On the Gamma-Ray and Neutrino Emissions from Nearby Starburst Galaxies

Haoning He (贺昊宁, PMO) Collaborators: Youliang Feng (冯有亮), Yi Zhang (张毅), et al. 2021/04/25 Guangzhou

Nearby Starburst Galaxies

UHECRs Hotspot Observed by the Telescope Array

3 fluorescence sites, 38 telescopes (\sim 10% duty cycle) Surface detector full operation (\sim 100% duty cycle)

The TA collaboration, 2014

PHYSICAL REVIEW D 93, 043011 (2016)

Monte Carlo Bayesian search for the plausible source of the Telescope Array hotspot

Hao-Ning He,^{1,2} Alexander Kusenko,^{1,3} Shigehiro Nagataki,⁴ Bin-Bin Zhang,^{5,6} Rui-Zhi Yang,^{7,2} and Yi-Zhong Fan²

The Pierre Auger Observatory's Analysis on the Association Between Starburst Galaxies and UHECRs

Model Flux Map - Starburst galaxies - E > 39 EeV

 Image: second state sta

Residual Excess Map - Active galactic nuclei - E > 60 EeV

It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4sigma, the highest value of the test statistic being for energies above 39EeV

The PAO collaboration, 2018

The IceCube Collaboration 2020

Star Forming Galaxies with Gamma-ray emissions

Galaxy	DL	F_{γ}	F _{IR}	\dot{M}_{*}	$\log(L_{\gamma})$	$\log (L_{\rm IR}/\rm L_{\odot})$
		[0.1 - 100 GeV]	$[8 - 1000 \mu m]^l$		[0.1 – 100 GeV]	[8 – 1000 µm]
	Mpc	$10^{-12} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$10^{-9} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	${ m M}_{\odot}{ m yr}^{-1}$	erg s ⁻¹	
M31	0.77 ± 0.04^{a}	2.29 ± 0.70^{f}	127.2 ± 6.4	0.26 ± 0.02^{h}	38.21 ± 0.14	9.37 ± 0.05
NGC 253	3.56 ± 0.26^{a}	8.78 ± 0.60^{f}	92.5 ± 4.6	5.03 ± 0.76^{h}	40.12 ± 0.07	10.56 ± 0.07
SMC	0.060 ± 0.003^{a}	29.2 ± 1.2^{f}	622 ± 31	0.027 ± 0.003^i	37.10 ± 0.05	7.85 ± 0.05
M33	0.91 ± 0.04^{a}	2.02 ± 0.38^g	53.8 ± 2.7	0.29 ± 0.02^{h}	38.30 ± 0.09	9.14 ± 0.04
NGC 1068	10.1 ± 1.8^{b}	7.46 ± 0.55^{f}	31.6 ± 1.6	22.7 ± 8.1^{h}	40.96 ± 0.16	11.00 ± 0.16
LMC	0.050 ± 0.003^{a}	195.1 ± 8.5^{f}	6777 ± 339	0.20 ± 0.03^{i}	37.77 ± 0.06	8.72 ± 0.06
NGC 2146	17.2 ± 3.2^{c}	1.83 ± 0.36^{f}	13.71 ± 0.69	14.0 ± 5.2^{h}	40.81 ± 0.18	11.10 ± 0.16
NGC 2403	3.18 ± 0.18^{a}	1.22 ± 0.28^{g}	4.73 ± 0.24	0.37 ± 0.03^{h}	39.17 ± 0.11	9.17 ± 0.05
M82	3.53 ± 0.26^{a}	10.36 ± 0.52^{f}	143.6 ± 7.2	10.4 ± 1.6^{h}	40.19 ± 0.07	10.75 ± 0.07
NGC 3424	25.6 ± 1.8^{d}	1.59 ± 0.35^{f}	0.910 ± 0.046	1.59 ± 0.23^{j}	41.10 ± 0.11	10.27 ± 0.07
Arp 299	46.8 ± 3.3^{d}	1.10 ± 0.33^{g}	10.50 ± 0.52	97 ± 14^{k}	41.46 ± 0.14	11.86 ± 0.07
NGC 4945	3.72 ± 0.27^{a}	11.51 ± 0.79^{f}	63.6 ± 3.2	1.22 ± 0.16^{i}	40.28 ± 0.07	10.44 ± 0.07
Circinus	4.21 ± 0.70^{e}	7.1 ± 1.2^{f}	29.8 ± 1.5	2.05 ± 0.63^{i}	40.18 ± 0.16	10.22 ± 0.15
Arp 220	80.9 ± 5.7^{d}	2.91 ± 0.48^{f}	7.80 ± 0.39	214 ± 32^{k}	42.36 ± 0.09	12.20 ± 0.07
Milky Way	*	*	*	1.90 ± 0.04^{m}	38.91 ± 0.13^n	10.15 ± 0.21^n

Table 1. Distances, SFRs, IR and γ -ray fluxes and luminosities for all γ -ray emitting SFGs known.

Kornecki et al. 2020

M82

KM2A 1/2 array, 308 days, Dr. Youliang Feng's Analysis

NGC 1068

KM2A 1/2 array, 308 days, Dr. Youliang Feng's Analysis

Parameters of M82 and NGC 1068

	M82	Physical Parameters	NGC 1068 Values	
z^{a} $D_{\rm L} [\rm Mpc]^{a}$ $R_{\rm SBN} [\rm pc]^{a}$ $n_{\rm SBN} [\rm cm^{-3}]^{a}$ $\mathcal{R}_{\rm SN} [\rm yr^{-1}]^{a}$ $v_{\rm SBNwind} [\rm km \ s^{-1}]^{a}$ $H_{\rm gas} [\rm pc]^{b}$ $M_{\rm A,turb}^{b}$ $v_{\rm Ai} [\rm km \ s^{-1}]^{b}$ $c = [10^{40} - 1]^{c}$	9×10^{-4} 3.9 220 175 0.05 600 73 2 880 150	Distance Central Molecular Zone (CMZ) Radius Molecular Gas Mass Average ISM Density ^a IR Luminosity Radiation Field Energy Density ^a <u>SN Explosion Rate</u> SN Explosion Energy ^b SN Energy Transferred to CR^b Ratio of Primary Protons to Electrons (N_p/N_e)	14.4 Mpc 200 pc $5 \times 10^7 M_{\odot}$ 250 cm ⁻³ $1.5 \times 10^{11} L_{\odot}$ 10^4 eV cm^{-3} 0.07 yr^{-1} 10^{51} ergs 10% 50	
$\mathcal{L}_{\rm SN} [10^{-10} {\rm erg \ s}^{-1}]^{c}$ $\mathcal{L}_{\rm SW} [10^{40} {\rm erg \ s}^{-1}]^{c}$	49	Yoast-Hull et al. 2013		

Ha et al. 2020

Dense ISM High SN rate

CRs Accelerators:

Supernovae (SNe) Hypernovae (HNe) Superwind (SW) The activity of the central black hole Is M82 a Calorimeter?

Model: SN(1 PeV)+HN(100 PeV)+SW(100 EeV) inject protons into the Starburst Region.

The starburst region is a calorimeter for D(100 TeV)=1e27cm^2s^-1. The CRs accelerated via the superwind and injected into the halo can escape.

Theoretical spectra compared with observations and LHAASO sensitivity

Red dotted curves: LHAASO 1 year sensitivity adopted from the white paper

Black solid curves: Attenuation by EBL photons considered.

Integrated neutrino count is as small as ~0.1 for IceCube 10 years operation.

NGC 1068

NGC 1068

Neutrinos are from the central region, which holds an active black hole, and is opaque for high energy photons.

Star Forming Galaxies M31 & M33

Galaxy	$D_{\rm L}$	F_{γ}	F _{IR}	М _*	$\log(L_{\gamma})$	$\log (L_{\rm IR}/\rm L_{\odot})$
		[0.1 - 100 GeV]	$[8 - 1000 \mu m]^l$		[0.1 - 100 GeV]	[8 – 1000 µm]
	Mpc	$10^{-12} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$10^{-9} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	$M_{\odot} yr^{-1}$	erg s ⁻¹	
M31	0.77 ± 0.04^{a}	2.29 ± 0.70^{f}	127.2 ± 6.4	0.26 ± 0.02^{h}	38.21 ± 0.14	9.37 ± 0.05
NGC 253	3.56 ± 0.26^{a}	8.78 ± 0.60^{f}	92.5 ± 4.6	5.03 ± 0.76^{h}	40.12 ± 0.07	10.56 ± 0.07
SMC	0.060 ± 0.003^{a}	29.2 ± 1.2^{f}	622 ± 31	0.027 ± 0.003^i	37.10 ± 0.05	7.85 ± 0.05
M33	0.91 ± 0.04^a	2.02 ± 0.38^g	53.8 ± 2.7	0.29 ± 0.02^{h}	38.30 ± 0.09	9.14 ± 0.04
NGC 1068	10.1 ± 1.8^{b}	7.46 ± 0.55^{f}	31.6 ± 1.6	22.7 ± 8.1^{h}	40.96 ± 0.16	11.00 ± 0.16
LMC	0.050 ± 0.003^{a}	195.1 ± 8.5^{f}	6777 ± 339	0.20 ± 0.03^{i}	37.77 ± 0.06	8.72 ± 0.06
NGC 2146	17.2 ± 3.2^{c}	1.83 ± 0.36^{f}	13.71 ± 0.69	14.0 ± 5.2^{h}	40.81 ± 0.18	11.10 ± 0.16
NGC 2403	3.18 ± 0.18^{a}	1.22 ± 0.28^{g}	4.73 ± 0.24	0.37 ± 0.03^{h}	39.17 ± 0.11	9.17 ± 0.05
M82	3.53 ± 0.26^{a}	10.36 ± 0.52^{f}	143.6 ± 7.2	10.4 ± 1.6^{h}	40.19 ± 0.07	10.75 ± 0.07
NGC 3424	25.6 ± 1.8^{d}	1.59 ± 0.35^{f}	0.910 ± 0.046	1.59 ± 0.23^{j}	41.10 ± 0.11	10.27 ± 0.07
Arp 299	46.8 ± 3.3^{d}	1.10 ± 0.33^g	10.50 ± 0.52	97 ± 14^{k}	41.46 ± 0.14	11.86 ± 0.07
NGC 4945	3.72 ± 0.27^{a}	11.51 ± 0.79^{f}	63.6 ± 3.2	1.22 ± 0.16^{i}	40.28 ± 0.07	10.44 ± 0.07
Circinus	4.21 ± 0.70^{e}	7.1 ± 1.2^{f}	29.8 ± 1.5	2.05 ± 0.63^{i}	40.18 ± 0.16	10.22 ± 0.15
Arp 220	80.9 ± 5.7^{d}	2.91 ± 0.48^{f}	7.80 ± 0.39	214 ± 32^{k}	42.36 ± 0.09	12.20 ± 0.07
Milky Way	*	*	*	1.90 ± 0.04^m	38.91 ± 0.13^n	10.15 ± 0.21^n

Table 1. Distances, SFRs, IR and γ -ray fluxes and luminosities for all γ -ray emitting SFGs known.

Kornecki et al. 2020

Stacking Nearby Starburst Galaxies in LHAASO's FOV with Distance <15Mpc

RA [deg] DEC [deg] z DL[Gpc] S12 μ m S25 μ m S60 μ m S100 μ m References Name NGC660 25.7598 13.6457 0.00283 0.01233 3.05 7.3 65.52 114.74 1 NGC891 35.6392 42.3491 0.00176 0.00857 5.27 7 66.46 172.23 1 NGC1055 40.4385 0.443167 0.00332 0.01131 2.24 2.84 23.37 65.26 1 Maffei2 40.4795 59.6041 -5.7e-05 0.00332 3.624 9.238 135 225 6 NGC1068(M77) 40.6696 -0.0132806 0.00379 0.0137 39.84 87.57 196.37 257.37 1 IC342 56,7021 68,0961 0,0001 0,0046 14,92 34,48 180,8 391,66 1 NGC1569 67.7044 64.8479 0.00035 0.0046 1.24 9.03 54.36 55.29 1 NGC2403 114.214 65.6026 0.00044 0.00247 2.82 3.57 41.47 99.13 1 NGC2903 143.042 21.5008 0.00186 0.00826 5.29 8.64 60.54 130.43 1 NGC3034(M82) 148.968 69.6797 0.00068 0.00363 79.43 332.63 1480.42 1373.69 1 NGC3556(M108) 167.879 55.6741 0.00233 0.01385 2.29 4.19 32.55 76.9 1 NGC3627(M66) 170.063 12.9915 0.00243 0.01004 4.82 8.55 66.31 136.56 1 NGC3628 170.071 13.5895 0.00281 0.01004 3.13 4.85 54.8 105.76 1 NGC4102 181.596 52.7109 0.002823 0.0141 1.77 6.83 46.85 70.29 1 NGC4214 183.913 36.3269 0.00097 0.00367 0.58 2.46 17.57 29.08 2 NGC4631 190.533 32.5415 0.00202 0.00773 5.16 8.97 85.4 160.08 1 NGC5055(M63) 198.956 42.0293 0.00168 0.00796 5.35 6.36 40 139.82 1 NGC5194(M51) 202.47 47.1952 0.00154 0.00873 7.21 9.56 97.42 221.21 1 NGC6946 308.718 60.1539 0.00016 0.00532 12.11 20.7 129.78 290.69 1 NGC7331 339.267 34.4156 0.00272 0.01471 3.94 5.92 45 110.16 1

Summary

- More exposure is needed to observe photons >10 TeV and neutrinos for nearby starburst galaxies M82 and NGC 1068.
- To do: Nearby star forming galaxies M31 and M33
- To do: Stacking analysis on nearby starburst galaxies and star forming galaxies