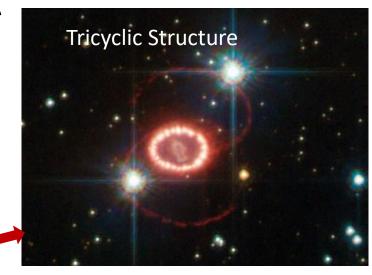


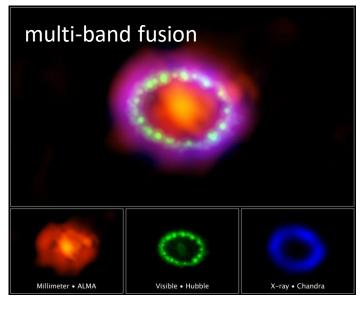
Supernova Neutrino Detection with LHAASO-MD

Dong Liu, Xinhua Ma, Cunfeng Feng SDU/IHEP

April 24, 2021 Guangzhou

Outline


- Supernova neutrino detection
- Compare LHAASO-MD with other experiments
- LHAASO-MD simulation and data
- Significance estimation
- Summary


Supernova SN1987A

On 24 February 1987. A neutrino burst, which signified the event as a type II core-collapse supernova (SN), was retrospectively detected by several detectors.

51.4 kpc to the earth.

The first (and so far only) one to be detected by its neutrino emissions.

SN1987A Neutrino

- The first (and so far only) supernova detected by its neutrino emissions
- Neutrino events recorded by the Kamiokande, IMB and Baksan experiments.
- The 24 neutrino were recorded over a time interval of 13 seconds.
- Energy 10-50MeV

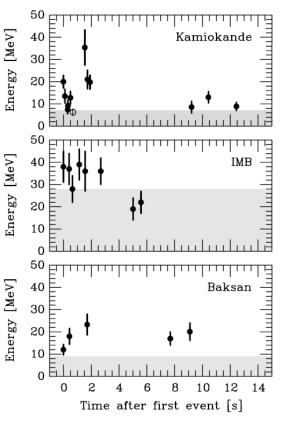


Figure 1.7 SN1987A neutrinos were observed at Kamiokande^[29,30], IMB^[31,32], and Baksan^[33,34] experiments. The energies represent the detected energy of positrons from inverse beta decay reactions. The shaded area corresponds to a trigger efficiency less than 30%. (From Ref. [7])

Supernova Neutrino detection

Supernova neutrino is detected by the inverse beta process(IBD) in most experiments.

Positron carries almost all the energy from neutrino.

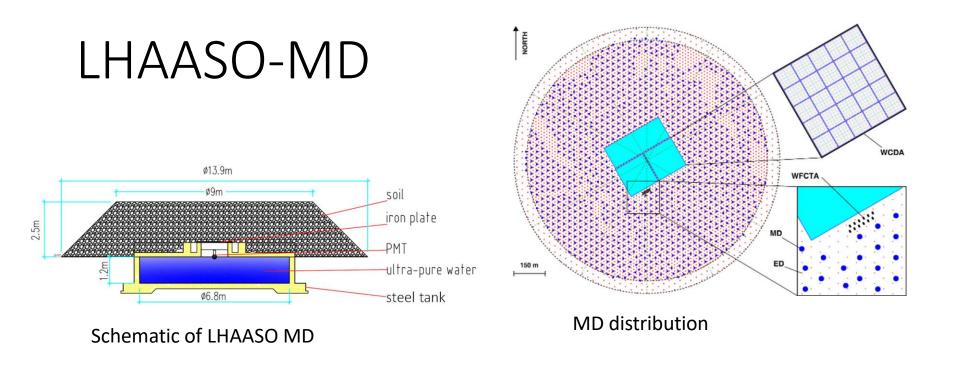
$$ar{
u}_e + p
ightarrow e^+ + n_e$$

	Detection method	target	Target mass→ IBD events amount	backgr ound
1 st class	IBD Event Reconstruction	Liquid scintillator/ water	Small	Low
2 nd class	Collective rise in all events rates on top of the dark noise	water (ice)	Large	High

Compare LHAASO-MD with other experiments

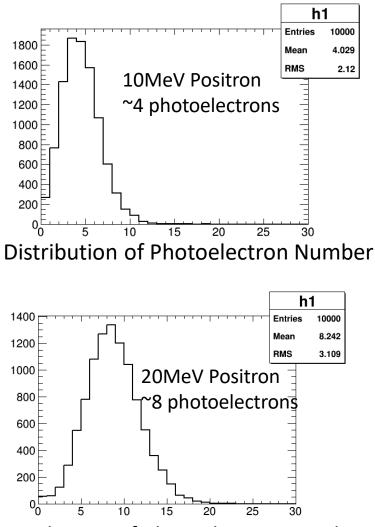
	Experiment	Target	Target mass(kton)	IBD Events	Threshold(M eV)	Material coverage	Number and distance of detector units	backgrou nd rate(Hz)
1st class	KamLAND	Liquid scintillator	1	300	0.35	underground 1000m	single	<1
	LVD	Liquid scintillator	1	300	4	underground 1400m	single	<1
	Borexino	Liquid scintillator	0.3	100	0.2	underground 1400m	single	<1
	Daya Bay	Liquid scintillator	0.33	110	0.7	underground 250-860m	8	<1
	JUNO	Liquid scintillator	20	6700	0.5	underground 700m	single	<1
	Super-K	water	32	7000	7	underground 1000m	single	<1
2nd class	IceCube	lce	1000	134000	-	under ice 1450-2450m	5160DOMs, 7,72/42m	540->286
	LHAASO-WCDA	water	300	20000	-	on the ground	3120, Close to each other	>30K
	LHAASO-MD	water	51	12750	5	underground 2.5m	1171, 30m	8k->400?

The estimation based on calculations for the SK detector

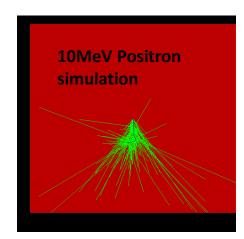

SNEWS

- SNEWS SuperNova Early Warning System http://snews.bnl.gov/
- The goal is to provide a World-wide alert of the supernova neutrino signal
- 7 member experiments:

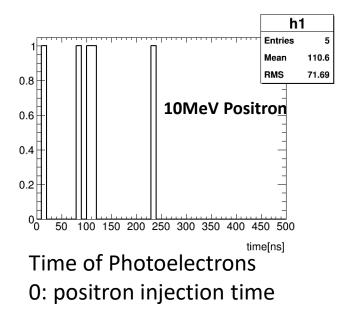
Super-K (Japan), LVD (Italy), Ice Cube (South pole), KamLAND (Japan),


Borexino (Italy), Daya Bay (China), HALO (Canada)

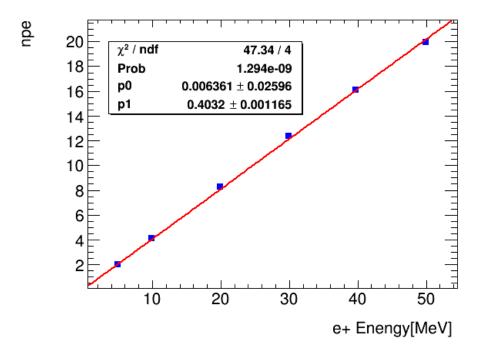
• Hope LHAASO could be the 8th experiments.



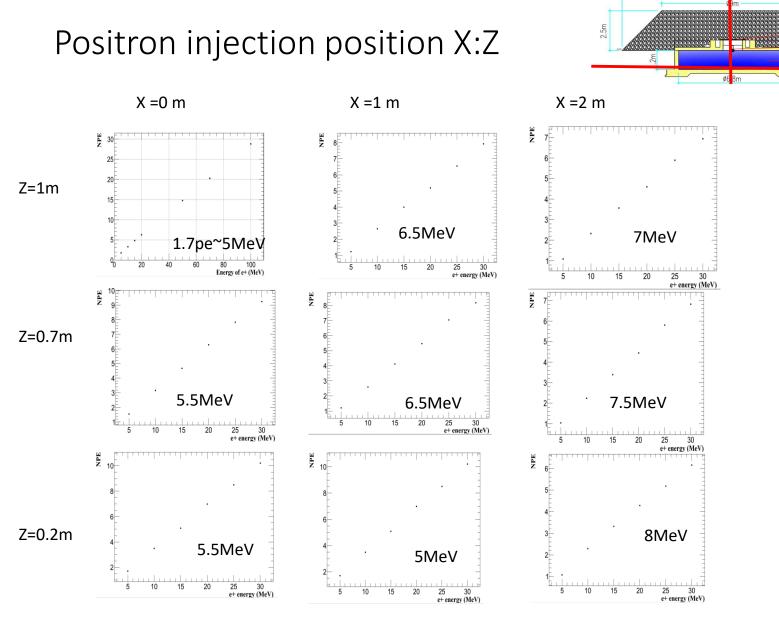
- Number of MD units: 1171; Distance 30m; water 0.044kton/PMT, total 51kton
- Scattered layout and spatial uniformity
- Good detection efficiency (> 95%) & good liner reflectivity (> 95%)
- PMT Threshold 5mV~1.7pe


MD simulation

Distribution of Photoelectron Number



• Single Positron events

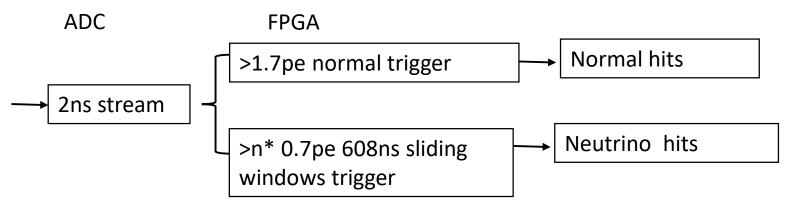


MD simulation

Photoelectron Number ~ Positron Energy * 0.4

For each MD, ~ 4-20 Photoelectrons arrive in hundreds ns

MD: 10MeV Positron 3.3pe Threshold ~5MeV (1.7pe) 9m


soil iron plate

PMT

-ultra-pure water -steel tank

FPGA programming to be done

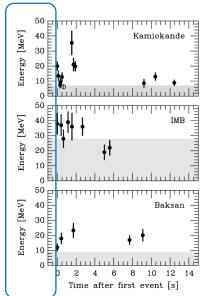
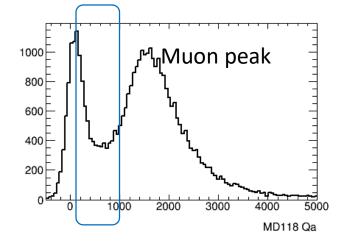
- For each MD, ~ 4-20 Photoelectrons arrive in 250 ns
- MD threshold is 1.7 pe
- Single photon will not be triggered by MD DAQ
- Need FPGA Level programming (sliding windows method) to trigger multi-photons in 608ns
- ---Studying by Xi Wang with help from Jinfan Chang

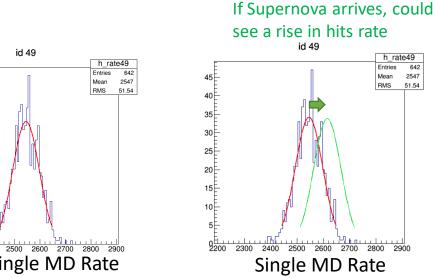
Noise estimation

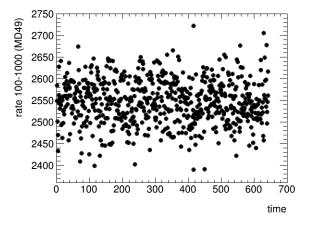
Full MD record Data (Special trigger mode):

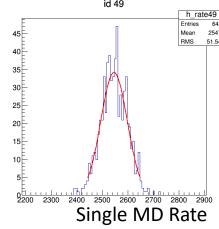
/eos/lhaaso/raw/km2a/2020/0918/ 140 files

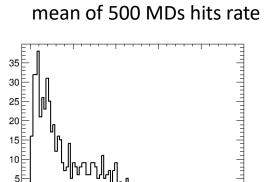
- 10 minutes Full record Data
- Record all hits from MD before selection.

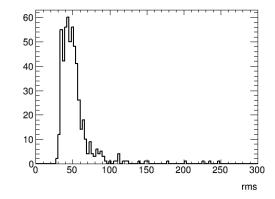

Figure 1.7 SN108/A neutrinos were observed at Kamiokande^[29,30], IMB^[31,32], and Baksan^[33,34] experiments. The energies represent the detected energy of positrons from inverse beta decay reactions. The shaded area corresponds to a trigger efficiency less than 30%. (From Ref. [7])


MD rate ~8K Hz Could remove the Muon by energy cut energy 10-100MeV


~ 100-1000ADC count


$MD\ hits\ rate\ (100-1000\ \text{ADC\ count\ })$

Single MD hits rate vs time



rate

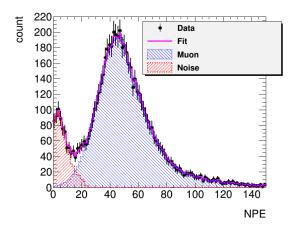
RMS of 500 MDs hits rate

Real-time analysis method

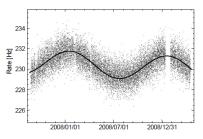
The most likely *collective rate deviation* μ of all single MD noise rates r_i from their individual $\langle r_i \rangle$'s, is obtained by maximizing the likelihood

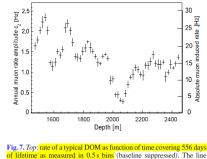
$$\mathcal{L}(\Delta \mu) = \prod_{i=1}^{N_{\rm MD}} \frac{1}{\sqrt{2\pi} \langle \sigma_i \rangle} \exp(-\frac{(r_i - (\langle r_i \rangle + \epsilon_i \Delta \mu))^2}{2 \langle \sigma_i \rangle^2}) .$$

- i MD index
- r rate
- <r>> rate expectation values
- $<\sigma_i$ standard deviation expectation values
- $\epsilon_i \Delta \mu$ correction for each single MD


Significance estimation

- 10 second IBD events 12750
- First second positron 12750/2=6375
- Each MD positron 6375/1171=5
- Average noise rate 2000
- Significance of each single MD: $5/sqrt(2000)=0.11\sigma$
- 1171 MDs: sqrt(1171) * 0.1σ=3.5 σ


• Important to lower the noise level


lower the noise level (to do)

1:Fit method to separate Muon and Noise

2:Artificial dead time (IceCube),

The data acquisition was designed to reduce the noise rate by ninating the excess hits, while keeping the random arrivals signal-to-noise ratio of the measurement can be improved enforcing an artificial dead time τ after every count, configd to 250 μ s by a field programmable gate array in the DOM, s reduces the noise rate from 540 Hz to 286 Hz at the cost of the 13% dead time for signal. The choice of 250 μ s optimizes sitivity to the Lawrence-Livermore model (Totani et al. 1997) distances up to 75 kpc, when neglecting the effect of afterses following the signal. A dead time $\tau > 110 \ \mu$ s guarantees

of lifetime as measured in 0.5s bins (baseline suppressed). The line corresponds to a rate fit according to Eq. (12). *Bottom:* parameter c_0 and estimated muon induced rate as function of depth. The variation with depth is mostly due to the optical properties of the ice and muons ranging out.

3:FPGA level study for Supernova Neutrino Detection is on going by Xi Wang and others.

Summary

- Hope to detect Supernova neutrino by LHAASO-MD
- Need FPGA Level programming (sliding windows method) to trigger
- Important to lower the noise level
- Hope we could be member experiments of SNEWS in the future

Thank you!