Dalitz plot analysis of D⁰-> K⁻ π^+ η

鄢文标 (中国科学技术大学)

第二届"强子物理和重味物理理论与实验联合研讨会", 2021.03.28, 兰州

KEKB accelerator & Belle Detector

- Asymmetric e⁺e⁻ collider
 □ 8 GeV(e⁻); 3.5GeV(e⁺)
 □ Around 10.58GeV ↔ Y(4S)
- B factory, also tau-charm factory

Process	σ (nb) @ Y(4S)
bb	1.1
сē	1.3
$q\overline{q}$ (q=u,d,s)	2.1
$ au^+ au^-$	0.93

$D^{0} \rightarrow K^{-} \pi^{+} \eta$

1.5

1.0 $m^{2}(\eta\pi^{0}) (GeV/c^{2})^{2}$

PRL 93, 111801

0.5

$D^0 \rightarrow K^- \pi^+ \eta$

- D three-body hadronic decay

 I study light hadron spectrum
- Kaon spectrum
 PDG2020: 25 kaon states below
 3.1 GeV/c²
 - □ Only 13 states well established,
 - **12 states need confirmation**
 - □ Little progress in past 30 years

K* @ Kπ & Kη

- **□** Search K*(1410), K*(1680) and K₂*(1980) @ Kη
- \square K*(1680) as pure 1³D₁ state
- \Box K*(1410) & K*(1680): mixture 2³S₁ and 1³D₁

$D^0 \rightarrow K^- \pi^+ \eta$

• Wrong-sign decays have important role on D⁰-D
¯⁰ mixing & CP violation

- Wrong-sign $D^0 \rightarrow K^+ \pi^- \eta$ for $D^0 \overline{D}^0$ mixing: not yet
- With 50 ab^{-1} data @ Belle II, Time-dependent Dalitz analysis of $D^0 \rightarrow K^+ \pi^- \eta$: possible
- Right-sign $D^0 \rightarrow K^- \pi^+ \eta$: necessary input for $D^0 \rightarrow K^+ \pi^- \eta$

D⁰ -> **K**⁻ $\pi^+ \eta$ @ Belle

M (GeV/c²)

Q (MeV/c²)

Generalization of Dalitz analysis

Unbinned maximum likelihood method

 $-2ln\mathcal{L}(m_{AB}^2, m_{BC}^2) = -2\sum_{i=1}^n ln[f_{sig}^i p_{sig}(m_{AB,i}^2, m_{BC,i}^2) + f_{bkg}^i p_{bkg}(m_{AB,i}^2, m_{BC,i}^2)]$

Dalitz analysis formalism

D⁰

Α

В

С

- **Dalitz standard form** $d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathcal{M}|^2 dm_{AB}^2 dm_{BC}^2$
- **Isobar model** $\mathcal{M}(m_{AB}^2, m_{BC}^2) = a_{NR}e^{i\phi_{NR}} + \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{AB}^2, m_{BC}^2)$
- Matrix element $\mathbf{A}_{\mathbf{r}} \mathcal{A}(ABC|r) = F_D \times F_r \times T_r \times \Omega_J$ **D** Blatt-Weisskopf centrifugal barrier factor: \mathbf{F}_r , \mathbf{F}_D
 - \Box Angular distribution function Ω_J by Zemach tensor
 - **Dynamical function** T_r
 - ✓ most of resonances by relativistic Breit-Wigner
 - \checkmark a₀(980) by Flatte model

$$T_R(s) = \frac{1}{m_{a_0}^2 - s - i(g_{\pi\eta}^2 \rho_{\pi\eta} + g_{\bar{K}^0 K}^2 \rho_{\bar{K}^0 K} + g_{\pi\eta'}^2 \rho_{\pi\eta'})}$$

$\checkmark~K\pi$ & K η S-wave contribution by LASS model

 $\mathcal{A}_{g\text{LASS}}(s) = \frac{\sqrt{s}}{2q} \cdot [B\sin(\delta_B + \phi_B)e^{i(\delta_B + \phi_B)} + \sin(\delta_R)e^{i(\delta_R + \phi_R)}e^{2i(\delta_B + \phi_B)}],$ Non-resonant and K₀*(1430) components

Dalitz plot fit results

• The fit quality $\chi^2/d.o.f = 1638/(1415-24) = 1.18$

Dalitz plot fit results

- Dominant components: $\overline{\mathbf{K}}^*(892)^0$ and $\mathbf{a}_0(980)^+$
- K_{η} S-wave with K₀*(1430): > 30 σ

• $K^*(1680)^{-}/K_2^*(1980)^{-} \rightarrow K_{-}\eta$ are observed for the first time With $16\sigma/17\sigma$

B(D⁰ -> K⁻ π⁺ η)

• Normalized mode $D^0 \rightarrow K^- \pi^+$, fit M @ Q signal region

$$\frac{\mathcal{B}(D^0 \to K^- \pi^+ \eta) \mathcal{B}(\eta \to \gamma \gamma)}{\mathcal{B}(D^0 \to K^- \pi^+)} = \frac{N_1/\epsilon_1}{N_2/\epsilon_2}$$

 $\frac{B(D^0 \to K^- \pi^+ \eta)}{B(D^0 \to K^- \pi^+)} = 0.500 \pm 0.002(stat) \pm 0.020(syst) \pm 0.003(PDG)$

• PDG2018: B(D⁰ -> K⁻ π^+) = (3.950 ±0.031)%, then

 $B(D^0 \rightarrow K^- \pi^+ \eta) = 1.973 \pm 0.009(stat) \pm 0.079(syst) \pm 0.018(PDG)$

• BESIII: B(D⁰ -> K⁻ $\pi^+ \eta$) = (1.853 ± 0.025(stat) ± 0.031(sys))%

Branching fractions @ $D^0 \rightarrow K^- \pi^+ \eta$

- Combine Dalitz fit results and $B(D^0 \rightarrow K^- \pi^+ \eta)$, then have
- $B(D^0 \to K^*(892)^0 \eta \to K^- \pi^+ \eta) = (0.94 \pm 0.03 \pm 0.08 \pm 0.01)\%$
 - **D** PDG: B(K*(892)⁰⁻->K⁻ π ⁺) = (66.503±0.014)% @ PDG
 - $\square B(D^0 \to K^*(892)^0 \eta) = (1.41 \pm 0.04^{+0.12}_{-0.11} \pm 0.01)\%$
 - $\square \ PDG: B(D^0 \rightarrow \overline{K}^*(892)^0 \eta) = (1.02 \ \pm \ 0.30)\%$
 - **□** Theory prediction: (0.51-0.92)%
 - \square deviates theory prediction with significance of more than 3σ
- $B(D^0 \to K^*(1680)^-\pi^+ \to K^-\eta\pi^+) = (2.11 \pm 0.32^{+1.16}_{-0.72} \pm 0.02) \times 10^{-4}$ $\Box B(D^0 \to K^*(1680)^-\pi^+ \to K^-\pi^0\pi^+) = (0.19 \pm 0.07)\% @ PDG$
 - $\square \frac{B(K^*(1680) \to K^-\eta)}{B(K^*(1680) \to K^-\pi)} = 0.11 \pm 0.02 + 0.06 \pm 0.04$
 - $\square B(K^*(1680)^- > K^- \pi^0) = (12.90 \pm 0.83)\% @ PDG$
 - $\square B(K^*(1680)^- \to K^-\eta) = (1.44 \pm 0.21^{+0.79}_{-0.49} \pm 0.54)\%$
- B(D⁰->K₂*(1980)⁻π⁺->K-π⁺η) = (2.2 +1.7-1.9)×10⁻⁴
 Strongly suppressed do to phase-space and yet allowed due to large width of K₂*(1980)

K*(1680)

K*(1680) as pure 1³D₁ state

 Kπ : Kη ≈ 1.0 @ theory
 Belle: Kπ : Kη ≈ 0.11±0.07
 Kπ, Kρ, and K*(892)π
 Any idea ?

Mode	EPJC 77, 861	PRD 68, 054014
$\Gamma_{K\pi}$	69.2 MeV	45 MeV
$\Gamma_{ m K\eta}$	64.4 MeV	53 MeV

<u>+</u>							
	EPJC 77, 861	PRD 68, 054014	Experiment				
$\Gamma_{K\pi}/\Gamma_{K^*(892)\pi}$	1.66	1.8	2.8 ± 1.1				
$\Gamma_{{ m K} ho}/\Gamma_{{ m K}\pi}$	0.65	0.58	1.2 ± 0.4				
$\Gamma_{K ho}/\Gamma_{K^*(892)\pi}$	1.07	1.04	1.05+0.27-0.11				

K*(1410) and K*(1680): mixture 2³S₁ and 1³D₁
 K*(1410)⁻ -> K⁻η: smaller than 3σ @ Belle

$$\begin{pmatrix} |K^*(1410)\rangle \\ |K^*(1680)\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_{sd} & \sin\theta_{sd} \\ -\sin\theta_{sd} & \cos\theta_{sd} \end{pmatrix} \begin{pmatrix} |1^3D_1\rangle \\ |2^3S_1\rangle \end{pmatrix}$$
13

Summary

• Based on 953 fb⁻¹ Belle data, Dalitz analysis of $D^0 \rightarrow K^- \pi^+ \eta$ is performed for the first time.

- $B(D^0 \rightarrow K^- \pi^+ \eta)$ is consistent with BESIII's result.
- B(D0-> $\overline{K}^*(892)^0 \eta$)=(1.41 +0.13-0.12)%, deviates theory prediction with significance of more than 3σ
- $K^*(1680)^-/K_2^*(1980)^- \rightarrow K^- \eta$ are observed.
- $\frac{B(K^*(1680) \rightarrow K^- \eta)}{B(K^*(1680) \rightarrow K^- \pi)} = 0.11 \pm 0.02(\text{stat}) + 0.06_{-0.04}(\text{sys}) \pm 0.04(\text{PDG})$, is not

consistent with theory prediction (~1) under assumption K*(1680) as pure $1^{3}D_{1}$ state.

Charm meson data

Experiment	Machine	C.M \sqrt{s}	Luminosity	charm sample	efficiency
CLEOC	CESR (e^+e^-)	3.77 GeV	$0.8~{\rm fb}^{-1}$	$2.9 imes 10^6 (D^0)$ $2.3 imes 10^6 (D^+)$	
	4.17 GeV	0.6 fb ⁻¹	$0.6 \times 10^6 (D_s^+)$	10 20%	
BEPC-II (e ⁺ e ⁻)	BEPC-II (e ⁺ e ⁻)	3.77 GeV	$2.9 \ {\rm fb}^{-1}$	$10.5 imes 10^{6} (D^{0})$ $8.4 imes 10^{6} (D^{+})$	~10-30%
		4.18 GeV	3.0 fb ⁻¹	$3 \times 10^{6} (D_{s}^{+})$	
	4.6 GeV	$0.6 \ {\rm fb}^{-1}$	$1 imes 10^5 (\Lambda_c^+)$		
Elle Elle	KEKB (e^+e^-) PEP-II (e^+e^-)	10.58 GeV 10.58 GeV	1 ab ⁻¹ 0.5 ab ⁻¹	$egin{aligned} & 1.3 imes 10^9 (D^0) \ & 7.7 imes 10^8 (D^+) \ & 2.5 imes 10^8 (D_s^+) \ & 1.5 imes 10^8 (\Lambda_c^+) \ & 6.5 imes 10^8 (D^0) \ & 3.8 imes 10^8 (D^+) \ & 1.2 imes 10^8 (D_s^+) \ & 0.7 imes 10^8 (\Lambda^+) \ \end{aligned}$	~5-10%
•	Tevatron (pp̄)	1.96 TeV	$9.6~{\rm fb}^{-1}$	1.3×10^{11}	
LHCh (pp	LHC	7 TeV	1.0 fb ⁻¹	5.0	<0.5%
	(<i>pp</i>)	8 TeV	2.0 fb ⁻¹	5.0 × 10**	
					-

$D^0-\overline{D}^0$ mixing

 D^0 and \overline{D}^0 are flavor eigenstates, propagate and decays according to

$$i\frac{\partial}{\partial t} \left(\begin{array}{c} D^0(t)\\ \bar{D}^0(t) \end{array}\right) = \left(M - \frac{i}{2}\Gamma\right) \left(\begin{array}{c} D^0(t)\\ \bar{D}^0(t) \end{array}\right)$$

 $\mathbf{D^0}$ and $\overline{\mathbf{D}^0}$ are combinations of mass eigenstates $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle$

 $|D_2\rangle = p|D^0\rangle - q|\bar{D}^0\rangle$

Two parameters describe D^0 and \overline{D}^0 mixing $x \equiv \frac{\Delta M}{\Gamma}$ $\Delta M \equiv M_1 - M_2$ $y \equiv \frac{\Delta \Gamma}{2\Gamma}$ $\Delta \Gamma \equiv \Gamma_1 - \Gamma_2$ The mass eigenstates develop in time as

$$D_{1,2}(t)\rangle = e_{1,2}(t)|D_{1,2}(0)\rangle$$

$$e_{1,2}(t) \equiv e^{\left[-i\left(M_{1,2}-\frac{i}{2}\Gamma_{1,2}\right)t\right]}$$

If either x or y are not zero, mixing occurs $|\langle \bar{D}^0 | D^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{q}{p} \right|^2 e^{-\Gamma t} \left[\cosh(y\Gamma t) - \cos(x\Gamma t) \right]$ $|\langle D^0 | \bar{D}^0(t) \rangle|^2 = \frac{1}{2} \left| \frac{p}{q} \right|^2 e^{-\Gamma t} \left[\cosh(y\Gamma t) - \cos(x\Gamma t) \right] 16$

 $D^{0} \rightarrow K^{-} \pi^{+} \eta$

