

Observation of the bright Ultra-High-Energy source LHAASO J2018+3651 with the LHAASO-KM2A

Hou Chao, Chen Songzhan, Fang Jun, Qi Yeqing

outline

- Introduction : Observation status of other experiments
- Data analysis
- Morphology and SED
- Discussion: UHE Radiation mechanism study by multi-wavelength observations

. . .

- Introduction
 LHAASO J2018+3651, which is located in the Cygnus region, is positional aginal dark with Mappa 199112. is positional coincident with MGRO J2019+37 (2007)
- Argo(2012) and Fermi-LAT give upper limit of flux
- MGRO J2019+37 region including:

PSR J2021+3651 and its PWN G75.1+0.2 (X-ray)

sh 2-104 HII region, star forming (radio/optical/X-ray) SNR CTB 87

• LHAASO J2018+3651 is a bright extended VHE and UHE source, Its radiation mechanism is worth discussion

Observation status of other experiments

- VERITAS: 600GeV<E<1TeV
- Divided into two sources:
 - VER J2019+368(0.34degree)
 - VER J2016+371 position SNR CTB 87 (0.13degree)

- **HAWC**: 100TeV>E>300GeV
- resolves the region into two sources: HAWC J2019+368 HAWC J2016+371

Source Name	Spectral Parameters	Morphology
HAWC J2019+368	$\phi_{10{\rm TeV}} = 4.05 \pm 0.26 \times 10^{-14}$	$\mathbf{a}=0.368^\circ\pm0.021^\circ$
	$\alpha = -2.02 \pm 0.06$	$e = 0.943 \pm 0.017$
	$\beta = -0.29 \pm 0.05$	$ heta_{ m rot}=21.7^\circ\pm2.5^\circ$
HAWC J2016+371	$\phi_{10 \mathrm{TeV}} = 2.6^{+0.7}_{-0.5} \times 10^{-15}$	Point Source
	$\alpha = -2.32 \pm 0.18$	
Background	$\phi_{10 \mathrm{TeV}} = 8.2^{+1.5}_{-1.3} \times 10^{-14}$	Uniform over ROI
	$\alpha = -2.75 \pm 0.08$	

Analysis of HAWC J2019+368

Table 1. Description of model parameters assuming HAWC J2019+368 has a log parabolic spectrum. $\phi_{10 \text{ TeV}}$ is the flux normalization at 10 TeV in units of TeV⁻¹ cm⁻² s⁻¹. Reported uncertainties are statistical.

Source Name	Spectral Parameters	Morphology
HAWC J2019+368	$\phi_{10 \mathrm{TeV}} = 4.8^{+0.5}_{-0.4} \times 10^{-14}$	$a = 0.358^{\circ} \pm 0.022^{\circ}$
	$lpha = -1.67 \pm 0.10$	$e = 0.953 \pm 0.017$
	$E_{\rm cut} = 37^{+8}_{-7} { m TeV}$	$\theta_{\rm rot} = 21.9^\circ \pm 2.6^\circ$
HAWC J2016+371	$\phi_{10 \text{ TeV}} = 2.9^{+0.7}_{-0.6} \times 10^{-15}$	Point Source
	$\alpha = -2.28 \pm 0.17$	
Background	$\phi_{10 \mathrm{TeV}} = 8.1^{+1.5}_{-1.3} \times 10^{-14}$	Uniform over ROI
	$\alpha = -2.74 \pm 0.09$	

Table 2. Description of model parameters assuming HAWC J2019+368 has an exponentially cutoff power law spectrum. $\phi_{10 \text{ TeV}}$ is the flux normalization at 10 TeV in units of TeV⁻¹ cm⁻² s⁻¹. Reported uncertainties are statistical.

THE ASTROPHYSICAL JOURNAL, 841:104 (14pp), 2017 June 1

- Suzaku: (a)0.7~2keV, (b)2~10keV
- Confirm that the extended X-ray radiation is only from PWN of PSR J2021+3651. The spectrum is fitted by an absorbed power law with $\Gamma = 2.05 \pm 0.12$, no significant change inside the region
- distance is much less than 10kpc

Data analysis

- Observation time: 2019.12~2020.12 LHAASO-KM2A ¹/₂
- Data analysis: based on the all sky map obtained by standard LHAASO-KM2A data analysis method of crab to analyse the morphology and energy spectrum of this source

Morphology and SED

- Three energy band extended degree: 0.258±0.042, 0.308±0.021, 0.303±0.070(No obvious change)
- Three energy band location: (No obvious move)
 - Ra=304.875±0.046, Dec=36.761±0.034,
 - Ra=304.857±0.024, Dec=36.762±0.019,
 - Ra=304.838±0.100, Dec=36.759±0.071,

SED

 $dN/dE \propto E^{-\alpha} \exp(-E/E_c)$

• Obviously cut off

Discussion

- Associate with the PWN G75.1+0.2
- Electron injection energy spectrum : $E^{-\alpha} \cdot e^{-\left(\frac{E}{E_{cut}}\right)^{\beta}} \beta = 1$ (left) and $\beta = 2$ (right)

Thank you !