Observation of TeV gamma ray emissions from PeV sources with the LHAASO-WCDA

Chuandong Gao, Cunfeng Feng, Min Zha, Zhiguo Yao

2021-04-25

Shandong university

Outline

- Introduce
- Significance estimate
- Data and method validation
- Significance of some sources
- LHAASO J1908+0621
- LHAASO J2226+6057

Introduce

Twelve gamma ray sources have been detected above 100 TeV by half array of the LHAASO-KM2A

Revealing that many **PeVatrons** exist in the galaxy.

LHAASO-WCDA turns more sensitive than KM2A at TeV energy range

source name	R.A.	dec	Significance E_{Max}		Flux (\pm error)
	$(^{\circ})$	(°)	(σ) (PeV)		(CU)
			above 100 TeV		at 100 TeV
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21 ± 0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	$0.26 {}^{+0.16}_{-0.10}$	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	$0.71 \substack{+0.16 \\ -0.07}$	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

•Wider spectral measurements provide more information to determine the nature of the source

Significance estimate

WCDA-1 sensitivity(>1TeV): 8%*I*_{crab}

Most of sources could be observed for one year operation of WCDA

Source	Zen _{min}	$Flux(E^{-1}cm^{-2}s^{-1})$	Significance 1pool ,2pool,3pool
Crab	7	$2.79 * 10^{-13} \left(\frac{E}{7TeV}\right)^{-2.675 - 0.082 * \log\left(\frac{E}{7TeV}\right)}$	(60, 250, 416)
LHAASO J1825- 1326	42	$1.72 * 10^{-11} (\frac{E}{1.16TeV})^{-2.38}$	(36, 151, 251)
LHAASO J1839- 0545	35	$2.0 * 10^{-11} (\frac{E}{0.95 TeV})^{-2.54}$	(23.5, 97.9, 162)
LHAASO J1843- 0338	32	$9.14 * 10^{-12} (\frac{E}{1.87 TeV})^{-2.15}$	(6.32, 26.3, 43.8)
LHAASO J1849- 0003	29	$7.66 * 10^{-14} (\frac{E}{2.74TeV})^{-1.97}$	(1.21, 5.0,8.4)
LHAASO J1908+0621	23	$2.06 * 10^{-12} \left(\frac{E}{2.06TeV}\right)^{-2.26}$	(18.4,76.8, 127)
LHAASO J1929+1745	12	$1.28 * 10^{-13} (\frac{E}{1.7TeV})^{-2.59}$	(0.73, *, *)
LHAASO J2018+3651	7	$7 * 10^{-14} (\frac{E}{10TeV})^{-2} \exp(-E/29 \text{TeV})$	(21.8, 91.15, 151)
LHAASO J2032+4102	12	$2.* \ 10^{-14} (\frac{E}{10TeV})^{-3.22}$	(36.9, 154, 256)

*Flux of sources is obtained by looking at the relevant article on the TeVCat website.

Data and method validation

Data:

wcda-1,201906-202002, live time: 190day Reconstruction of version: Rc

Cut: compactness>16 for Y/P identification

Method :

Background estimation: equal zenith Angle method

Signal calculation : maximum likelihood

SED method : forward unfolding

$$\chi^2 \!=\! \sum_i^n (\frac{N_i^{obs} - N_i^{sim}}{\sigma_i^{obs}})^2$$

Data and method validation

Signal calculation

```
Signal model: gaus2D (Ns, position, sigma)
Background model: hist2D obtained by equal zenith angle method
```

ML: $P_{i} = \frac{\lambda_{i}^{n_{i}}}{n_{i}!} e^{\lambda_{i}}$ $n_{i} = n_{s} + n_{b}$

$$\lambda_{s} = N_{s}^{\prime} \frac{n_{b}^{i^{\prime}} * \left(\sum_{j}^{n} \left(\frac{dP}{d\Omega}(r) * n_{b}^{j^{\prime}} \right)}{N_{b}^{2} f_{b}^{2}} \frac{dP}{d\Omega}(r) \text{ (assumption } \frac{n_{b}^{i^{\prime}}}{n_{b}^{i}} = k \frac{n_{s}^{i^{\prime}}}{n_{s}^{i}}$$

Fig. Data for fitting

 $L=\prod Pi$ Minimize -2lnL Get Ns , position, extension

Data and method validation

method validation

Data:201911-202002,Rc

Significance

Cut: ndetc>100&&compactness>16

Source	Ra(Deg)	Dec (Deg)	\sqrt{TS}
CRAB	83.67 +/- 0.02	21.97 +/- 0.01	*33.0
J1908+0621	286.72 +/- 0.11	6.23 +/- 0.11	13.1
J2226+6057	336.95 +/- 0.13	60.67 +/- 0.06	7.0
J1839-0545	279.99 +/- 0.13	-5.47 +/- 0.17	7.5
J2032+4102	308.04 +/- 0.06	41.71 +/- 0.03	5.1
J1825-1326	276.83 +/- 0.03	-13.14 +/-0.04	3.9

•As the statistics increase, some sources are expected to be seen

LHAASO J1908+0621

1.Signal

ndetc>100,Sqrt(TS)=13

500<ndetc<800

Fig .Distribution of excess event

LHAASO J1908+0621

2.Extension

Spatial model : gaussian

Energy/TeV	Sigma(fit)/Deg	Sigma(psf)/Deg	Extension/Deg
5.87	0.83+/-0.19	0.37+/-0.01	0.74+/-0.21
15.98	0.52+/-0.09	0.27+/-0.01	0.44+/-0.10
40.47	1.00+/-0.43	0.24+/-0.01	0.97+/-0.44

Intrinsic extension: 0.52+/-0.09 deg 0.49±0.22(Argo)

LHAASO J1908+0621

1.Spectrum

 $a = 2.40, b = 0.47 VS \Gamma = 2.89$

LHAASO J2226+6057

1.Signal

ndetc>100,Sqrt(TS)=7

Fig .Distribution of excess event

LHAASO J2226+6057

2.Spectrum

$$f(E) = (0.36 \pm 0.12) * 10^{-13} (E/7)^{-2.25 \pm 0.29}$$

f(E)= $\alpha(\frac{E}{10TeV})^{-a-blog(E/10TeV)}$ a = 1.84, b = 0.87 VS Γ = 3.01

Summary and outlook

- Four sources have been observed around 190 days with more than 5 sigma statistical significance at TeV energy.
- Preliminary Energy spectrum of J1908-0621 and J2227+0607 has been measurement, it's spectral indices is -2.24, -2.25 respectively.
- Next step
 - 1. Further analysis using data from 20200314 to 20210228 of wcda-1 (another data set : wcda-1 and wcda-2 20201101-20210228)
 - 2. Extended energy spectrum measurement using NPE parameter

• Trying using NPE to reconstruct energy spectrum in combination with small PMT

•More accurate spectral analysis with WCDA union data

天图接收度修正

(a)假设背景原分布 $dP/d\Omega = C = 1/\Omega$ 信号原分布: $dP/d\Omega = 1/2$ Pi/sigma/sigma*Exp(-r*r/2/sigma/sigma)(也可用非对称高斯)

背景事例数: N_b 信号事例数: N_s 每一个格子背景事例数: $n_b^i = N_b * C * \Delta \Omega_i$ 期望观测背景事例数 $n_b^{i'} = N_b' * P_b^{i'}$ 每一个格子信号事例数: $n_s^i = N_s * (dP/d\Omega) * \Delta \Omega_i$ 期望观测信号事例数 $n_s^{i'} = N_s' * P_s^{i'}$

excess[npoint]={2494.71,499.986,296.062}; error[npoint]={0.140396*2494.71,0.208858*499.98 6,296.062*0.220652};

8.23 s.d. at (-0.47,-0.01) 7.06 s.d. at (0.31,-0.13) 7.26 s.d. at (0.09,-0.17)

1.J2226(ra=336.996 dec=60.8769)

ndetc(1)	Energy(Te V)	Ra(deg)	Dec(deg)	\sqrt{TS}	Excess	sigma
100-300		336.95 +/- 0.20	60.64 +/- 0.08	4.84	469.01 +/- 130.20	0.30 +/- 0.06
300-500		337.07 +/- 0.15	60.70 +/- 0.06	4.85	113.54 +/- 34.09	0.20 +/- 0.04
500-800		336.76 +/-0.27	60.88 +/- 0.13	3.90	55.47 +/- 22.91	0.31 +/- 0.10

Ndetc>100&&compactness>15

-4-4 -3 -2 -1 0 1 2 3 J2018+3651

3

2

44 -3 sig. after smooth

-1 0 2 3

J1849-0003

sig. after smooth

J2226

