
];

];

M[n_, mbPS_] := 10^(2*n)*(Mresonances[n, mbPS] +
Mcontinuum[n, mbPS]);

LoadGrid[GridDirectory <> "bbbar_grid_large.tsv"];
Print[M[10, 4.5322]];

Here, we obtain a slightly different value of M10 = 0.264857,
which stems from a different integration algorithm. Since this
change can be offset by changing the inputmass by a small amount
of about 0.1 MeV, we can conclude that integration errors are
under control.

7. Grid generation

Depending on the chosen input parameters, the precomputed
grids distributed with QQbar_threshold may not be suffi-
cient. In these cases custom grids can be generated with the

6 In [40] QED effects were treated differently and a non-zero mass was used for
the light quark. The numerical effect on the extracted PS mass is negligible.
QQbarGridCalc package, which can be downloaded separately
from https://www.hepforge.org/downloads/qqbarthreshold/ and
needs no special installation aside fromunpacking the archivewith
tar xzf QQbarGridCalc.tar.gz. Grid generation requires Wolfram
Mathematica. TheMathematica working directory should be set to
the QQbarGridCalc directory (e.g. with the SetDirectory com-
mand), so that all included files are found.

7.1. Top and bottom grids

The main function provided by this package is QQbarCalcGrid,
which generates a grid for the bottom or top cross section. It can
be used in the following way:

QQbarCalcGrid[
Energy -> {MinEnergy , MaxEnergy , EnergyStep},
Width -> {MinWidth, MaxWidth, WidthStep},
"GridFileName"

];

MinEnergy and MaxEnergy refer to the naïve threshold at
√
s = 2mQ , wheremQ is the heavy-quark polemass. The generated

grid thus covers the centre-of-mass energies 2mQ +MinEnergy ≤
√
s ≤ 2mQ + MaxEnergy and the widths MinWidth ≤ Γ ≤

MaxWidth. EnergyStep and WidthStep specify the distance
between adjacent grid points. The resulting grid is saved in the
file GridFileName. For example, the following program creates a
small top grid and exports it to the filetop_grid_example.tsv:

examples/Mathematica/top_grid_simple.m
<<QQbarGridCalc.m;

LaunchKernels[];

QQbarCalcGrid[
Energy -> {-1, 1, 1},
Width -> {1.5, 1.6, 0.1},
"top_grid_example.tsv"

];

Note that loading the package typically takes several minutes. The
calculation of the grids themselves is even more time-consuming,
so we restrict the examples to very small and coarse grids and
suggest to rely on parallelisation as much as possible.

The energy and width ranges always refer to reference values
for the quark mass and the strong coupling, specified with the
QuarkMass and AlphaS options (defaulting to 175 and 0.14,
respectively). In fact, internally all energies andwidths are rescaled
by a factor of −mQα

2
s C

2
F /4. In practice, this implies that the range

covered in the actual calculation of the cross sectionwill in general
be slightly different. Furthermore, the default values for QuarkMass
and AlphaS are chosenwith top grids inmind, so one should change
these settings when calculating bottom grids.

In some cases it is desirable to have grids that are relatively
coarse in one region, e.g. at high energies, and much finer in
another region. To this end it is possible to directly specify the
energy and width points when calling QQbarCalcGrid as

QQbarCalcGrid[
Energy -> {{EnergiesPts ... }},
Width -> {{WidthPts ... }},
"GridFileName"

];

The following example shows how a bottom grid with a higher
resolution close to the threshold can be generated:

https://www.hepforge.org/downloads/qqbarthreshold/

114 M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115
Table A.5
Constants predefined in the constants.hpp header. Entries marked with a Ď only serve as default values and can be overridden through option settings (cf. Section 5).

C++ name Mathematica name Value Description

Ďalpha_s_mZ alphaSmZDefault 0.1184 Default value for strong coupling at the scale mZ.
Ďalpha_mZ alphamZ 1/128.944 QED coupling at the scale mZ.
Ďalpha_Y alphaY 1/132.274 QED coupling at the scale mu_alpha_Y.
Ďmu_alpha_Y muAlphaY 10.2 Typical scale for ϒ resonances.
mZ mZ 91.1876 Mass of the Z boson.
mW mW 80.385 Mass of the W boson.
G_F GF 1.1663787 × 10−5 Fermi constant. Only used for calculating the top width.
Ďm_Higgs mHiggsDefault 125 Default value for mass of the Higgs boson.
alpha_QED alphaQED 1/137.035999074 Fine structure constant.
e_u eU 2/3 Electric charge of the top quark in units of the positron charge.
e_d eD −1/3 Electric charge of the bottom quark.
e eE −1 Electric charge of the electron.
cw2 cw2 mW2/mZ2 Cosine of the weak mixing angle squared.
sw2 sw2 1 - cw2 Sine of the weak mixing angle squared.
T3_nu T3Nu 1/2 Weak isospin of neutrino.
T3_e T3E −1/2 Weak isospin of electron.
T3_u T3U 1/2 Weak isospin of top.
T3_d T3D −1/2 Weak isospin of bottom.
mb_SI mbSI 4.203 Reference scale-invariant mass for bottom quarks.
mu_thr muThr 2*mb_SI Decoupling threshold for bottom quarks.
nl_bottom nlBottom 4 Number of light flavours for bottom-related functions.
nl_top nlTop 5 Number of light flavours for top-related functions.
Ďmu_f_bottom mufBottom 2 Default PS scale for bottom.
Ďmu_f_top mufTop 20 Default PS scale for top.
invGeV2_to_pb InvGeV2ToPb 389379300 Conversion factor from GeV−2 to picobarn.
examples/Mathematica/bottom_grid.m
<<QQbarGridCalc.m;

LaunchKernels[];

emin = 10^-6;
emax = 10;
n = 3;
epoints = Module[

{stepfact},
stepfact = (emax/emin)^(1/(n - 1));
Table[N[emin*stepfact^i], {i, 0, n - 1}]

];

QQbarCalcGrid[
Energy -> {epoints},
Width -> {{10^-10, 10^-8}},
"bottom_grid_example.tsv",
QuarkMass -> 5,
AlphaS -> 0.25

];

Note that the numerical evaluation requires at least a small non-
vanishing width, which is internally set to 10−9 for bottom quarks.
For such a small width it is not possible (and not very useful) to
calculate grid points with negative energies.

Finally, QQbarCalcGrid offers the Comments option to prepend
custom comments to the generated grid file:

QQbarCalcGrid[
Energy -> {...},
Width -> {...},
"GridFileName",
Comments -> {

"Comment in the first line of the grid file",
"Comment in the second line of the grid file"

}
];

The default setting Comment -> Automatic adds the version of
QQbarCalcGrid, a shortened version of the command used for the
creation, and the creation date.

7.2. Nonresonant grids

The second function in QQbarGridCalc,
QQbarCalcNonresonantGrid, allows the generation of grids for the
nonresonant cross section (see Section 4.3). Its syntax is similar to
QQbarCalcGrid:

QQbarCalcNonresonantGrid[
MassRatio -> {...},
Cut -> {...},
"GridFileName"

];

As with QQbarCalcGrid both regular and irregular grids can be
generated and also the Comment option is supported. The first
argument specifies the mass ratios x = mW/mQ , whereas
the second argument determines the invariant mass cut. The
coordinates entered here correspond to yw = (1 − y)/(1 − x),
where y = (1 − ∆m/mQ)

2 and ∆m is the cut specified by the
invariant_mass_cut option (see Section 5). Thus, for physical cuts
0 ≤ yw ≤ 1. The default built-in nonresonant grid can be
reproduced with the following program:

examples/Mathematica/nonresonant_grid.m
<<QQbarGridCalc.m;

LaunchKernels[];

QQbarCalcNonresonantGrid[
MassRatio -> {0.15, 0.30, 0.01},
Cut -> {0, 1, 0.01},
"non-resonant_grid.tsv"

];

Acknowledgements

We thank K. Schuller for contributing to an earlier program for
heavy-quark production near threshold, T. Rauh for cross-checking
parts of the current implementation, and F. Simon for valuable
comments on the program and the manuscript. We are grateful to
the authors of [11] for the permission to use their code for the non-
resonant cross section.

Y. K., A. M., and J. P. thank the Technische Universität München
and the Excellence Cluster ‘‘Origin and Structure of the Universe’’
for hospitality and travel support. A. M. is grateful to the Mainz

M. Beneke et al. / Computer Physics Communications 209 (2016) 96–115 115
Institute for Theoretical Physics (MITP) for its hospitality and
its partial support during the completion of this work. A. M. is
supported by a European Union COFUND/Durham Junior Research
Fellowship under EUgrant agreement number 267209. Thework of
Y. K. was supported in part by Grant-in-Aid for scientific research
No. 26400255 from MEXT, Japan. This work is further supported
by the Gottfried Wilhelm Leibniz programme of the Deutsche
Forschungsgemeinschaft (DFG) and the Excellence Cluster ‘‘Origin
and Structure of the Universe’’ at Technische UniversitätMünchen.

Appendix. Predefined constants

Table A.5 lists all predefined constants and their values. The
values can be adjusted prior to or during the installation of the
QQbar_threshold library.

References

[1] K. Seidel, F. Simon, M. Tesar, S. Poss, Eur. Phys. J. C 73 (8) (2013) 2530.
arXiv:1303.3758.

[2] F. Simon, International Workshop on Future Linear Colliders, LCWS15
Whistler, B.C., Canada, November 2–6, 2015, 2016. arXiv:1603.04764.

[3] V. Novikov, L. Okun, M.A. Shifman, A. Vainshtein, M. Voloshin, V.I. Zakharov,
Phys. Rev. Lett. 38 (1977) 626.

[4] V. Novikov, L. Okun, M.A. Shifman, A. Vainshtein, M. Voloshin, V.I. Zakharov,
Phys. Rep. 41 (1978) 1–133.

[5] M.B. Voloshin, Yu. M. Zaitsev, Sov. Phys. Usp. 30 (1987) 553–574; Usp. Fiz.
Nauk 152 (1987) 361.

[6] A. Pineda, J. Soto, Nucl. Phys. Proc. Suppl. 64 (1998) 428–432. arXiv:hep-
ph/9707481.

[7] M.E. Luke, A.V. Manohar, I.Z. Rothstein, Phys. Rev. D 61 (2000) 074025.
arXiv:hep-ph/9910209.

[8] A.H. Hoang, et al., Eur. Phys. J. C 3 (2000) 1–22. arXiv:hep-ph/0001286.
[9] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum, M. Steinhauser, Phys. Rev.

Lett. 115 (19) (2015) 192001. arXiv:1506.06864.
[10] M. Beneke, J. Piclum, T. Rauh, Nuclear Phys. B 880 (2014) 414–434.

arXiv:1312.4792.
[11] M. Beneke, B. Jantzen, P. Ruiz-Femenía, Nuclear Phys. B 840 (2010) 186–213.

arXiv:1004.2188.
[12] A.A. Penin, J.H. Piclum, J. High Energy Phys. 01 (2012) 034. arXiv:1110.1970.
[13] B. Jantzen, P. Ruiz-Femenía, Phys. Rev. D 88 (5) (2013) 054011.

arXiv:1307.4337.
[14] P. Ruiz-Femenía, Phys. Rev. D 89 (9) (2014) 097501. arXiv:1402.1123.
[15] M.J. Strassler, M.E. Peskin, Phys. Rev. D 43 (1991) 1500–1514.
[16] R.J. Guth, J.H. Kühn, Nuclear Phys. B 368 (1992) 38–56.
[17] R. Harlander, M. Jeżabek, J.H. Kühn, Acta Phys. Polon. B 27 (1996) 1781–1788.
arXiv:hep-ph/9506292.

[18] D. Eiras, M. Steinhauser, Nuclear Phys. B 757 (2006) 197–210. arXiv:hep-
ph/0605227.

[19] M. Beneke, A. Maier, J. Piclum, T. Rauh, Nuclear Phys. B 899 (2015) 180–193.
arXiv:1506.06865.

[20] B. Grza̧dkowski, J.H. Kühn, P. Krawczyk, R.G. Stuart, Nuclear Phys. B 281 (1987)
18.

[21] A.H. Hoang, C.J. Reißer, Phys. Rev. D 71 (2005) 074022. arXiv:hep-ph/0412258.
[22] A.H. Hoang, C.J. Reißer, Phys. Rev. D 74 (2006) 034002. arXiv:hep-ph/0604104.
[23] A. Denner, T. Sack, Nuclear Phys. B 358 (1991) 46–58.
[24] G. Eilam, R.R. Mendel, R. Migneron, A. Soni, Phys. Rev. Lett. 66 (1991)

3105–3108.
[25] M. Jeżabek, J.H. Kühn, Phys. Rev. D 48 (1993) 1910–1913; Phys. Rev. D 49

(1994) 4970 (erratum) arXiv:hep-ph/9302295.
[26] I.R. Blokland, A. Czarnecki, M. Slusarczyk, F. Tkachov, Phys. Rev. D 71 (2005)

054004; Phys. Rev. D 79 (2009) 019901 (erratum) arXiv:hep-ph/0503039.
[27] J. Gao, C.S. Li, H.X. Zhu, Phys. Rev. Lett. 110 (4) (2013) 042001. arXiv:1210.2808.
[28] M. Brucherseifer, F. Caola, K. Melnikov, J. High Energy Phys. 04 (2013) 059.

arXiv:1301.7133.
[29] M. Fischer, S. Groote, J.G. Körner, M.C. Mauser, Phys. Rev. D 63 (2001) 031501.

arXiv:hep-ph/0011075.
[30] M. Beneke, Y. Kiyo, K. Schuller, Third-order correction to top-quark pair

production near threshold I. Effective theory set-up andmatching coefficients.
arXiv:1312.4791.

[31] M. Beneke, Y. Kiyo, K. Schuller, Third-order correction to top-quark pair
production near threshold II. Potential contributions, in preparation.

[32] M. Beneke, A.P. Chapovsky, A. Signer, G. Zanderighi, Phys. Rev. Lett. 93 (2004)
011602. arXiv:hep-ph/0312331.

[33] M. Beneke, A.P. Chapovsky, A. Signer, G. Zanderighi, Nuclear Phys. B 686 (2004)
205–247. arXiv:hep-ph/0401002.

[34] M. Beneke, A. Signer, V.A. Smirnov, Phys. Lett. B 454 (1999) 137–146.
arXiv:hep-ph/9903260.

[35] P. Marquard, J.H. Piclum, D. Seidel, M. Steinhauser, Phys. Rev. D 89 (3) (2014)
034027. arXiv:1401.3004.

[36] M. Beneke, Y. Kiyo, K. Schuller, Nuclear Phys. B 714 (2005) 67–90. arXiv:hep-
ph/0501289.

[37] M. Melles, Phys. Rev. D 58 (1998) 114004. arXiv:hep-ph/9805216.
[38] M. Melles, Phys. Rev. D 62 (2000) 074019. arXiv:hep-ph/0001295.
[39] A. Hoang, Bottom quarkmass fromϒ mesons: Charmmass effects, arXiv:hep-

ph/0008102.
[40] M. Beneke, A. Maier, J. Piclum, T. Rauh, Nuclear Phys. B 891 (2015) 42–72.

arXiv:1411.3132.
[41] M. Beneke, Phys. Lett. B 434 (1998) 115–125. arXiv:hep-ph/9804241.
[42] A.H. Hoang, Z. Ligeti, A.V. Manohar, Phys. Rev. Lett. 82 (1999) 277–280.

arXiv:hep-ph/9809423.
[43] P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 114

(14) (2015) 142002. arXiv:1502.01030.
[44] S. Bekavac, A. Grozin, D. Seidel, M. Steinhauser, J. High Energy Phys. 0710

(2007) 006. arXiv:0708.1729.

http://arxiv.org/abs/1303.3758
http://arxiv.org/abs/1603.04764
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref3
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref4
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref5
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref5
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref5
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref5
http://arxiv.org/abs/hep-ph/9707481
http://arxiv.org/abs/hep-ph/9707481
http://arxiv.org/abs/hep-ph/9707481
http://arxiv.org/abs/hep-ph/9910209
http://arxiv.org/abs/hep-ph/0001286
http://arxiv.org/abs/1506.06864
http://arxiv.org/abs/1312.4792
http://arxiv.org/abs/1004.2188
http://arxiv.org/abs/1110.1970
http://arxiv.org/abs/1307.4337
http://arxiv.org/abs/1402.1123
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref15
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref16
http://arxiv.org/abs/hep-ph/9506292
http://arxiv.org/abs/hep-ph/0605227
http://arxiv.org/abs/hep-ph/0605227
http://arxiv.org/abs/hep-ph/0605227
http://arxiv.org/abs/1506.06865
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref20
http://arxiv.org/abs/hep-ph/0412258
http://arxiv.org/abs/hep-ph/0604104
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref23
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref24
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref25
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref25
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref25
http://arxiv.org/abs/hep-ph/9302295
http://refhub.elsevier.com/S0010-4655(16)30214-4/sbref26
http://arxiv.org/abs/hep-ph/0503039
http://arxiv.org/abs/1210.2808
http://arxiv.org/abs/1301.7133
http://arxiv.org/abs/hep-ph/0011075
http://arxiv.org/abs/1312.4791
http://arxiv.org/abs/hep-ph/0312331
http://arxiv.org/abs/hep-ph/0401002
http://arxiv.org/abs/hep-ph/9903260
http://arxiv.org/abs/1401.3004
http://arxiv.org/abs/hep-ph/0501289
http://arxiv.org/abs/hep-ph/0501289
http://arxiv.org/abs/hep-ph/0501289
http://arxiv.org/abs/hep-ph/9805216
http://arxiv.org/abs/hep-ph/0001295
http://arxiv.org/abs/hep-ph/0008102
http://arxiv.org/abs/hep-ph/0008102
http://arxiv.org/abs/hep-ph/0008102
http://arxiv.org/abs/1411.3132
http://arxiv.org/abs/hep-ph/9804241
http://arxiv.org/abs/hep-ph/9809423
http://arxiv.org/abs/1502.01030
http://arxiv.org/abs/0708.1729

	Near-threshold production of heavy quarks with QQbar_threshold
	Introduction
	Installation
	Linux
	OS X

	Basic usage and examples
	Mathematica usage
	Resonances
	Cross sections
	Grids
	Thresholds

	Basic options
	Scheme conversion
	Top quark width

	Structure of the cross section
	Power counting
	Resummation of QED effects
	Nonresonant cross section
	Production channels
	Pole resummation
	Hard matching
	QCD and Higgs
	Electroweak

	Green functions
	Potentials
	Energy levels and residues
	Mass schemes

	Options
	Advanced usage
	Wave function at the origin
	Parallelisation
	C++
	Mathematica

	Moments for nonrelativistic sum rules

	Grid generation
	Top and bottom grids
	Nonresonant grids

	Acknowledgements
	Predefined constants
	References

