The charmonium-like states X(4140) and X(4160)

王恩 郑州大学

合作者: 耿立升, 谢聚军, 李德民, E.Oset, 郝伟, 刘文颖 第二届强子与重味物理理论与实验联合研讨会 2021年3月25-28日

> EPJC80(2020)626, CPC43(2019)113101, RPD97(2018)014017,103(2021)034019

LHCb: $B^+ \rightarrow J/\psi \phi K^+$

LHCb:2103					$X(2^{-})$
	$2.0 \pm 0.5 ^{+0.8}_{-1.0}$	$135 \pm 28 {}^{+ 59}_{- 30}$	$4146 \pm 18 \pm 33$	4.8(8.7)	X(4150)
X D Year E I					$X(1^{-})$
X.~D.~Yang, F.~L.~ Z.~W.~Liu and X.~I	$2.6 \pm 0.5 {}^{+ 2.9}_{- 1.5}$	$174 \pm 27 {}^{+134}_{-73}$	$4626 \pm 16^{+18}_{-110}$	5.5(5.7)	X(4630)
arxiv:2103.03127	$20 \pm 5^{+14}_{-7}$				All $X(0^+)$
	$5.6 \pm 0.7 {}^{+2.4}_{-0.6}$	$77 \pm 6 {}^{+ 10}_{- 8}$	$4474 \pm 3 \pm 3$	20(20)	X(4500)
	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$	$87\pm8{}^{+16}_{-6}$	$4694 \pm 4 {}^{+16}_{-3}$	17 (18)	X(4700)
	$28 \pm 8^{+19}_{-11}$			4.8(5.7)	$\mathrm{NR}_{J/\psi\phi}$
	$26 \pm 3^{+8}_{-10}$				All $X(1^+)$
	$17 \pm 3^{+19}_{-6}$	$162 \pm 21 {}^{+24}_{-49}$	$4118 \pm 11 {}^{+ 19}_{- 36}$	13 (16)	X(4140)
	$2.8 \pm 0.5 {}^{+ 0.8}_{- 0.4}$	$53 \pm 5 \pm 5$	$4294 \pm 4^{+3}_{-6}$	18(18)	X(4274)
	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$	$126 \pm 15 {}^{+37}_{-41}$	$4684 \pm 7^{+13}_{-16}$	15 (15)	X(4685)
	$25 \pm 5^{+11}_{-12}$				All $Z_{cs}(1^+)$
	$9.4 \pm 2.1 \pm 3.4$	$131\pm15\pm26$	$4003 \pm 6 ^{+ 4}_{- 14}$	$15 \ (16)$	$Z_{cs}(4000)$
	$10 \pm 4^{+10}_{-7}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$4216 \pm 24 {}^{+43}_{-30}$	5.9(8.4)	$Z_{cs}(4220)$

3.01803

-Wang, Liu,

LHCb: $B^+ \rightarrow J/\psi \phi K^+$

	$X(2^{-})$					LHCb:2103.01803
	X(4150)	4.8(8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28 {}^{+ 59}_{- 30}$	$2.0 \pm 0.5 \substack{+0.8 \\ -1.0}$	
	$X(1^{-})$					
	X(4630)	5.5(5.7)	$4626 \pm 16 ^{+18}_{-110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6 \pm 0.5 ^{+2.9}_{-1.5}$	X.~D.~Yang, F.~L.~Wang, Z.~W.~Liu and X.~Liu,
	All $X(0^+)$				$20 \pm 5^{+14}_{-7}$	arXiv:2103.03127
	X(4500)	20(20)	$4474\pm3\pm3$	$77 \pm 6 {}^{+10}_{-8}$	$5.6 \pm 0.7 \substack{+2.4 \\ -0.6}$	
	X(4700)	17(18)	$4694 \pm 4^{+16}_{-3}$	$87 \pm 8 + \frac{16}{6}$	$8.9 \pm 1.2^{+4.9}_{-1.4}$	
for	the new $X(4685)$	state with	also high signif	icance, but t	he quantum nu	mbers of the
X(4150) and $X(4630)$) are less w	ell determined.	The best hype	othesis for the 2	X(4630) state
is 1	1^- over 2^- at a 36	σ level. Th	e other hypothe	eses are ruled	out by more t	han 5σ . The
fit	prefers 2^- for the	$X(4150) \ s$	tate by more th	an 4σ . The r	narrower $Z_{cs}(40)$	$(00)^+$ state is
dot	ermined to be 1 ⁺	with high s	significance The	<u>broader Z</u> ((<u>1990)+ state c</u>	puld be 1 ⁺ or
	All $Z_{cs}(1^+)$				$25 \pm 5 {}^{+ 11}_{- 12}$	
	$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 ^{+ 4}_{- 14}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$	
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4^{+10}_{-7}$	

X(4140)

	$1110 111 \pm 19$	$1 CO + 01 \pm 24$		
• LHCD2U	$4118 \pm 11^{+10}_{-36}$	$102 \pm 21 - 49$	EWang	,EPJC80(2020)626
Exp.	Mass	Width	Sig.	Year
CDF [7]	$4143.0 \pm 2.9 \pm 1.2$	$11.7^{+8.3}_{-5.0} \pm 3.7$	3.8σ	2009
CMS [8]	$4148.0 \pm 2.4 \pm 6.3$	$28^{+15}_{-11} \pm 19$	5.0σ	2014
D0 [9]	$4159.0 \pm 4.3 \pm 6.6$	$20 \pm 13^{+3}_{-8}$	3.0σ	2014
D0 [10]	$4152.5 \pm 1.7^{+6.2}_{-5.4}$	$16.3 \pm 5.6 \pm 11.4$	4.7σ	2015
CDF [11]	$4143.4^{+2.9}_{-3.0}\pm0.6$	$15.3^{+10.4}_{-6.1} \pm 2.5$	5.0σ	2011
LHCb [17]	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	8.4σ	2017
PDG [2]	4146.8 ± 2.4	22^{+8}_{-7}		2019

1 - 2 + 2 + 241 10

X(4140) width reported by LHCb is substantially larger than previously determined

Search for X(4140) in BESIII

Observation of $e^+e^- o \phi \chi_{c1}$ and $\phi \chi_{c2}$ at $\sqrt{s} = 4.600~{ m GeV}$

M. Ablikim *et al.* (BESIII Collaboration) Phys. Rev. D **97**, 032008 – Published 12 February 2018

X(4140): $\chi_{c1}(3P)$ or tetraquark

Eur. Phys. J. C (2020) 80:626 https://doi.org/10.1140/epjc/s10052-020-8187-0 The European Physical Journal C

Regular Article - Theoretical Physics

and $\chi_{c2}(3P)$. Our results show that the X(4140) state with the small width given in PDG can be explained as the charmonium state $\chi_{c1}(3P)$ in the ³ P_0 model, and high precision measurement of the width of the X(4140) is crucial to understand its nature.

Canonical interpretation of the X(4140) state within the ³ P_0 model

Wei Hao, Guan-Ying Wang, En Wang^a, Guan-Nan Li, De-Min Li School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, Henan, China

> The European Physical Journal C

Regular Article - Theoretical Physics

Where are $\chi_{cJ}(3P)$?

Dian-Yong Chen^a

Eur. Phys. J. C (2016) 76:671

DOI 10.1140/epjc/s10052-016-4531-9

Department of Physics, Southeast University, Nanjing 210094, People's Republic of China

 $\Gamma(X(4140)
ightarrow J/\psi\phi)=86.9\pm22.6\,{
m MeV}$

•*ZGWang, Eur.Phys.J.C* 79 (2019) 1, 72

•80 ± 29*MeV*, *Agaev*, *Phys.Rev.D* 95 (2017)114003

• Tetraquark, JingWu, Phys.Rev.D 94 (2016) 094031

•*HXChen, Eur.Phys.J.C* 77 (2017)160

• Diquark-antidiquark, Turkan, Nucl. Phys. A 985 (2019) 38

• $D_s^*D_s$ cusp effect, XHLiu, Phys.Lett.B 766 (2017) 117

LHCb $J/\psi\phi$: 2021 & 2017

X(4150) & X(4160)

X(4160) MASS

X(4160) WIDTH

- X(4150): $X(2^{-})$ X(4150) 4.8 (8.7) 4146 ± 18 ± 33 135 ± 28 $^{+59}_{-30}$
- X(4160)

 $c \ \overline{c} \ \text{MESONS}$ (including possibly non- $q \ \overline{q} \ \text{states}$) $X(4160) \qquad I^G(J^{PC}) = ??(??)$ Seen by PAKHLOV 2008 in $e^+ e^- \rightarrow J/\psi X$, $X \rightarrow D^* \overline{D}^*$

$4156^{+29}_{-25}~{\sf MeV}$
$139^{+110}_{-60} { m ~MeV}$

$D_s^*\overline{D}_s^*$ molecule

PHYSICAL REVIEW D 80, 114013 (2009)

Y(3940), Z(3930), and the X(4160) as dynamically generated resonances from the vector-vector interaction

R. Molina¹ and E. Oset¹

¹Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigación de Paterna, Apartado 22085, 46071 Valencia, Spain (Received 24 July 2009; revised manuscript received 28 October 2009; published 15 December 2009)

Vector-vector exchange within local hidden gauge approach

	TABLE V. Couplings g_i in units of MeV for $I = 0$, $J = 2$ (second pole).							
$D^*\bar{D}^*(4017), D^*_s\bar{D}^*_s(4225), K^*\bar{K}^*(1783),$	$\sqrt{s_{\text{pole}}} = 4169 + i66, I^G[J^{\text{PC}}] = 0^+[2^{++}]$							
$ ho ho (1551), \qquad \omega \omega (1565),$	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18 927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	$\omega\omega$ 3 - i2441			
$\phi \phi(2039), J/\psi J/\psi(6194), \omega J/\psi(3880),$	$\phi \phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	$\omega\phi$			
$\varphi J/\psi$ (4110), $\omega \varphi$ (1802),	1257 + i2866	2681 + i940	-866 + i2752	-2617 - <i>i</i> 5151	1012 + i1522			

$D_s^*\overline{D}_s^*$ molecule

Y (.	PHYSIC 3940), Z(3930), and the from th	CAL REVIEW D X(4160) as d ne vector-vec	80, 114013 (2009) ynamically gen tor interaction	nerated resona	ances	
λ	$K(4160) = I^{G}($	(J^{PC}) = ?	$P^{?}(?^{??})$			
(R¢	Seen by PAKHLOV 200	8 in $e^+~e^- ightarrow$.	$J/\psi X$, $X o D^* \overline{D}$	<i>D</i> *		_
• Vector-	X(4160) MASS				4156^{+29}_{-25} MeV	
	X(4160) WIDTH				$139^{+110}_{-60}~{ m MeV}$	pole).
$D^*\bar{D}^*(4017), \qquad D^*_s$	$\bar{D}_{s}^{*}(4225), \qquad K^{*}\bar{K}^{*}(1783),$					
ho ho(1551),	ωω(1565),	$D^* \bar{D}^*$ 1225 — <i>i</i> 490	$D_s^* \bar{D}_s^*$ 18 927 — <i>i</i> 5524	$K^*\bar{K}^*$ $-82+i30$	$\frac{\rho\rho}{70+i20}$	$\omega\omega$ 3 - <i>i</i> 2441
$\phi \phi$ (2039), $J/\psi J/\psi$	$/\psi(6194), \qquad \omega J/\psi(3880),$), $\omega \phi(1802),$	$\phi\phi$	$J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	ωφ
, , , , , , ,		1257 + i2866	2681 + i940	-866 + i2752	-2617 - <i>i</i> 5151	1012 + i1522

$D_s^*\overline{D}_s^*$ molecule, X(4160)

The comparison made above hints a possible $D_s^* \bar{D}_s^*$ molecule-like nature with quantum numbers $J^{PC} = 2^{++}$ for X(4160) However, our work also implies the existence of a $J^{PC} = 0^{++}$

The reaction of $B^- \rightarrow J/\psi \phi K^-$

External emission

 B^-

Internal conversion

The reaction of $B^- \rightarrow J/\psi \phi K^-$

The reaction of $B^- \rightarrow J/\psi \phi K^-$

The contribution of X(4160)

• G is the loop function, with the cut off method,

$$G_{l} = \int \frac{d^{3}q}{(2\pi)^{3}} \frac{M_{l}}{2\omega_{l}(q)E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon}$$

• The transition amplitudes are,

$D^* ar{D}^*$ (4017),	$D_{s}^{*}\bar{D}_{s}^{*}(4225)$	5), $K^*\bar{K}^*(1783)$,					
$ ho ho(1551),\qquad\omega\omega(1565),$							
$\phi \phi$ (2039),	$J/\psi J/\psi$ (6194	4), $\omega J/\psi$ (3880),					
$\phi J/$	ψ(4116), ω	φ(1802),					

$$t_{D_s^* \bar{D}_s^* o D_s^* \bar{D}_s^*} = rac{g_{D_s^* \bar{D}_s^*}^2}{M_{
m inv}^2 (D_s^* \bar{D}_s^*) - M_X^2 + iM_X \Gamma_X},$$

 $t_{D_s^* \bar{D}_s^* o J/\psi \phi} = rac{g_{D_s^* \bar{D}_s^*} g_{J/\psi \phi}}{M_{
m inv}^2 (J/\psi \phi) - M_X^2 + iM_X \Gamma_X},$

$\sqrt{s_{\text{pole}}} = 4169$	$+ i66, I^{G}[J^{PC}] =$	0+[0++]							
$\sqrt{s_{\text{pole}}} = 4169 + i66, I^G[J^{\text{PC}}] = 0^+[2^{++}]$									
$\begin{array}{ccc} D^*\bar{D}^* & D^*_s\bar{D}^*_s \\ 1225 - i490 & 18927 - i5524 \end{array}$	$K^*\bar{K}^*$ $-82+i30$	$\frac{ ho ho}{70+i20}$	$\omega \omega$ 3 - <i>i</i> 2441						
$\phi\phi$ $J/\psi J/\psi$	$\omega J/\psi$	$\phi J/\psi$	ωφ						
1257 + i2866 $2681 + i940$ -	866 + <i>i</i> 2752	-2617 - <i>i</i> 5151	1012 + i1522						

The contribution of X(4140)

 Since X(4140) is 1⁺⁺, the kaon should be in P-wave, and the operator for P-wave is,

$$(\vec{\epsilon}_{J/\psi} \times \vec{\epsilon}_{\phi}) \cdot \vec{k},$$

$$t_{B^- \to K^- D_s^* \bar{D}_s^*}^{\text{tree}} = A\left(\vec{\epsilon} \cdot \vec{k} \vec{\epsilon}' \cdot \vec{k} - \frac{1}{3} \vec{k}^2 \vec{\epsilon}\right)$$

$$\frac{d\Gamma}{dM_{\rm inv}(D_s^*\bar{D}_s^*)} = \frac{1}{(2\pi)^3} \frac{1}{4M_{B^-}^2} \frac{2}{3} |\vec{k}|^4 |\vec{k}'| \tilde{p}_{D_s^*} |A|$$

 $M_{\rm inv}(D_s^*\bar{D}_s^*) \to M_{\rm inv}(J/\psi\phi),$

The substitution:

$$A \to \frac{BM_{X(4140)}^4}{M_{\text{inv}}^2(J/\psi\phi) - M_{X(4140)}^2 + iM_{X(4140)}\Gamma_{X(4140)}}$$

with *B* a parameter to be fitted to the data. $M_{X(4140)} = 4132 \text{ MeV}_{2}$

 $\frac{2}{2}|\vec{k}|^4 \to 2|\vec{k}|^2, \qquad \tilde{p}_{D_s^*} \to \tilde{p}_{\phi},$

Results

- We fit the data from threshold up to about 4250 MeV.
- 13 data, chi^2/dof=15.3/(13-3)

 $\Gamma_0 = 65.0 \pm 7.1 \text{ MeV}$ (at 68% confidence level), $\Gamma_{J/\psi\phi} \simeq 22.0 \text{ MeV}$ $\Gamma_{X(4160)} \simeq 87.0 \pm 7.1 \text{ MeV}$

X(4160)Seen by PAR	$I^G(J^{PC})$ = $??(??)$ KHLOV 2008 in $e^+ e^- o J/\psi X$, $X o D^*\overline{D}^*$	
$X\!(4160)$ MAS	S	4156^{+29}_{-25} MeV
X(4160) WID	ГН	139 ⁺¹¹⁰ MeV

Results

 $e^+e^- \rightarrow \gamma J/\psi \phi$

$$\begin{split} \tilde{\mathcal{M}}_{J/\psi\phi}^{(a)} &= A \times G_{D_s^* \bar{D}_s^*} t_{D_s^* \bar{D}_s^*, J/\psi\phi} \times \mathcal{P}^{(a)} \\ &= \mathcal{M}_{J/\psi\phi}^{(a)} \times \mathcal{P}^{(a)}, \\ \mathcal{P}^{(a)} &= \left[\frac{1}{2} \left(\epsilon_{1i} \epsilon_{2j} + \epsilon_{1j} \epsilon_{2i} \right) - \frac{1}{3} \vec{\epsilon}_1 \cdot \vec{\epsilon}_2 \delta_{ij} \right] \\ &\times \left[\frac{1}{2} \left(\epsilon_{\phi i} \epsilon_{J/\psi j} + \epsilon_{\phi j} \epsilon_{J/\psi i} \right) - \frac{1}{3} \vec{\epsilon}_{\phi} \cdot \vec{\epsilon}_{J/\psi} \delta_{ij} \right] \\ t_{D_s^* \bar{D}_s^*, J/\psi\phi} &= \frac{g_{D_s^* \bar{D}_s^*} g_{J/\psi\phi}}{M_{\text{inv}}^2 (J/\psi\phi) - M_{X_1}^2 + i \Gamma_{X_1} M_{X_1}}, \\ g_{D_s^* \bar{D}_s^*} &= (18927 - 5524i) \text{ MeV} \\ g_{J/\psi\phi} &= (-2617 - 5151i) \text{ MeV}. \end{split}$$

$$\tilde{\mathcal{M}}_{J/\psi\phi}^{(b)} = \frac{BM_{X_2}^2 \times \mathcal{P}^{(b)}}{M_{\text{inv}}^2 (J/\psi\phi) - M_{X_2}^2 + iM_{X_2}\Gamma_{X_2}}
= \mathcal{M}_{J/\psi\phi}^{(b)} \times \mathcal{P}^{(b)},
\mathcal{P}^{(b)} = \sum_{\text{pol}} \left[(\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \vec{\epsilon}_{X_2} \right] \left[\vec{\epsilon}_{X_2} \cdot \left(\vec{\epsilon}_\phi \times \vec{\epsilon}_{J/\psi} \right) \right]
= (\vec{\epsilon}_1 \times \vec{\epsilon}_2) \cdot \left(\vec{\epsilon}_\phi \times \vec{\epsilon}_{J/\psi} \right),$$

In the present work, the only relevant thing is that the two structures $\mathcal{P}^{(a)}$ and $\mathcal{P}^{(b)}$ do not interfere, and there are no momenta involved, unlike in the decay $B^- \to J/\psi \phi K$ [4].

The mechanism for $D_s^*\overline{D}_s^*$ production

$$\frac{d\Gamma}{dM_{\rm inv}(D_s^*\bar{D}_s^*)} = \frac{1}{(2\pi)^3} \frac{1}{4s} k' \tilde{p}_{D_s^*} |\mathcal{M}_{D_s^*\bar{D}_s^*}|^2,$$
$$\mathcal{M}_{D_s^*\bar{D}_s^*} = A \left[T^{\rm tree} + T^{X(4160)} \right]$$
$$= A \left[1 + G_{D_s^*\bar{D}_s^*} \left(M_{\rm inv}(D_s^*\bar{D}_s^*) \right) \right.$$
$$\times t_{D_s^*\bar{D}_s^*, D_s^*\bar{D}_s^*} \left(M_{\rm inv}(D_s^*\bar{D}_s^*) \right) \right]$$
$$t_{D_s^*\bar{D}_s^*, D_s^*\bar{D}_s^*} = \frac{g_{D_s^*\bar{D}_s^*}^2}{M_{\rm inv}^2(D_s^*\bar{D}_s^*) - M_{X_1}^2 + i\Gamma_{X_1}M_{X_1}}$$

Results

$\Lambda_h \rightarrow J/\psi \Lambda \phi$

- First observed by CMS PLB802, 135203(2020)
- $J/\psi\phi$ final state interaction, X(4140) &X(4160)
- $\Lambda \phi$ final state interactions, no information about Λ^*
- $J/\psi\Lambda$ final state interaction, P_{cs}

Recent results on exotic hadrons at LHCb

Mengzhen Wang Center of High Energy Physics, Tsinghua University (On behalf of the LHCb collaboration)

Implications of LHCb measurements and future prospects 28 Oct. - 30 Oct. 2020

10/29/20 Implications workshop 2020 The $\Xi_b^- \rightarrow J/\psi K^- \Lambda$ data sample

LHCb-PAPER-2020-039 LHCb preliminary

• Used to search for predicted $[udsc\bar{c}]$ pentaquark $P_{\!_{CS}}$ • Run-I + Run-II data: ~ 1750 signals, purity $\sim 80\%$

PHYSI	CAL F	EVIEW	С						
ighlights	Recent	Accepted	Authors	Referees	Search	Press	About	Staff	
Looki $S=-$	ng for a -1 from	hidden Ξ_{h}^{-} deca	-charm ay into .	pentaqu $J/\psi K^- M$	ark stat	te with	strang	jeness	5

Hua-Xing Chen, Li-Sheng Geng, Wei-Hong Liang, Eulogio Oset, En Wang, and Ju-Jun Xie Phys. Rev. C 93, 065203 - Published 14 June 2016

23

The mechanism

24

$$\frac{d^2\Gamma}{dM_{J/\psi\phi}^2 dM_{J/\psi\Lambda}^2} = \frac{1}{(2\pi)^3} \frac{1}{32M_{\Lambda_b}^3} \sum |\mathcal{M}|^2,$$

$$\sum |\mathcal{M}|^2 = \sum \left(|\mathcal{M}^S|^2 + |\mathcal{M}^P|^2 \right)$$
(17)

$$= B^{2} \left(3|\mathcal{M}^{S}|^{2} + 2|k|^{2}|\mathcal{M}^{P}|^{2} \right), \qquad (18)$$

$$\tilde{\mathcal{M}}^P = \alpha G_{D^*_s \bar{D}^*_s} t_{D^*_s \bar{D}^*_s \to J/\psi\phi}, \qquad (19)$$

$$\tilde{\mathcal{M}}^{S} = \frac{M_{X(4140)}^{3}}{M_{J/\psi\phi}^{2} - M_{X(4140)}^{2} + iM_{X(4140)}\Gamma_{X(4140)}} + \frac{\beta M_{P_{cs}}^{3}}{M_{J/\psi\Lambda}^{2} - M_{P_{cs}}^{2} + iM_{P_{cs}}\Gamma_{P_{cs}}}, \qquad (20)$$

Results

26

- The width of X(4140) is important.
- With a narrow X(4140) and the $D_s^*\overline{D}_s^*$ molecular state X(4160), we can provide an good explanation of the LHCb2017 measurements for $B^+ \to J/\psi \phi K^+$.
- Our model is also compatible with the BESIII measurements about $e^+e^- \rightarrow \gamma J/\psi \phi$.
- The process $\Lambda_b \rightarrow J/\psi \Lambda \phi$ can be used to learn X(4140), X(4160), and the newly observed Pcs.

Thanks for your attention!