Status and plan of a PID drift chamber

Yao Zhang

On behalf of CRD drift chamber working group

CEPC day, Dec 28, 2020

Outline

- Motivation
- Prototype system
- Cluster counting for PID
- Software development
- Fast optimization on tracker design
- Summary

Motivation

- Particle identification is essential for flavor physics and jet study
 - Reduce combinatorial background
 - Improve mass resolution
 - Improve jet energy resolution
 - Benefit flavor tagging
 - A design of CEPC tracker combined with silicon tracker and drift chamber
 - Silicon + DC for tracking
 - Drift chamber for PID (with dE/dx or cluster counting)

We start with silicon tracker layout, and will optimize the Silicon + DC design through simulation.

Momentum distribution of K & π

Gang Li

Most of K & π with the momentum less than 20 GeV/c

Major tasks and key personnel

Prototyping system Mingyi

- To study the PID performance with the currently available electronics
- To understand what is critical to PID (rising time, gain, noise, etc.), and what may be achievable in a reasonable future.
- To provide realistic inputs for simulation
- Cluster counting simulation Linghui, Guang, Shuiting, Shengsen, Gang
 - To polish the cluster counting algorithm
 - Quick comparison of different parameters (gas, sampling frequency, etc.)
 - To provide empirical model to the sophisticated CEPCSW
- Software development in CEPCSW Yao, Mengyao, Tao, Wenxing, Chengdong
 - Provide more reliable tool to optimize the tracker through physics outputs
- Optimization of tracker design Linghui, Ryuta, Chengdong, Xin, Gang
 - Fast simulation to determine a preliminary tracker design
 - Coherent optimization of tracker & PID with CEPCSW

Setup of a prototype system

- A prototype test system was setup
 - 4 layers, 6 cells/layer
 - Cell size: 16×16 mm²
 - Wire length : 600 mm
 - Read out: preamplifier + oscilloscope

- Temporarily tested with the transimpedance preamplifiers used in BESIII MDC
 - Gain: 12 kΩ (12 mV/μA)
 - Rise time: 5 ns
 - Band width: 70 MHz
 - Output impedance $2 \times 50 \ \Omega$
 - Power dissipation 30 mW @ 6 V

12/28/2020

- Tested using cosmic rays
- Gas mixture: He (80%)+iC₄H₁₀(20%), HV=2000V (high gas gain)
- Can not separate the clusters well
- Fast preamplifier (<1ns rise time) with low noise is needed
- Another fast preamplifier with a rise time of less than 1ns is used, but noise problem has not been solved
- We are searching for better electronics.

Cluster counting for PID

- A simulation with Garfield is been performed
 - Study of resolutions and separation power with truth values
 - Peak finding with simulated signals
 - PID performance study with dN/dx sampling in CEPCSW ongoing

Parameters

- Two DCs between the silicon trackers
- Cell size: 1cm*1cm
- Outer radius = 1.5m (118 layers)
- He (50%)+iC₄H₁₀(50%)
- Truncated mean cut (70%) for dE/dx

Simulation of the signal

Signal simulated with Garfield

Efficiency of peak finding

Resolution vs number of layers

Contribution of electronics not been taken into account in this stage

Study on different gas ratio

- The cluster density can be reduced by increasing the ratio of He
- Lower cluster density would be better to cluster finding
- More studies ongoing

Number of clusters

Optimized gas mixture, pressure ...

Efficiency of peak finding with ROOT

Software development

- A drift chamber software has been developed from scratch
- Motivation
 - Study the PID with cluster counting method
 - A demonstration for the development of CEPC software
- Requirements for DC software
 - Configurable simulation
 - Adaptive track fitting
 - Provide fast iteration for dE/dx or dN/dx study
- Personpower
 - IHEP: Yao Zhang, Tao Lin, Wenxing Fang, Chengdong Fu, Ye Yuan, Weidong Li
 - SDU: Mengyao Liu, Xueyao Zhang, Xingtao Huang

Simulation and digitization realized in CEPCSW

Detector description

- DC constructor
- Cell partitioning with the segmentation method
- Detector response
 - dE/dx: deposit energy of the hit
 - Association between MC hits and particles are recorded
 - Both material and B-Field effects are taken into account

Simple digitization

- Constant X-T (Vdrift=40µm/ns)
- Fixed spatial resolution (110µm)
- Baseline configuration
 - Two drift chambers with silicon layers
 - Radius 1.8m, 130 layers, He (90%)+iC₄H₁₀(10%)

CRD tracker in CEPCSW

Flow of track reconstruction completed

12/28/2020

CEPC Day

Flow for dE/dx or dN/dx study ready

- A fast sampling tool
 - Hit level sampling from empirical model
- A dummy algorithm
 - Track level dE/dx or dN/dx reconstruction
- A track level dN/dx from Garfield will be integrated soon

Release plan of CRD

	Tasks	CRD V0 15 th Jan. 2021	CRD V1 End of March 2021
Detector description	DC axial layers with wires and walls		
Simulation & digitization	Track level dE/dx sampling with modeling		
	Track level dN/dx sampling with modeling		
Track finding	Truth tracker		
	Track seed from silicon tracker		
Track fitting	Fitting with truth information		
	Combined fitting with DC and silicon		

Optimization on tracker design

• Optimizing the design of tracker

- Momentum resolution
- Impact parameter resolution
- dE/dx or dN/dx resolution
- Different fast simulation tools being used for cross validations
- Plan
 - Number of Si layers
 - Number of drift chamber
 - Tracker size, layout and cell size
 - Effect of the magnetic field.
- Long term plan
 - Optimize the design with benchmark physics channels.

Summary

- We are setting up a prototype DC for dN/dx study. Better electronics is needed
- Garfield simulation results show that the resolution and separation power with cluster counting method are significantly better than traditional dE/dx method. PID study with dN/dx sampling at track level is ongoing
- The first version of CRD tracker software is ready
- Optimization of tracker design with fast simulation tools ongoing

