# **SUSY Search at the CEPC**

Jiarong Yuan<sup>1,2</sup>, Huajie Cheng<sup>2,3</sup>, Xuai Zhuang<sup>2</sup> [1]Nankai University [2]Institute of High Energy Physics [3] National Taiwan University 2020/12/9

# **Supersymmetry Introduction**

. . .



 The Supersymmetry is one of the most appealing BSM theories, which can be helpful for: dark matter candidate, hierarchy problem, grand unification of gauge couplings

### **Current status from LEP and LHC**



### **Overview**

- Search for sleptons and electroweakinos at CEPC.
- Signal scenarios
  - Direct production of stau pairs (DM relic density consistent with cosmology observation)
  - Direct production of smuon pairs (can explain g-2 excess)
  - > Production of chargino pairs decaying via W bosons (**Bino LSP**, **large cross section**)
  - > Production of chargino pairs decaying via W bosons (Higgsino LSP, interesting related with higgs)
- Search results in final states with two opposite sign (OS) charged muons( in last 3 scenarios).



Cross-section based on Madgraph calculation

### **Technical detail**

• About CEPC

ECM=240GeV, higgs factory, 100 km circumference, 2 interaction points. ILD-like detector

• Software

### Signal samples: MadGraph+Pythia8 Simulation: Mokka

- Reconstruction: Marlin
- Normalized to  $5050 \text{ fb}^{-1}$
- Dominant backgrounds:

#### > SM processes with two-e or two- $\mu$ or two- $\tau$ and large missing energy final states.

| process                                                            | Cross Section [fb] |  |  |  |
|--------------------------------------------------------------------|--------------------|--|--|--|
| μμ                                                                 | 4967.58            |  |  |  |
| ττ                                                                 | 4374.94            |  |  |  |
| $WW \to \ell\ell$                                                  | 392.96             |  |  |  |
| $ZZorWW \rightarrow \mu\mu\nu\nu$                                  | 214.81             |  |  |  |
| $ZZorWW \rightarrow \tau \tau \nu \nu$                             | 205.84             |  |  |  |
| $ u Z$ , $Z  ightarrow \mu \mu$                                    | 43.33              |  |  |  |
| $ZZ  ightarrow \mu\mu u u$                                         | 18.17              |  |  |  |
| $\nu Z, Z \to \tau \tau$                                           | 14.57              |  |  |  |
| $ZZ \rightarrow \tau \tau \nu \nu$                                 | 9.2                |  |  |  |
| $\nu\nu H$ , $H \to \tau \tau$                                     | 3.07               |  |  |  |
| $e  u W$ , $W  ightarrow \mu  u$                                   | 429.2              |  |  |  |
| $e\nu W, W \to \tau \nu$                                           | 429.42             |  |  |  |
| $eeZ, Z \rightarrow \nu\nu$                                        | 29.62              |  |  |  |
| $eeZ, Z \rightarrow \nu\nu \text{ or } e\nu W, W \rightarrow e\nu$ | 249.34             |  |  |  |





### **Signal samples**



6

# **Direct stau: Optimization Strategy**

- Use the leading track with minus(positive) charge to represent the  $\tau^{-}(\tau^{+})$  for simplicity.
- Select events with 2 OS  $\tau$  with energy > 0.5GeV.
- Perform a multi-dimension optimization, considering variables:

 $\Delta R(\tau,\tau), \Delta R(\tau,recoil), \Delta \varphi(\tau,\tau), \Delta \varphi(\tau,recoil), M_{\tau\tau}, M_{recoil}, E_{\tau}$ 

- Check for both upper cut and down cut for each variable.
- Use  $\frac{S}{\sqrt{B+dB^2}}$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).





### **Direct stau: SR & Results**

| • <u>Two SRs are defined for different <math>\Delta m</math></u> |                        |                              |                          |  |  |  |
|------------------------------------------------------------------|------------------------|------------------------------|--------------------------|--|--|--|
| SR-lowDelt                                                       | аM                     | SR2-h                        | nighDeltaM               |  |  |  |
|                                                                  |                        |                              |                          |  |  |  |
|                                                                  | $\Delta R(\tau, rec$   | coil) < 3                    |                          |  |  |  |
| $ \Delta R(\tau,\tau)  >$                                        | 1.2                    | $ \Delta R(\tau$             | $ \tau, \tau)  > 0.6$    |  |  |  |
|                                                                  | $E_{\tau} < 1$         | 5GeV                         |                          |  |  |  |
| $m_{\tau\tau} < 30Ge$                                            | eV                     | m <sub>recoil</sub> < 180GeV |                          |  |  |  |
|                                                                  |                        | $m_{\tau\tau} < 35 GeV$      |                          |  |  |  |
| Process                                                          | SR-lo                  | owDeltaM                     | SR2-highDeltaM           |  |  |  |
| ττ                                                               | 199.76                 | 6 <u>+</u> 21.2945           | 6.81 <u>+</u> 3.93176    |  |  |  |
| $\nu\nu H, H \to \tau\tau$                                       | 0.155±0.155            |                              | 0.155 <u>+</u> 0.155     |  |  |  |
| $ZZorWW \rightarrow \tau \tau \nu \nu$                           | 611.82                 | 2 <u>+</u> 25.1033           | 41.2 <u>+</u> 6.51429    |  |  |  |
| $ZZ \to \tau \tau \nu \nu$                                       | 18.76                  | <u>+</u> 3.17102             | 7.504 <u>+</u> 2.00553   |  |  |  |
| $\nu Z, Z \to \tau \tau$                                         | 50.388                 | 3 <u>±</u> 6.11044           | 4.446 <u>+</u> 1.81507   |  |  |  |
| $ZZorWW \rightarrow \mu\mu\nu\nu$                                | 8.544                  | <u>+</u> 3.02076             | 1.068±1.068              |  |  |  |
| $ZZ  ightarrow \mu\mu u u$                                       | 6.92                   | <u>+</u> 3.09472             | 0                        |  |  |  |
| $WW \to \ell \ell$                                               | 85.932                 | 2 <u>+</u> 9.37595           | 12.276 <u>+</u> 3.54378  |  |  |  |
| $\nu Z, Z  ightarrow \mu \mu$                                    | 106.84                 | 8 <u>+</u> 10.9051           | 1.113 <u>+</u> 1.113     |  |  |  |
| $\mu\mu$                                                         | 121.74                 | 1 <u>+</u> 27.2219           | 0                        |  |  |  |
| $e  u W$ , $W  ightarrow \mu  u$                                 |                        | 0                            | 0                        |  |  |  |
| $e\nu W, W \to \tau \nu$                                         | 91.637±9.60617         |                              | 45.315 <u>+</u> 6.75516  |  |  |  |
| $eeZ, Z \rightarrow \nu\nu$                                      | 3.072 <u>+</u> 1.77362 |                              | 0                        |  |  |  |
| $eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$        | 19.855                 | 5 <u>+</u> 4.55505           | 5.225 <u>+</u> 2.33669   |  |  |  |
| Total background                                                 | 1325.4                 | 3 <u>+</u> 47.0509           | 125.112 <u>+</u> 11.4571 |  |  |  |
| (100,10)                                                         | 1209.5                 | 58±102.228 751.668±80.5      |                          |  |  |  |
| (100,50)                                                         | 2531.4                 | 8 <u>+</u> 147.891           | 639.35 <u>+</u> 74.3229  |  |  |  |
| (100,90)                                                         | 7283.4                 | 1 <u>+</u> 250.854           | 0                        |  |  |  |



#### SR-lowDeltaM



### **Direct stau: SR & Results**

| • Two SRs are c                                                    | nt $\Delta m(\tilde{\tau}, \tilde{\chi}_1^0)$                     |                         |                          |  |  |  |
|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|--------------------------|--|--|--|
| SR-lowDeltaM                                                       |                                                                   | SR2-highDeltaM          |                          |  |  |  |
|                                                                    |                                                                   |                         |                          |  |  |  |
| $\Delta R(\tau, recoil) < 3$                                       |                                                                   |                         |                          |  |  |  |
| $ \Delta R(\tau,\tau)  > 1$                                        | $\frac{ \Delta R(\tau \tau)  > 0.6}{ \Delta R(\tau \tau)  > 0.6}$ |                         |                          |  |  |  |
|                                                                    |                                                                   |                         |                          |  |  |  |
| $E_{\tau} < 15 \text{GeV}$                                         |                                                                   |                         |                          |  |  |  |
| $m_{	au	au} < 30 GeV$                                              |                                                                   | $m_{recoil} < 180 GeV$  |                          |  |  |  |
|                                                                    |                                                                   | $m_{	au	au} <$          | : 35 <i>GeV</i>          |  |  |  |
| Process                                                            | SR-                                                               | lowDeltaM               | SR2-highDeltaM           |  |  |  |
| ττ                                                                 | 199.                                                              | 76 <u>+</u> 21.2945     | 6.81 <u>+</u> 3.93176    |  |  |  |
| $\nu\nu H$ , $H \to \tau\tau$                                      | 0.1                                                               | .55 <u>+</u> 0.155      | 0.155 <u>+</u> 0.155     |  |  |  |
| $ZZorWW \rightarrow \tau \tau \nu \nu$                             | 611.                                                              | 82 <u>+</u> 25.1033     | 41.2 <u>+</u> 6.51429    |  |  |  |
| $ZZ \rightarrow \tau \tau \nu \nu$                                 | 18.76 <u>+</u> 3.17102                                            |                         | 7.504 <u>+</u> 2.00553   |  |  |  |
| $\nu Z, Z \to \tau \tau$                                           | 50.388 <u>+</u> 6.11044                                           |                         | 4.446 <u>+</u> 1.81507   |  |  |  |
| $ZZorWW \rightarrow \mu\mu\nu\nu$                                  | 8.544 <u>+</u> 3.02076                                            |                         | 1.068 <u>+</u> 1.068     |  |  |  |
| $ZZ  ightarrow \mu\mu u u$                                         | 6.9                                                               | 2 <u>+</u> 3.09472      | 0                        |  |  |  |
| $WW \to \ell\ell$                                                  | 85.9                                                              | 32 <u>+</u> 9.37595     | 12.276 <u>+</u> 3.54378  |  |  |  |
| $\nu Z, Z  ightarrow \mu \mu$                                      | 106.8                                                             | 348 <u>+</u> 10.9051    | 1.113 <u>+</u> 1.113     |  |  |  |
| μμ                                                                 | 121.                                                              | 74 <u>+</u> 27.2219     | 0                        |  |  |  |
| $e \nu W$ , $W  ightarrow \mu  u$                                  |                                                                   | 0                       | 0                        |  |  |  |
| $e\nu W, W \to \tau \nu$                                           | 91.6                                                              | 37 <u>+</u> 9.60617     | 45.315 <u>+</u> 6.75516  |  |  |  |
| $eeZ, Z \rightarrow \nu\nu$                                        | 3.072±1.77362                                                     |                         | 0                        |  |  |  |
| $eeZ, Z \rightarrow \nu\nu \text{ or } e\nu W, W \rightarrow e\nu$ | 19.855 <u>+</u> 4.55505                                           |                         | 5.225 <u>+</u> 2.33669   |  |  |  |
| Total background                                                   | 1325                                                              | 1325.43±47.0509 125.112 |                          |  |  |  |
| (100,10)                                                           | 1209                                                              | .58 <u>+</u> 102.228    | 751.668 <u>+</u> 80.5873 |  |  |  |
| (100,50)                                                           | 2531                                                              | .48 <u>+</u> 147.891    | 639.35 <u>+</u> 74.3229  |  |  |  |
| (100,90)                                                           | 7283                                                              | 3.4 <u>+</u> 250.854    | 0                        |  |  |  |



### SR-highDeltaM



### **Direct stau: Sensitivity map**

• With 10% syst, for direct stau production, the discovery sensitivity reaches 115 GeV in stau mass.



# **Direct smuon: Optimization Strategy**

- Select events with 2 OS muons with energy > 0.5GeV.
- Perform a multi-dimension optimization, considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$ 

- Check for both upper cut and down cut for each variable.
- Use  $\frac{s}{\sqrt{B+dB^2}}$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).



 $\mu^{\pm}$ 

 $\mu^{\mp}$ 

 $e^{\pm}$ 

 $\boldsymbol{\mu}$ 

ũ

### **Direct smuon: SR & Results**

#### SR-highDeltaM

| Three SRs are                                             | defined fo              | r diff        | eren             | t $\Delta m(\widetilde{\mu},\widetilde{\chi}_1^0$ | ) .<br>1          | 0 <sup>9</sup> c                 | CEPC Simulation   | ev)                  | Ν,₩→μν<br>Ν,₩→τν<br>Ζ.Ζ→νν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------|-------------------------|---------------|------------------|---------------------------------------------------|-------------------|----------------------------------|-------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SR-highDeltaM                                             | SR-midDelt              | aM            | SR               | -lowDeltaM                                        | - 9 1<br>- 1<br>1 | 0 <sup>8</sup>                   | s = 240 GeV, 5050 | 1D eez<br>(m<br>(m   | $Z, Z \rightarrow vv \text{ or } evW, W$<br>$m_{a}^{(1)} = (80, 10) G$<br>$m_{a}^{(2)} = (90, 10) G$<br>$m_{a}^{(2)} = (90, 10) G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2 μ (0                                                    | OS, both energy         | / > 0.50      | GeV)             |                                                   | 1                 | 0 <sup>6</sup>                   |                   | (m <sup>i</sup>      | $(\tilde{\mu}_{1}^{i}, \tilde{\mu}_{2}^{i}) = (100, 20)$<br>$(\tilde{\mu}_{1}^{i}, \tilde{\mu}_{2}^{i}) = (110, 20)$<br>$(\tilde{\mu}_{1}^{i}, \tilde{\mu}_{2}^{i}) = (119, 30)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\Delta R(\mu, recoil) < 2.9$                             | $\Delta R(\mu, recoil)$ | < 2.6         | $\Delta R(\mu$   | ,recoil) < 2.7                                    | - 1               | 05                               |                   |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $E_{\mu}$ >40 <i>GeV</i>                                  | $E_{\mu} < 50 Ge$       | V             |                  |                                                   | 1                 | 0 <sup>4</sup><br>0 <sup>3</sup> |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $M_{\mu\mu} < 68 GeV$                                     | $p_T > 50 GeV$          | /c            | $M_{\mu}$        | <sub>ιμ</sub> < 85GeV                             | 1                 | 0 <sup>2</sup>                   | ······            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $M_{recoil} > 60 GeV$                                     |                         |               | M <sub>rec</sub> | <sub>oil</sub> > 135GeV                           | — IN 1            | 1                                |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| process                                                   | SR-high∆m               | SR-m          | id∆m             | SR-low∆m                                          | s<br>874<br>805   | 0.5                              |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ττ                                                        | 72.64±12.84             | 68.1 <u>+</u> | 12.43            | 5361.74 <u>+</u> 110.32                           |                   | <sup>1</sup> 2.4                 | 2.5 2.6 2.7       | 2.8                  | 2.9 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\nu\nu H$ , $H \to \tau\tau$                             | 0                       | C             | )                | 60.76 <u>+</u> 3.07                               |                   | 4 0                              |                   | 120                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ZZorWW \rightarrow \tau \tau \nu \nu$                    | 3.09 <u>+</u> 1.78      | 1.03 <u>+</u> | 1.03             | 2242.31 <u>+</u> 48.0581                          |                   | $\Delta R$                       | (μ, recoll)       | < 2.9:               | μμ;zzorv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ZZ \rightarrow \tau \tau \nu \nu$                        | 1.07 <u>+</u> 0.76      | 0             | )                | 68.608 <u>+</u> 6.06                              | GeV               | 10 <sup>9</sup>                  | CEPC Simulat      | ion                  | μμ<br>evW,W→μν<br>evWW,W→πν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\nu Z, Z  ightarrow 	au 	au$                             | 0                       | C             | )                | 115.60 <u>+</u> 9.26                              | lts/5             | 10 <sup>8</sup>                  | √s = 240 GeV, 5   | 050 fb <sup>-1</sup> | eeZ,Z→vv<br>eeZ,Z→vv or ev\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ZZorWW \rightarrow \mu\mu\nu\nu$                         | 1561. 42±40. 84         | 624.78        | <u>+</u> 25.83   | 19535.9 <u>+</u> 114.45                           | Ever              | 107                              | -                 |                      | - $(m_{\mu}, m_{\bar{\mu}}) = (80, 1)$<br>- $(m^{\mu}, m^{\chi}) = (90, 1)$<br>$(m^{\mu}, m^{\chi}) = (100)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ZZ  ightarrow \mu\mu u u$                                | 69.2 <u>+</u> 9.79      | 15.22         | <u>+</u> 4.59    | 218.67±17.40                                      |                   | 10 <sup>6</sup>                  | -                 |                      | $(m_{\mu}^{\mu}, m_{\mu}^{\chi}) = (100, -(m_{\mu}^{\mu}, m_{\mu}^{\chi})) = (110, -(m_{\mu}^{\mu}, m_{\mu}^{\chi})) = (119, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -(110, -$ |
| $WW \to \ell\ell$                                         | 163.68±12.94            | 154.47        | <u>+</u> 12.57   | 7589.64 <u>+</u> 88.11                            |                   | 10 <sup>5</sup>                  | -                 |                      | μ χ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\nu Z, Z 	o \mu \mu$                                     | 96.83±10.38             | 12.24         | <u>+</u> 3.69    | 736.81 <u>+</u> 28.64                             |                   | 104                              | - ,               |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\mu\mu$                                                  | 1095.66 <u>+</u> 81.67  | 298.26        | <u>+</u> 42.61   | 11060.10 <u>+</u> 259.47                          |                   | 10 <sup>3</sup>                  |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $e\nu W$ , $W  ightarrow \mu  u$                          | 0                       | 0             | )                | 0                                                 |                   | 10 <sup>2</sup>                  |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $e\nu W, W \to \tau \nu$                                  | 0                       | 0             | )                | 0                                                 |                   | 10                               |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $eeZ, Z \rightarrow \nu\nu$                               | 0                       | 0             | )                | 0                                                 |                   | 1∎                               |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $eeZ, Z \rightarrow vv \text{ or } evW, W \rightarrow ev$ | 0                       | 0             | )                | 0                                                 | I                 | 100 F                            |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| total background                                          | 3063.59 <u>+</u> 94.22  | 1174.11       | <u>+</u> 53.21   | 46990.10 <u>+</u> 334.20                          | S                 | <b>4</b> 50.5                    |                   |                      | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ref. point (100,10)                                       | 8817.9 <u>+</u> 276.10  | 587.86        | <u>+</u> 71.29   | 19771.1 <u>+</u> 413.43                           |                   | 1 E.                             | 10 20             | 30 4                 | 0 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Ref. point (100,50)                                       | 8186.81±266.04          | 3423.42       | <u>+</u> 172.42  | 61094.20 <u>+</u> 726.75                          |                   | E S                              | > 10C all 77      | 70011/11             | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ref. point (100,90)                                       | 0                       | 0             | )                | 139210±1094.03                                    |                   | Ľμ.                              | 240Gev:22         |                      | $\rightarrow \mu\mu\nu\nu;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



## **Direct smuon: SR & Results**

### Three SRs are defined for different $\Delta m(\tilde{\mu}, \tilde{\chi}_1^0)$ . •

| SR-highDeltaM                                                    | SR-midDelta               | M                | SR-              | lowDeltaM                |  |  |  |  |
|------------------------------------------------------------------|---------------------------|------------------|------------------|--------------------------|--|--|--|--|
| $2 \mu$ (OS, both energy > 0.5GeV)                               |                           |                  |                  |                          |  |  |  |  |
| $\Delta R(\mu, recoil) < 2.9$                                    | $\Delta R(\mu, recoil) <$ | recoil) < 2.7    |                  |                          |  |  |  |  |
| $E_{\mu}$ >40 $GeV$                                              | $E_{\mu} < 50 GeV$        | V                |                  |                          |  |  |  |  |
| $M_{\mu\mu} < 68 GeV$                                            | $p_T > 50 GeV$            | $p_T > 50 GeV/c$ |                  | $M_{\mu\mu} < 85 GeV$    |  |  |  |  |
| $M_{recoil} > 60 GeV$                                            |                           |                  |                  | $M_{recoil} > 135 GeV$   |  |  |  |  |
| process                                                          | SR-high <b>∆</b> m        | SR-mid∆m         |                  | SR-low∆m                 |  |  |  |  |
| ττ                                                               | 72.64 <u>+</u> 12.84      | 68.1             | <u>+</u> 12. 43  | 5361.74 <u>+</u> 110.32  |  |  |  |  |
| $\nu\nu H, H \to \tau\tau$                                       | 0                         |                  | 0                | 60.76 <u>+</u> 3.07      |  |  |  |  |
| $ZZorWW \rightarrow \tau \tau \nu \nu$                           | 3.09 <u>+</u> 1.78        | 1.03             | 8 <u>±</u> 1.03  | 2242.31 <u>+</u> 48.0581 |  |  |  |  |
| $ZZ \rightarrow \tau \tau \nu \nu$                               | 1.07 <u>+</u> 0.76        |                  | 0                | 68.608 <u>+</u> 6.06     |  |  |  |  |
| $\nu Z, Z \to \tau \tau$                                         | 0                         | 0                |                  | 115.60 <u>+</u> 9.26     |  |  |  |  |
| $ZZorWW  ightarrow \mu\mu u u$                                   | 1561. 42 <u>+</u> 40. 84  | 624.78±25.83     |                  | 19535.9 <u>+</u> 114.45  |  |  |  |  |
| $ZZ \rightarrow \mu\mu\nu\nu$                                    | 69. 2 <u>+</u> 9. 79      | 15.2             | 2 <u>+</u> 4.59  | 218.67 <u>+</u> 17.40    |  |  |  |  |
| $WW \to \ell \ell$                                               | 163.68±12.94              | 154.47+12.57     |                  | 7589.64 <u>+</u> 88.11   |  |  |  |  |
| $\nu Z, Z \to \mu \mu$                                           | 96.83 <u>+</u> 10.38      | 12.2             | 4 <u>+</u> 3.69  | 736.81 <u>+</u> 28.64    |  |  |  |  |
| μμ                                                               | 1095.66 <u>+</u> 81.67    | 298.2            | 6 <u>+</u> 42.61 | 11060.10 <u>+</u> 259.47 |  |  |  |  |
| $e\nu W$ , $W \to \mu \nu$                                       | 0                         | 0                |                  | 0                        |  |  |  |  |
| $e\nu W, W \to \tau \nu$                                         | 0                         | 0                |                  | 0                        |  |  |  |  |
| $eeZ, Z \rightarrow \nu\nu$                                      | 0                         |                  | 0                | 0                        |  |  |  |  |
| $eeZ, Z \rightarrow \nu\nu \text{ or } e\nu W, W \rightarrow er$ | 0                         |                  | 0                | 0                        |  |  |  |  |
| total background                                                 | 3063.59 <u>+</u> 94.22    | 1174.1           | 1 <u>+</u> 53.21 | 46990.10 <u>+</u> 334.20 |  |  |  |  |
| Ref. point (100,10)                                              | 8817.9 <u>+</u> 276.10    | 587.8            | 6 <u>+</u> 71.29 | 19771.1 <u>+</u> 413.43  |  |  |  |  |
| Ref. point (100,50)                                              | 8186. 81±266. 04          |                  |                  | 61094.20±726.75          |  |  |  |  |
| Ref. point (100,90)                                              | 0                         | 0                |                  | 139210±1094.03           |  |  |  |  |



### SR-midDeltaM



μμ



# **Direct smuon: SR & Results**

#### SR-lowDeltaM





### **Direct smuon: Sensitivity map**

• With 10% syst, for direct smuon production, the discovery sensitivity reaches 115 GeV in smuon mass.



# **Chargino pair (Bino LSP): Optimization Strategy**

- Select events with 2 OS muons with energy > 10 GeV. ٠
- Perform a multi-dimension optimization considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$ 

 $eeZ.Z \rightarrow vv$  or  $evW.W \rightarrow ev$ 

 $(m^{\tilde{\chi}_1}, m^{\tilde{\chi}_3}) = (110, 25) \text{ GeV}$ 

100 120 140 160 180 200

= (110, 1) GeV , m<sup>x</sup><sub>δ</sub>) = (110, 10) GeV ZZorWW →ττ

WW→I

 $evW,W \rightarrow \mu v$ 

evW.W→τv

vvH.H→ττ

ZZ→ττ

vZ,Z→ττ

eeZ,Z→vv

ZZorWW →uu

220 240

M<sub>recoi</sub>

120

PT

vZ,Z→μμ

ZZ→μμ

- Check for both upper cut and down cut for each variable. ٠
- Use  $\frac{S}{\sqrt{S+B+dB^2}}$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty). •







# Chargino pair (Bino LSP): SR & Results



ννΗ,Η→ττ

ZZ→ττ

νΖ,Ζ→ττ

eeZ.Z→vv

3.5

ννΗ.Η→ττ

ZZ→ττ

νΖ,Ζ→ττ

eeZ,Z→vv

.......

P<sup>µ</sup><sub>T</sub>

ZZ→µµ

ZZ→uu

vZ,Z→μμ

### Chargino pair (Bino LSP): Sensitivity map

• With 10% syst, for chargino pair production (Bino LSP), the discovery sensitivity reaches the phase space.



18

# Chargino pair (Higgsino LSP): Optimization Strategy

- Select events with 2 OS muons.
- Perform a multi-dimension optimization considering variables:

 $\Delta R(\mu,\mu), \Delta R(\mu,recoil), \Delta \varphi(\mu,\mu), \Delta \varphi(\mu,recoil), M_{\mu\mu}, M_{recoil}, E_{\mu\mu}, P_T^{\mu\mu}, E_{\mu}, P_T^{\mu}$ 

- Check for both upper cut and down cut for each variable.
- Use  $Z_n = \sqrt{2} \operatorname{erf}^{-1}(1-2p)$  as a sensitivity measurement (consider statistical uncertainty and 5% systematic uncertainty).



 $W^{\pm}$ 

 $W^{\mp}$ 

 $\tilde{\chi}_1^+$ 

 $ilde{\chi}_1^0$ 

## Chargino pair (Higgsino LSP): SR & Results

One signal region is defined. Events/0.1GeV Events/0.1GeV **CEPC** Simulation eeZ.Z→vv or evW.W→ev **CEPC Simulation** eeZ.Z→vv or evW.W→ev 10<sup>9</sup>  $10^{9}$ WW→II WW→II ZΖ→ττ √s = 240 GeV, 5050 fb √s = 240 GeV, 5050 fb evW.W→uv evW.W→uν νΖ,Ζ→ττ 10<sup>8</sup> ⊨ 10<sup>8</sup> evW.W→τν Signal Region evW,W→τν ZZ→µµ eeZ,Z→vv 10<sup>7</sup>  $10^{7}$ - (μ, tan β) = (90, 30) GeV − vZ,Z→μμ ---- (μ, tan β) = (90, 30) GeV 2 OS µ (μ, tan β) = (106, 30) GeV ZZorWW →ττ  $(\mu, \tan \beta) = (106, 30) \text{ GeV}$  ZZorWW  $\rightarrow \tau \tau$  $10^{6}$  $10^{6}$  $(\mu, \tan \beta) = (118, 30) \text{ GeV} ZZorWW \rightarrow \mu\mu$  $(\mu, \tan \beta) = (118, 30) \text{ GeV}$  ZZorWW  $\rightarrow \mu\mu$ 10<sup>5</sup> 10<sup>5</sup>  $M_{recoil} > 237.5 GeV$ 10<sup>4</sup> 10<sup>4</sup> *E*<sub>*u*</sub>>0.95GeV 10<sup>3</sup>  $10^{3}$  $3.2 < \Delta R(\mu, recoil) < 4.6$ 10<sup>2</sup>  $10^{2}$ 10 10  $|\Delta\phi(\mu, recoil)| < 2.9$ Selection Yields Zn 2 117.957+16.3577 ττ 236 0.4 0.6 0.8 1.2 1.4 1.6 1.8 236.2 236.4 236.6 236.8 237 237.2 237.4 237.6 237.8  $\nu\nu H, H \rightarrow \tau\tau$  $0.155 \pm 0.155$  $E_{\mu} > 0.95 GeV: \nu Z, Z \rightarrow \mu \mu, \mu \mu$  $M_{recoil} > 237.5 GeV: ZZorWW \rightarrow \mu\mu\nu\nu, \mu\mu^{W_{recoil}}$  $ZZorWW \rightarrow \tau \tau \nu \nu$ 3.0975+1.78834  $ZZ \rightarrow \tau \tau \nu \nu$ 0.5264+0.5264 Events/0. CEPC Simulation  $eeZ, Z \rightarrow vv$  or  $evW, W \rightarrow evW, W \rightarrow tvH, H \rightarrow tt$ Events/0. **CEPC** Simulation eeZ,Z→vv or evW,W→ev 10<sup>9</sup> 10<sup>9</sup> WW→II ΖΖ→ττ WW→II  $\nu Z, Z \rightarrow \tau \tau$  $\sqrt{s} = 240 \text{ GeV}, 5050 \text{ fb}$ vs = 240 GeV. 5050 fb evW,W→μv evW,W→μν νΖ.Ζ→ττ 10<sup>8</sup> evW,W→τν 10<sup>8</sup> evW.W→τv ZZ→µµ  $ZZorWW \rightarrow \mu\mu\nu\nu$ 4.272 + 2.136ττ ττ eeZ,Z→vv 10 u 10' ---- (μ, tan β) = (90, 30) GeV **ΙΙΙ**νΖ,Ζ→μμ  $ZZ \rightarrow \mu\mu\nu\nu$ 5.536 + 2.768---- (μ, tan β) = (106, 30) GeV ZZorWW →ττ 10<sup>6</sup>  $(\mu, \tan \beta) = (106, 30) \text{ GeV}$  ZZorWW  $\rightarrow \tau\tau$ 10<sup>6</sup> ---- (μ, tan β) = (118, 30) GeV ZZorWW  $\rightarrow$ μμ  $WW \rightarrow \ell \ell$ ···· (μ, tan β) = (118, 30) GeV ZZorWW →μμ 1.023 + 1.02310<sup>5</sup> 10<sup>5</sup>  $\nu Z, Z \rightarrow \mu \mu$ 36.729+6.3937 10<sup>4</sup> 10<sup>4</sup> 48.696+17.2166 μμ 10<sup>3</sup> 10<sup>3</sup>  $evW, W \rightarrow \mu v$ 10<sup>2</sup> 10<sup>2</sup>  $evW, W \rightarrow \tau v$ 1.007 + 1.00710 10  $eeZ, Z \rightarrow \nu\nu$  $eeZ, Z \rightarrow \nu\nu \text{ or } e\nu W, W \rightarrow e\nu$ Zn Zu 218.999+24.9529 total background 7.5 546.04+45.1906 Ref. point (90,30) 3.2 3.6 4.6 4.8 3.8 4.2 °2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  $\Delta R(\mu, recoil)$ Ref. point (106,30) 319+30.4155  $\Delta\phi(\mu, recoil) < 2.9: \tau\tau$  $3.2 < \Delta R(\mu, recoil)$ :  $\tau\tau, \mu\mu$ Ref. point (118,30) 400.4+22.8149

ννΗ.Η→ττ

ZZ→ττ

νΖ,Ζ→ττ

eeZ,Z→vv

 $vvH.H \rightarrow \tau$ 

ΖΖ→ττ

νΖ.Ζ→ττ

eeZ,Z→vv

ZZ→µµ

3

3.1 3.2

 $\Delta\phi(\mu, \text{recoil})$ 

ZZ→µµ

vZ,Z→μμ

# Chargino pair (Higgsino LSP): Zn map

With 10% syst, for or chargino pair production (Higgsino LSP), the discovery ٠ sensitivity reaches up all the mass phase space except a corner at high  $\mu$  region.

115

120

9,8

6.34

120

115



# Chargino pair (Higgsino LSP): Zn map

• With 10% syst, for or chargino pair production (Higgsino LSP), the discovery sensitivity reaches up all the mass phase space except a corner at high  $\tilde{\chi}_1^{\pm}$  mass region.





- A preliminary SUSY sensitivity study has been performed to direct stau / smuon production and chargino pair production (Bino LSP and Higgsino LSP) in CEPC, which is promising. With assuming 10% systematic uncertainty:
  - For direct stau / smuon production, the discovery sensitivity reaches 115 GeV in stau / smuon mass.
  - For chargino pair production (Bino LSP), the discovery sensitivity reaches the phase space.
  - For chargino pair production (Higgsino LSP), the discovery sensitivity reaches up all the mass phase space except a corner at high  $\mu$  region.
- Internal note and paper draft is ongoing.





### **Electrowikinos mass split**



Standard wino-bino
case: large △m
between N1 and C1/N2;
MET + hard leptons

N1,N2,C1 almost degenerate: experimental challenging; → MET + soft leptons

- → Lower xsec than higgsino LSP;
- → WW+MET dominant;

### **Direct stau: MC – rec**



Ε.

20

20

### **Direct stau: MC – rec**

