

XYZ results from Belle experiment

贾森 (jiasen@fudan.edu.cn)

第二届强子与重味物理理论与实验联合研讨会 2021年3月25-39日 兰州大学

Belle experiment and data samples

XYZ studies at Belle:

- Search for a doubly-charged DDK bound state R⁺⁺ [PRD 102, 112001 (2020)]
- $X(3872) \rightarrow \pi^+\pi^- J/\psi$ in single-tag two-photon reactions [PRL 126, 122001 (2021)]
- Search for $B^0 \rightarrow X(3872)\gamma$ [PRD 100, 012002 (2019)]

Search for $R^{++} \rightarrow D^+ D_s^{*+}$

[PRD 102, 112001 (2020)]

- The R⁺⁺ can be interpreted as a D⁺D^{*}_{s0}(2317)⁺ moleculelike state with exotic properties: doubly charged and doubly charmed in Refs. [PRD 99, 076017 (2019), PRD 100, 034029 (2019), PRD 101, 014022 (2020)].
- The alternative processes are via triangle diagrams into $R^{++} \rightarrow D^+ D_s^{*+}$ and $R^{++} \rightarrow D_s^+ D^{*+}$.
- The mass of R^{++} is predicted to be in the range of 4.13 to 4.17 GeV/c²; the width is (2.30-2.49) MeV.

• A state decaying to $D^+D_s^{*+}$ is also a good candidate for a doublycharged tetraquark according to Ref. [PRL 119, 202002 (2017)].

State	JP	$m(Q_iQ_jq_kq_l)$	Decay Channel	Q [MeV]
$\{cc\}[\overline{ud}]$	1+	3978	D+D*0 (3876)	102
$\{cc\}[\overline{q}_k\overline{s}]$	1+	4156	D+D _s *+ (3977)	179
$\{cc\}[\overline{q}_k\overline{q}_l]$	0+,1+,2+	4146,4167,4210	D+D°,D+D*0(3734,3876)	412,292,476
$[bc][\overline{ud}]$	0+	7229	B ⁻ D ⁺ /B ⁰ D ⁰ (7146)	83
$[bc][\overline{q}_k\overline{s}]$	0+	7406	B _S D (7236)	170
$[bc][\overline{q}_k\overline{q}_l]$	1+	7439	B*D/BD* (7190/7290)	249
${bc}[\overline{ud}]$	1+	7272	B*D/BD* (7190/7290)	82
$\{bc\}[\overline{q}_k\overline{s}]$	1+	7445	DB _S [*] (7282)	163
$\{bc\}[\overline{q}_k\overline{q}_l]$	0+,1+,2+	7461,7472,7493	BD/B*D (7146/7190)	317,282,349

Selections and datasets

$$R^{++} \rightarrow D^+ D_s^{*+}$$

• $D^+ \rightarrow K^- \pi^+ \pi^- \mathcal{K}_s^0 (\rightarrow \pi^+ \pi^-) \pi^-$

• $D_s^{*-} \rightarrow D_s^- \gamma$

Data samples:

• $D_s^- \to \phi \pi^- \overline{K}^{*0} K^+$

• $\Upsilon(1S, 2S) \rightarrow \mathbf{R}^{++}$ +anything • $e^+e^- \rightarrow \mathbf{R}^{++}$ +anything at $\sqrt{s} =$ 10.52, 10.58, and 10.867 GeV; ISR correction is considered assuming a 1/s dependence.

Selections have been optimized by maximizing the Punzi parameter $S/(\frac{3}{2} + \sqrt{B})$.

\sqrt{s} (GeV)	Luminosity (fb ⁻¹)	Events	
9.46 [Y(1S)]	5.74±0.09	(102±3) million	
10.023 [Y(2S)]	24.91±0.35	(158±4) million	-
10.52	89.5±1.3	-	
10.58 [Y(4S)]	711±10	-	95/
10.867 [Y(5S)]	121.4±1.7	-	

Fotal luminosity: 952 fb⁻¹

$M(D^+D_s^{*+})$ distributions

- The cyan shaded histograms are from normalized $M(D^+)$ and $M(D_s^{*+})$ sideband events.
- The fitted results with the R^{++} mass fixed at 4.14 GeV/ c^2 and width fixed at 2 MeV.
- No *R*⁺⁺ signals are observed.

90% C.L. upper limits

90% C. L. Upper limits [M(R⁺⁺) varying from 4.13 to 4.17 GeV/c², Γ(R⁺⁺) varying from 0 to 5 MeV]

 $\mathcal{B}(\Upsilon(1S) \rightarrow \mathbb{R}^{++} + \text{anything})\mathcal{B}(\mathbb{R}^{++} \rightarrow \mathbb{D}^+\mathbb{D}^{*+}_s) < (1.18 - 5.65) \times 10^{-4}$

 $\mathcal{B}(\Upsilon(2S) \rightarrow \mathbb{R}^{++} + \text{anything})\mathcal{B}(\mathbb{R}^{++} \rightarrow \mathbb{D}^+\mathbb{D}^{*+}_{S}) < (1.63 - 9.27) \times 10^{-4}$

 $\sigma(e^+e^- \rightarrow R^{++} + anything)\mathcal{B}(R^{++} \rightarrow D^+D_s^{*+}) < (202.8 - 950.6) \text{ fb at } \sqrt{s} = 10.52 \text{ GeV}$

 $\sigma(e^+e^- \rightarrow \mathrm{R^{++}} + \mathrm{anything}) \mathcal{B}(\mathrm{R^{++}} \rightarrow \mathrm{D^+D_s^{*+}}) < (218.9 - 1054.0) \text{ fb at } \sqrt{s} = 10.58 \text{ GeV}$

 $\sigma(e^+e^- \to R^{++} + anything)\mathcal{B}(R^{++} \to D^+D_s^{*+}) < (346.6 - 1841.7) \text{ fb at } \sqrt{s} = 10.867 \text{ GeV}$

X(3872) productions

 $B \to X(3872)K, \Lambda_b^0 \to X(3872)pK^-; e^+e^-$ radiative decay; pp and $p\bar{p}$ collisions

Evidence for X(3872) $\rightarrow \pi^+\pi^- J/\psi$ produced in single-tag two-photon interactions

[PRL 126, 122001 (2021)]

- One of the final-state electrons, referred to as a tagging electron, is observed, and the other scatters at an extremely forward (backward) angle and is not detected [Nucl. Phys. B 523, 423 (1998)]. Such events are called single-tag events.
- The measurement of X(3872) in two-photon reactions help to understand its internal structure.

$$X(3872): J^{PC} = 1^{++} \qquad \gamma \gamma \rightarrow X(3872) \longrightarrow \text{Not allowed}$$

But, $\gamma^* \gamma \rightarrow X(3872) \longrightarrow \text{Allowed}$
 $e^- \text{tag}$
 $e^- \text{tag}$
 $e^- \chi^* Q^2 \qquad J/\psi \qquad e^+ \text{or } \mu^+ \mu^-$
 $e^+ \qquad Data sample: 825 \text{ fb}^{-1} \text{ in } e^+ e^- \text{ collisions near 10.6 GeV}$

 $-Q^2$ is the invariant mass-squared of the virtual photon.

Background: $e^+e^- \rightarrow e^+e^-\psi(2S)$

The whole spectrum of M($J/\psi \pi^+\pi^-$)

We fit a linear function **Background Estimation:** $\max(0, a[M(J/\psi\pi^+\pi^-) - 3.872 \text{ GeV}/c^2] + b)$ [PRL 126, 122001 (2021)] Step-function model X(3872) signal region 5 (+1) events 0.22 ± 0.20 (/ 10 MeV) **ψ(2S)**

0

 $M(X(3872)) = (3.8723 \pm 0.0012) \text{ GeV/c}^2$

- With 0.11 ± 0.10 background events, the number of signal events is $N_{sig} =$ $2.9^{+2.2}_{-2.0}$ (stat.) ± 0.1 (syst.) with a significance of 3.2σ (Feldman-Cousins method applied [Phys. Rev. D 57, 3873 (1998)]).
- With 0.032 < $\mathcal{B}(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ < 0.061 at 90% C.L., $\tilde{\Gamma}_{\gamma\gamma}$ = 20 500 eV. This is consistent with values predicted for $c\overline{c}$ model [NPB 523, 423 (1998), PRD 83, 114015 (2011)].

Search for $B^0 \rightarrow X(3872)\gamma$

[PRD 100, 012002 (2019)]

- In the SM, the decay $B^0 \rightarrow c\bar{c}\gamma$ proceeds dominantly through an exchange of a W boson and the radiation of a photon from the *d* quark of the B meson.
- Currently, the upper limit for $B^0 \rightarrow J/\psi\gamma$ is 1.5×10^{-6} at 90% confidence level.
- Considering X(3872) may be not a pure $c\overline{c}$ state the branching fraction of $B^0 \rightarrow J/\psi\gamma$ is larger?

To suppress generic BB spherical events and the jetlike $q\overline{q}$ continuum events, we do

(1) multivariate analysis based on the neural network package named NEUROBAYES [Nucl. Instrum. Methods Phys. Res., Sect. A 559, 190 (2006)] to distinguish the signal and background with 33 input variables; (2) optimize a figure of merit (FOM). $FOM = \frac{efficiency}{0.5n + \sqrt{N_{bkg}}}$ Total luminosity: 711 fb⁻¹; 772×10⁶ BB pairs

X(3872) decays to $J/\psi\pi^+\pi^-$ entirely via $J/\psi\rho$.

(D) Dielectron channe	nel.	chan	lectron	(b) Diel
--------------------------------	------	------	---------	----------

[PRD 100, 012002 (2019)]

$$\Delta E = E_{recon}^* - E_{beam}^*$$
$$M_{bc} = \sqrt{E_{beam}^2 - (\sum_i p_i)^2}$$

We count the numbers of signal and backgrounds in regions of M_{bc} > 5.27 GeV/c² and -0.15 < ΔE < 0.1 GeV.

The upper limit on $\mathcal{B}(B^0 \rightarrow X(3872)\gamma) \times \mathcal{B}(X(3872) \rightarrow J/\psi\pi^+\pi^-)$ is obtained with the Feldman-Cousins counting method [PRD 57, 3873 (1998)].

Channel	Dimuon	Dielectron	Total
N _{sig}	9	9	18
N _{bkg}	9.3	12.1	21.4
90% U.L.	9.2×10^{-7}	6.8×10^{-7}	5.1×10^{-7}

-15-

Measurements of branching fractions and asymmetry parameters of $\Xi_c^0 \rightarrow \Lambda \overline{K}^{*0}, \Xi_c^0 \rightarrow \Sigma^0 \overline{K}^{*0}, \text{and } \Xi_c^0 \rightarrow \Sigma^+ K^{*-}$

Motivation (I)

■ Several resent experimental efforts from Belle and LHCb to study the properties of Ξ_c^0 .

• LHCb obtained the antitriplet charmed baryon lifetimes, where the decay lifetime of Ξ_c^0 is 3σ above the averaged value in PDG 2018.

 $\begin{aligned} & (\tau_{\Lambda_c^+}, \tau_{\Xi_c^+}, \tau_{\Xi_c^0}) \\ &= (203.5 \pm 2.2, 456.8 \pm 5.5, 154.5 \pm 2.5) \text{ fs.} \end{aligned}$

PRD 100, 032001 (2019)

• Belle obtained the absolute branching ratios in Ξ_c from the decay chains of B mesons, which can help to determine branching ratios of other relative channels.

$$\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) = (1.80 \pm 0.52)\%,$$
$$\mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) = (2.86 \pm 1.27)\%,$$

PRL 122, 082001 (2019)

• Belle measured resonant and non-resonant branching ratios in $\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$.

$$\frac{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{0} \phi(\to K^{+} K^{-}))}{\mathcal{B}(\Xi_{c}^{0} \to \Xi^{-} \pi^{+})} = 0.036 \pm 0.004 \text{ (stat.)} \pm 0.002 \text{ (syst.)} = 0.039 \pm 0.004 \text{ (stat.)} \pm 0.002 \text{ (syst.)} = 0.039 \pm 0.004 \text{ (stat.)} \pm 0.002 \text{ (syst.)} = 0.039 \pm 0.004 \text{ (stat.)} \pm 0.002 \text{ (syst.)}$$

- The first branching fraction of the decay of the Ξ_c^0 to a charmed baryon has been measured by LHCb to be Br($\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$) = (1.135±0.002±0.387)%. PRD 102, 071101 (R) (2020)
- Measurements of $Br(\Xi_c^0 \rightarrow \Xi^- l^+ \upsilon_l)$ and asymmetry parameter of $\Xi_c^0 \rightarrow \Xi^- \pi^+$ from Belle. See Y. B. Li's slides in details.

Motivation (II)

- □ There are some difficulties for the theoretical study in the non-leptonic decays of charmed baryons due to the failure of the factorization approach.
- Branching fraction measurements help to distinguish different theoretical models.
- □ The asymmetry parameters of Ξ_c^0 are still not well measured, which is important to test parity violation in charmed-baryon sectors.

Decay branching fractions (%) and asymmetry parameters of the Cabibbo favored $B_c \rightarrow B_n + V$ decays in QCD and SU(3)_F approach.

Branching fractions	KK [1]	Zen [2]	HYZ [3]	GLT [4]
$\Xi_c^0\to\Lambda^0\overline{K}^{*0}$	1.55	1.15	0.46±0.21	1.37±0.26
$\Xi_c^0\to \Sigma^0\overline{K}{}^{*0}$	0.85	0.77	0.27±0.22	0.42±0.23
$\Xi_c^0\to \Sigma^+ K^{*-}$	0.54	0.37	0.93±0.29	0.24±0.17

Asymmetry parameters	KK [1]	Zen [2]	GLT [4]
$\Xi_c^0\to\Lambda^0\overline{K}{}^{*0}$	0.58	+0.49	-0.67±0.24
$\Xi_c^0\to \Sigma^0\overline{K}{}^{*0}$	-0.87	+0.25	-0.42±0.62
$\Xi_c^0\to \Sigma^+ K^{*-}$	-0.60	+0.51	$-0.76^{+0.64}_{-0.24}$

[1] Z. Phys. C 55, 659 (1992) [2] Phys. Rev. D 50, 5787 (1994) [3] Phys. Lett. B 792, 35 (2019)
[4] Phys. Rev. D 101, 053002 (2020)

Selections and Datasets

Selections:

- Using a multivariate analysis with a neural network based on sets of input variables, the K_s^0 and Λ candidates are reconstructed from $\pi^+\pi^-$ and $p\pi^-$.
- The flight directions of Σ⁺ candidates, which are reconstructed from their fitted production and decay vertices, are required to be consistent with their momentum directions.
- x_p > 0.5; x_p ∝ [0,1] is scaled momentum of Ξ⁰_c, which can remove all backgrounds from B decays.

Data samples: 980 fb⁻¹ e⁺e⁻ collisions data samples Inclusive MC samples: B = B⁺, B⁰, or B^(*)_s decays and e⁺e⁻ \rightarrow q \overline{q} (q = u, d, s, c) at \sqrt{s} = 10.52, 10.58, and 10.867 GeV

Peaking backgrounds from K*

No peaking background is found from non-resonance contributions of Λ candidates.

signal regions, especially in the higher sides of M(K⁻ π^+) and M(K⁰ $_{s}\pi^-$).

A two-dimentional (2D) fit to extract signal yields

 $f(M_1, M_2) = N^{\text{sig}} s_1(M_1) s_2(M_2) + N^{\text{bg}}_{\text{sb}} s_1(M_1) b_2(M_2) + N^{\text{bg}}_{\text{bs}} b_1(M_1) s_2(M_2) + N^{\text{bg}}_{\text{bb}} b_1(M_1) b_2(M_2)$

We use inclusive MC samples to do input/output check:

$$\Xi_{\rm c}^0 \to \Lambda \overline{\rm K}^{*0} (\to {\rm K}^- \pi^+)$$

Branching fractions

Asymmetry parameter extractions

For $\Xi_c^0 \to \Lambda^0 \overline{K}^{*0}$, $\Xi_c^0 \to \Sigma^0 \overline{K}^{*0}$, and $\Xi_c^0 \to \Sigma^+ K^{*-}$, the differential decay rates [PRD 101, 053002 (2020)] are given by:

Definitions of θ_{Λ} , θ_{Σ^0} , and θ_{Σ^+} :

- This measurement is insensitive to production polarization of Ξ⁰_c in B-factory [PRD 63, 111102 (2001)].
- The asymmetry parameter $\alpha(\Sigma^0 \to \Lambda \gamma)$ is expected to be zero due to the case of parity conservation for an electromagnetic decay of $\Sigma^0 \to \Lambda \gamma$. -23-

Asymmetry parameters

Preliminary results

-24-

Note that $\alpha(\Lambda \rightarrow p\pi^{-}) = 0.747 \pm 0.010$ and $\alpha(\Sigma^{+} \rightarrow p\pi^{0}) = -0.980 \pm 0.017$ from PDG.

$\alpha(\Xi_c^0 \to \Lambda \bar{K}^{*0}) \alpha(\Lambda \to p\pi^-)$	$0.115 \pm 0.164 ({ m stat.}) \pm 0.038 ({ m syst.})$
$\alpha(\Xi_c^0 \to \Sigma^0 \bar{K}^{*0}) \alpha(\Sigma^0 \to \gamma \Lambda)$	$0.008 \pm 0.072 ({ m stat.}) \pm 0.008 ({ m syst.})$
$\alpha(\Xi_c^0 \to \Sigma^+ K^{*-}) \alpha(\Sigma^+ \to p \pi^0)$	$0.514 \pm 0.295 ({ m stat.}) \pm 0.012 ({ m syst.})$
$\alpha(\Xi_c^0\to\Lambda\bar{K}^{*0})$	$0.15 \pm 0.22 ({ m stat.}) \pm 0.05 ({ m syst.})$
$\alpha(\Xi_c^0\to\Sigma^+K^{*-})$	$-0.52 \pm 0.30 ({ m stat.}) \pm 0.02 ({ m syst.})$

Summary

- Although Belle has stopped data taking for ~10 years ago, we are still producing exciting results.
- We reported the first search for a doubly-charged DDK bound state R⁺⁺, the evidence of X(3872) in single-tag two-photon reactions, and the first search for X(3872) in B radiative decays.
- Branching fractions and asymmetry parameters of $\Xi_c^0 \to \Lambda \overline{K}^{*0}$, $\Xi_c^0 \to \Sigma^0 \overline{K}^{*0}$, and $\Xi_c^0 \to \Sigma^+ K^{*-}$ have been measured for the first time.
- We always expect the results from much larger Belle II data samples. Belle II will reach 50 ab⁻¹ by 2027, which will provide greater sensitivity and precise measurements in hadron physics.

Thanks for your attentions!

The dots with error bars show the invariant mass distributions for \overline{K}^{*0} candidates within Ξ_c^0 signal region. distributions for \overline{K}^{*0} candidates within Ξ_c^0 signal region. The cyan histogram is from Ξ_c^0 mass sidebands.

The dots with error bars show the invariant mass The cyan histogram is from Ξ_c^0 mass sidebands.

