Discrepancy of $\phi(1680)$ properties and observation of the X(1750)

张敬庆 南京师范大学

2021.03.26-2021.03.28 第二届强子与重味物理理论与实验联合研讨会 兰州大学

The predicated ss spectroscopy

- Strangeonia $(s\bar{s})$ has been studies in theory in the paper PRD68,054014
- While there are only limited number of states which are well established in experiments, for example, the $\phi(1680)$

Fig. 1. The strangeonium family.

$\phi(1680)$: candidate of 2^3S_1 state

- $\phi(1680)$ is a natural candidate for the $s\bar{s}$ radial excitation of the $\phi(1020)$
- A $s\bar{s}$ state prefers to decay into strange mesons (OZI rule)
- $\phi(1680)$ is observed in *KK*, *KK*^{*} and *KK* $\pi\pi$ modes
- And no observation of $\phi(1680)$ in $\omega\pi\pi$ mode

Mode			Fraction (I	Γ_i / S	Scale Factor/	P(Me)//c)
Mouc			1/			
Γ_1	$K\overline{K}^*(892)$ + c.c.		se	een		462
Γ_2	$K^0_S K \pi$		se	een		621
Γ_3	$K\overline{K}$		se	een		680
Γ_4	$K^0_L \ K^0_S$					677
Γ_5	e^+e^-	PDGLIVE (PDG2020)	se	een		840
Γ_6	$\omega\pi\pi$		no	ot seen		623
Γ_7	$\phi\pi\pi$					482
Γ_8	$K^{\!+}K^{\!-}\pi^+\pi^-$		se	een		544
Γ_9	$\eta\phi$		se	een		290
Γ_{10}	$K^{\!+}K^{\!-}\eta$					329
Γ_{11}	$\eta\gamma$		se	en		751
Γ_{12}	$K^{\!+}K^{\!-}\pi^0$					623

3

Decay Modes

- Even for the well established $\phi(1680)$, there are remained questions
- $\phi(1680)$ is expected in both e^+e^- production and photoproduction
- The mass and width observed in e^+e^- production and photoproduction are not consistent

• $\phi(1680)$ is well established in both e^+e^- production

 $oldsymbol{\phi}(1680)$ MASS [

PDGLive Ø

 $\phi(1680)$ WIDTH PDGLive

 e^+e^- PRODUCTION

e^+e^- **PRODUCTION**

5

VALUE (MeV)	EVTS	DOCUMENT	VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1680 ± 20	OUR ESTIMATE			OUR ESTIMATE Thi	is is only an educated o	uess: the e	error given is large	er than the error on the average of the
•••We do not u	ise the following data fo	or averages, fits, lim	150 ± 50	published values.	io io only an equotica g		and given is large	a and the error on the average of the
$1641 \ ^{+24}_{-18}$		ACHASOV	•••We do not u	use the following data f	for averages, fits, limits,	. etc. • • •		
$1667 \pm 5 \pm 11$	3k	1 IVANOV	$103 \stackrel{+26}{_{-24}}$	J. J	ACHASOV	2019	SND	$e^+~e^- ightarrow \pi^+\pi^-\pi^0\eta$
1700 ± 23	2k	2 ACHASOV	$176 \pm 23 \pm 38$	3k	1 IVANOV	2019A	CMD3	$1.59-2.007~e^+~e^- ightarrow K^+K^-n$
$1674 \; {\pm}12 \; {\pm}6$	6.2k	3 LEES	200 - 50	24	2 1041501/	20184	SND	$12 20 + - x^0 x^0 0$
$1733 \pm 10 \pm 10$		4 LEES	300 ± 30	21	2 ACHAGOV	2010A	SND	$1.3 - 2.0 \ e^+ \ e^- ightarrow K_S \ K_L^+ \pi^*$
$1689 \pm 7 \pm 10$	4 8k	5 SHEN	$165 \pm 38 \pm 70$	6.2k	3 LEES	2014H	BABR	$e^+ \; e^- ightarrow K^0_S K^0_L \gamma$
$1709 \pm 20 \pm 43$	non	6 AUBERT	$300 \pm 15 \pm 37$		4 LEES	2012F	BABR	10.6 $e^+~e^- ightarrow\phi\pi^+\pi^-\gamma$
$1602 \pm 20 \pm 10$	049		$211 \pm 14 \pm 19$	4.8k	5 SHEN	2009	BELL	10.6 $e^+ \; e^- ightarrow K^+ K^- \pi^+ \pi^- \gamma$
1023 ± 20	940		$322 \pm 77 \pm 160$		6 ALIBERT	20085	BABB	10.6 $e^+ e^-$ badrops
$\sim~$ 1500		8 ACHASOV	$522 \pm 11 \pm 100$		• AUDERT	20000	DADIX	
\sim 1900		9 ACHASOV	$139~{\pm}60$	948	7 AKHMETSHIN	2003	CMD2	$1.05-1.38e^+e^- o K^0_LK^0_S$
1700 ± 20		10 CLEGG	300 ± 60		8 CLEGG	1994	RVUE	$e^+ \; e^- ightarrow K^+ K^-$, $K^0_S \; K \pi$
$1657 \ {\pm}27$	367	BISELLO	$146~{\pm}55$	367	BISELLO	1991C	DM2	$e^+ \; e^- ightarrow K^0_S K^\pm \pi^\mp$
$1655\ {\pm}17$		11 BISELLO	$207~{\pm}45$		9 BISELLO	1988B	DM2	$e^+ \; e^- ightarrow K^+ K^-$
$1680 \ {\pm}10$		12 BUON	185 ± 22		10 BUON	1982	DM1	$e^+ \; e^- ightarrow$ hadrons
$1677 \ \pm 12$		13 MANE	102 ± 36		11 MANE	1982	DM1	$e^+ \; e^- ightarrow K^0_S K \pi$

• $\phi(1680)$ is observed in consistent photoproduction measurements

$oldsymbol{\phi}(1680)$ MASS PDGLive	$oldsymbol{\phi}(1680)$ WIDTH	PDGLive	
---	-------------------------------	---------	--

PHOTOPRODUCTION

(INSPIRE search

VALUE (MeV)	DOCUMEN1	VALUE (MeV)	DOCUMENT ID		TECN	COMMENT		
•••We do not use the following data for averages. •••We do not use the following data for averages, fits, limits, etc. •••								
$1753~{\pm}3$	1 LINK	$122\pm\!63$	1 LINK	2002K	FOCS	$20-160 ~\gamma ~p ightarrow K^{\!+} K^{\!-} p$		
1726 ± 22	1 BUSENITZ	121 ± 47	1 BUSENITZ	1989	TPS	$\gamma \; p o K^{\!+} K^{\!-} \; {\sf X}$		
$1760\ {\pm}20$	1 ATKINSON	80 ± 40	1 ATKINSON	1985C	OMEG	20–70 $\gamma \; p o K \overline{K}$ X		
1690 ± 10	1 ASTON	100 ± 40	1 ASTON	1981F	OMEG	25–70 $\gamma \; p ightarrow K^{\!+} K^{\!-}$ X		

• But the measured mass and width of the $\phi(1680)$ are **different** in e^+e^- production and photoproduction

$\phi(1680$) MASS PDGLive	$oldsymbol{\phi}(1680)$ MASS PDGLive	$\phi(1680$) WIDTH PDGLive	$oldsymbol{\phi}(1680)$ WIDT PDGLive	H			
e^+e^- PRC	DUCTION	PHOTOPRODUCTION	<i>e</i> + <i>e</i> - PRC	DUCTION	PHOTOPRODUC	ΓΙΟΝ			
VALUE (MeV)	EVTS		VALUE (MeV)	EVTS	VALUE (MeV)	D	CUMENT ID		TECN
1680 ± 20	OUR ESTIMATE	••• We do not use the following dat	$f 150\pm 50$	OUR ESTIMATE The published values	••• We do not use the following	u data for	averages fits lir	nits etc •	••
•••We do not u	ise the following da	1753 ± 3 1	••• We do not u	use the following data	1 $122\pm\!63$	1 LI	K	2002K	FOCS
1041 - 18 1667 +5 +11	3k	1726 ± 22 1	$103\ _{-24}^{+26}$		121 ± 47	1 Bl	JSENITZ	1989	TPS
1700 ± 23	2k	1760 ± 20 1	$176 \pm 23 \pm 38$	3k	$80~{\pm}40$	1 AT	KINSON	1985C	OMEG
$1674 \pm 12 \pm 6$	6.2k	1690 ± 10 1	300 ± 50	2k	100 ± 40	1 AS	STON	1981F	OMEG
~1680 Me	V	~1750 MeV	165 ±38 ±70 ~150 M €	6.2k eV	~120 MeV			7	

- An interpretation of the discrepancy is the interference between $\phi(1680)$ and nearby states
 - But interference can occur in both e^+e^- production and photoproduction
 - If interference is negligible, the measured parameters should consistent with those measured including interference
- Another solution is that the observations in e⁺e⁻ production and photoproduction are different states
 - The one in e^+e^- production is the $\phi(1680)$
 - The one in photoproduction is the X(1750)

The X(1750) from FOCUS

- Observations in different photoproduction experiments are consistent
- Low statistics for the early stage results
- FOCUS presented the latest result in 2002 using $\gamma p \rightarrow K^+ K^- p$ (PLB545,50)

> $M = 1753.5 \text{ MeV/c}^2$, $\Gamma = 122.2 \text{ MeV}$ significantly differs to $\phi(1680)$

- Fit including interference doesn't change mass very much.
- No X → K^{*}K (dominant mode of $\phi(1680)$)
 The X(1750) may be a new state

Simultaneous observation of $\phi(1680)$ and X(1750)

- BESIII performed a partial wave analysis of $\psi(3686) \rightarrow K^+K^-\eta$ (PRD101,032008) [my work 3]
- Both $\phi(1680)$ and X(1750) are observed in K^+K^- simultaneously

The new question: the nature of X(1750)

- Observations in e⁺e⁻ production and in photoproduction are different states: solved the discrepancy problem naturally
- Then another question arises:
- $\phi(1680)$ is a candidate of 2^3S_1 (PRD68,054014)
- What about the X(1750)?
 - Only observed in K^+K^- final states up to date \rightarrow likely a $s\bar{s}$ state (search of non- $s\bar{s}$ decays can make further confirmation)
 - Spin-parity is 1⁻⁻ (PRD101,032008)
 - K^+K^- dominance disagreement with the 2^3S_1 predication, and no predicated state with similar mass/width and spin-parity (PRD68,054014)
 - Need theorists to help interpret the X(1750)

Summary

- The X(1750) is confirmed in experiments, and it is NOT the $\phi(1680)$
- The nature of the X(1750) is not clear
- Not fit into the theoretical predication of the $s\bar{s}$ spectroscopy
- To understand the nature of the X(1750) in experiment side
 - One can study the $K^+K^-\eta/\eta'$ system in J/ψ and $\psi(3686)$ decays
 - Study $\phi \eta / KK^*$ final states and search X(1750) in non- $s\bar{s}$ final states
 - BESIII has ~10 Billion J/ψ events and will have ~3 Billion $\psi(3686)$ events, which provide good opportunities to study these processes and the X(1750)
- Need theorists' efforts to interpret and understand the X(1750)

Thanks!