# Production and decay of Zb states

Southeast University

吴琦(Qi Wu)

Based on Phys. Rev. D 99, 034022, Phys. Rev. D 102, 114037. Collaborate with D.Y. Chen, F.K. Guo, and Takayuki Matsuki.

> 第二届强子与重味物理理论与实验联合研讨会 March 25-28, 2021

## Content

## Background of New hadron states

- Hadron loop effects on the production and decay process
- $\begin{array}{l} \succ \ \Upsilon(5S,6S) \rightarrow \ Z_b^{(\prime)} \ \pi \\ \end{array} \\ \begin{array}{l} \succ \ Z_b^{(\prime)} \rightarrow \Upsilon(1D) \ \pi \\ \end{array} \\ \begin{array}{l} \succ \ \text{The role of } \ Z_b^{(\prime)} \ \text{in } \Upsilon(5S) \rightarrow \Upsilon(1D) \ \pi^+ \ \pi^- \end{array}$





The concept of the multiquarks was proposed at the birth of Quark Model, even before the advent of QCD





Volume 8, number 3

PHYSICS LETTERS

1 February 1964

#### A SCHEMATIC MODEL OF BARYONS AND MESONS \*

M. GELL-MANN California Institute of Technology, Pasadena, California

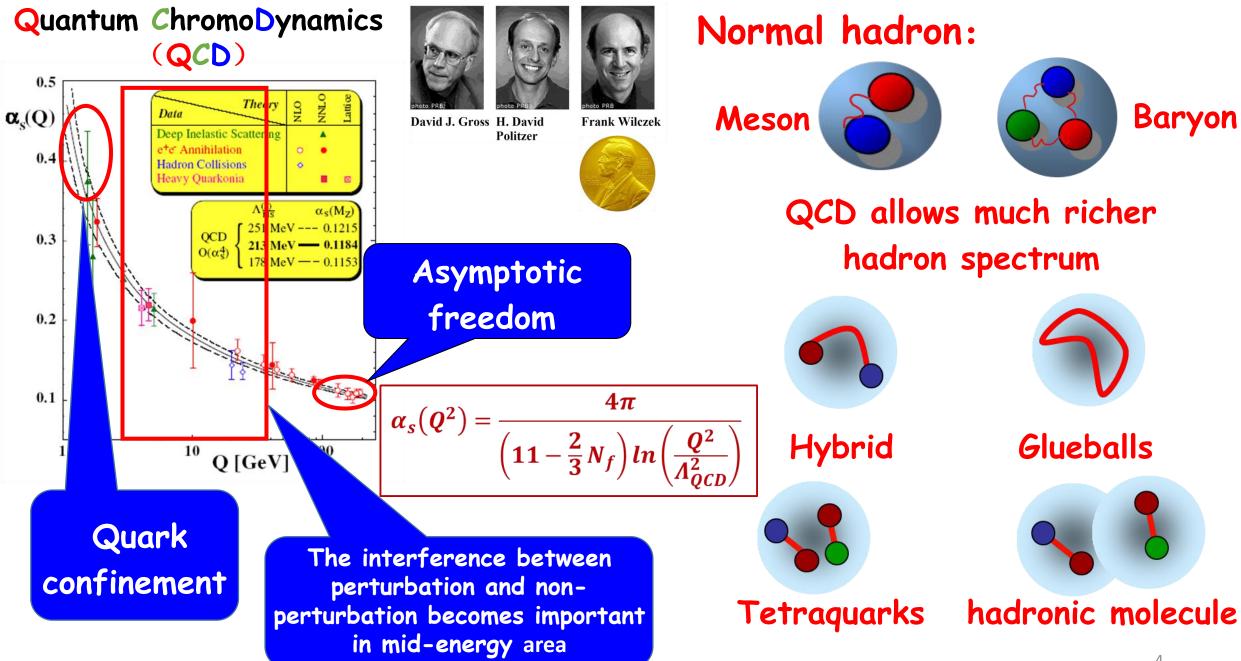
Received 4 January 1964

..

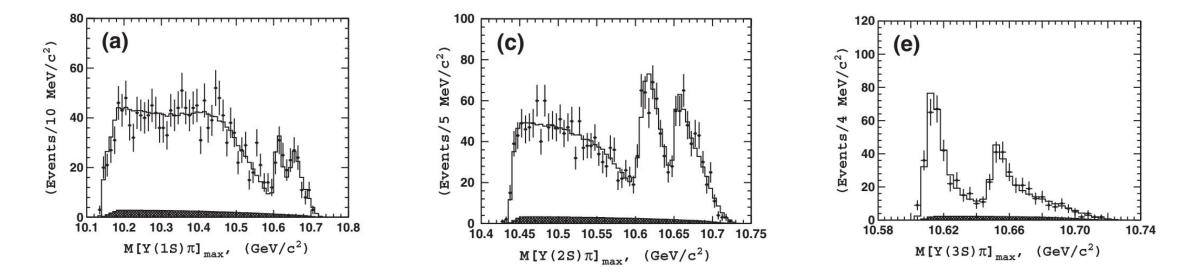
A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin  $\frac{1}{2}$ ,  $z = -\frac{1}{3}$ , and baryon number  $\frac{1}{3}$ . We then refer to the members  $u^3$ ,  $d^{-\frac{1}{3}}$ , and  $s^{-\frac{1}{3}}$  of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks  $\bar{q}$ . Baryons can now be constructed from quarks by using the combinations (qqq), (qqqq $\bar{q}$ ) etc., while mesons are made out of (q $\bar{q}$ ), (qq $\bar{q}\bar{q}$ ), etc. It is assuming that the lowest baryon configuration (qqq) gives just the representations 1, 8, and 10 that have been observed, while 8419/TH.412 21 February 1964

AN SU, MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

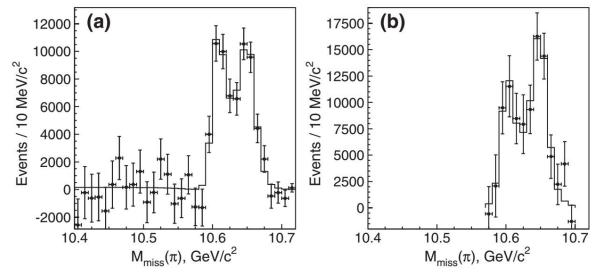
II \*)


G. Zweig

CERN----Geneva


Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.

...


6) In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".



# $Z_b(10610)$ and $Z_b(10650)$ : Experimental information

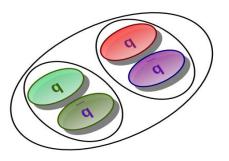


 $\Upsilon(5S) \rightarrow \Upsilon(nS) \pi^+ \pi^-(n = 1, 2, 3)$ 



 $\Upsilon(5S) \rightarrow h_b(mP)\pi^+\pi^-(m=1,2)$ 

### PhysRevLett 108, 122001(2012)@Belle


# Structure of $Z_b$ and $Z'_b$

#### Tetraquark



arXiv:1106.2284 (chromomagnetic interaction) PRD 85, 074014 (2012) (QCD sum rules) PRD 85,054011 (2012) (effective diquark-antidiquark Hamiltonian) Nucl. Phys. A 930, 63 (2014) (QCD sum rules) EPJC 76, 356 (2016) (diquark-antidiquark framework)

Hadronic Molecule



#### **Effective Lagrangian**

J.Phys.G 40, 015002 (2013) PRD 89, 074029 (2014) PRD 87, 034020 (2013) PRD 96, 014035 (2017)

#### QCD sum rules

EPJC **74**, 2891 (2014) EPJC **74**, 2963 (2014)

Chiral quark model J.Phys.G 40, 015003 (2013) J.Phys.G 39, 105001 (2012)

### Non-resonance explanation

## ISPE mechanism

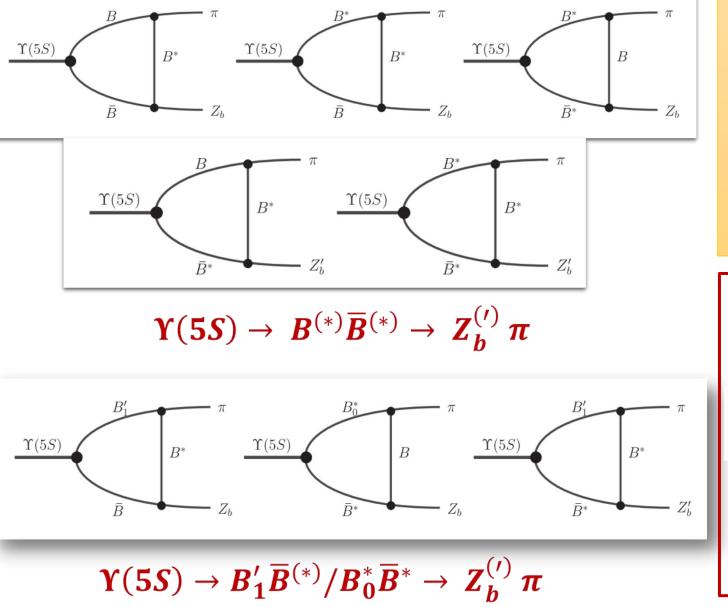
PRD 84, 094003 (2011) Chin. Phys. C38, 053102(2014)

### Cusp effects

Europhys. Lett. 96, 11002(2011)

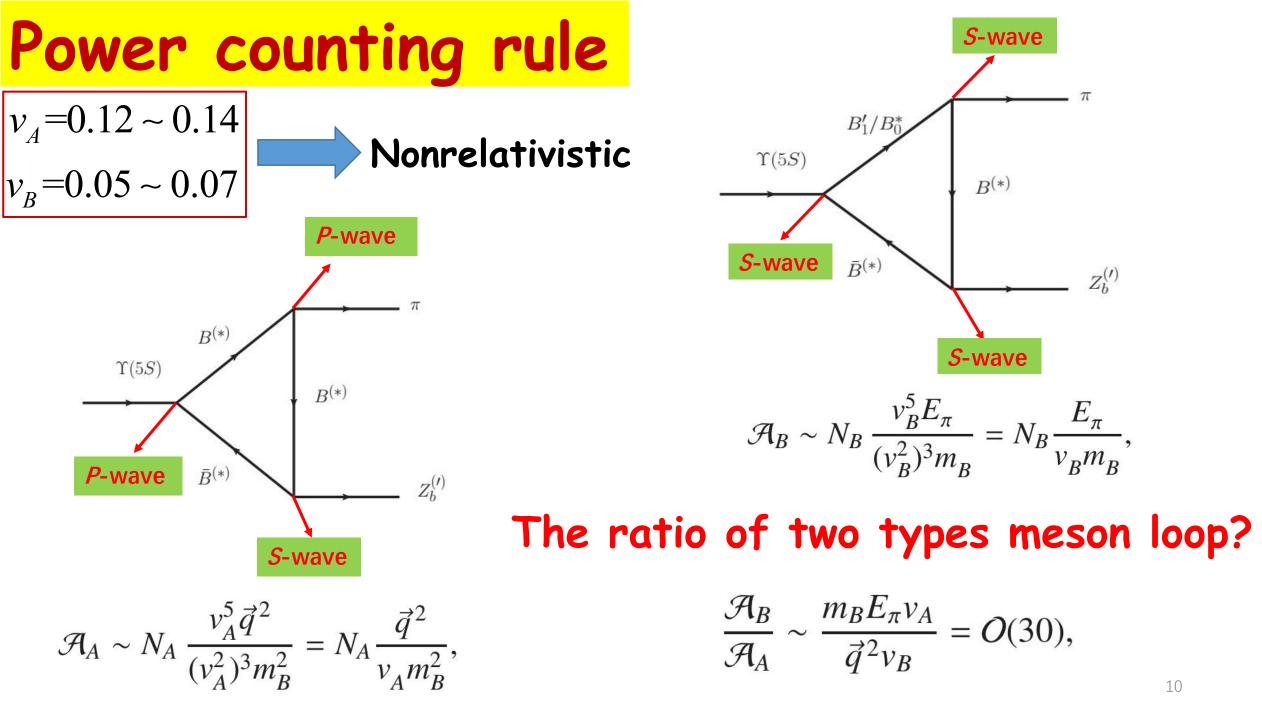
# Process $\Upsilon(5S, 6S) \rightarrow Z_b^{(\prime)} \pi$ Wu, Chen, Guo, Phys. Rev. D 99, 034022 (2019)

# Branching ratio of $\Upsilon(5S) \rightarrow Z_b^{(\prime)} \pi$ from Exp.


TABLE I: The experimental measurements of the related branching ratios, where  $\mathcal{B}_{\Upsilon(5S)} = \mathcal{B}(\Upsilon(5S) \to (b\bar{b})\pi^+\pi^-)$ ,  $\mathcal{B}_{Z_b^{(\prime)}} = \mathcal{B}(Z_b^{(\prime)} \to (b\bar{b})\pi)$  and  $f_{Z_b^{(\prime)}}$  is the fractions of individual quasi-two-body channels contributions to  $\Upsilon(5S) \to Z_b^{(\prime)^{\pm}}\pi^{\mp} \to (b\bar{b})\pi^+\pi^-$ , where  $(b\bar{b})$  could be  $\Upsilon(nS)$ , (n = 1, 2, 3) and  $h_b(mP)$ , (m = 1, 2). The branching ratios  $\Upsilon(5S) \to Z_b^+\pi^-$  and  $\Upsilon(5S) \to Z_b^{\prime+}\pi^-$  are estimated by the measured data.

|                | $\mathcal{B}_{\Upsilon(5S)}(10^{-3})$ | $f_{Z_b}$ (%)                    | $f_{Z_b'}$ (%)                   | $\mathcal{B}_{Z_b}$ (%)          | $\mathcal{B}_{Z_{b}^{\prime}}\left(\% ight)$ | $ \begin{array}{c} \mathcal{B}(\Upsilon(5S) \rightarrow \\ Z_b^+ \pi^-)  (\%) \end{array} $ | $ \begin{array}{l} \mathcal{B}(\Upsilon(5S) \rightarrow \\ Z_b^{\prime +} \pi^-)  (\%) \end{array} $ |
|----------------|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| $\Upsilon(1S)$ | $5.3 \pm 0.6$                         | $2.54^{+0.86+0.13}_{-0.51-0.55}$ | $1.04^{+0.65+0.07}_{-0.31-0.12}$ | $0.54^{+0.16+0.11}_{-0.13-0.08}$ | $0.17\substack{+0.07+0.03\\-0.06-0.02}$      | $1.25^{+0.63}_{-0.52}$                                                                      | $1.62^{+1.26}_{-0.82}$                                                                               |
| $\Upsilon(2S)$ | $7.8 \pm 1.3$                         | $19.6^{+3.5+1.9}_{-3.1-0.6}$     | $5.77^{+1.44+0.27}_{-0.96-1.56}$ | $3.62^{+0.76+0.79}_{-0.59-0.53}$ | $1.39^{+0.48+0.34}_{-0.38-0.23}$             | $2.11_{-0.67}^{+0.84}$                                                                      | $1.62^{+0.84}_{-0.67}$                                                                               |
| $\Upsilon(3S)$ | $4.8^{+1.0}_{-1.7}$                   | $26.8^{+6.6}_{-3.9}\pm1.5$       | $11.0^{+4.2}_{-2.3}\pm0.7$       | $2.15^{+0.55+0.60}_{-0.42-0.43}$ | $1.63^{+0.53+0.39}_{-0.42-0.28}$             | $2.99^{+1.80}_{-1.42}$                                                                      | $1.62^{+1.13}_{-0.84}$                                                                               |
| $h_b(1P$       | ) $3.5^{+1.0}_{-1.3}$                 | $42.3^{+9.5+6.7}_{-12.7-0.8}$    | $60.2^{+10.3+4.1}_{-12.7-3.8}$   | $3.45^{+0.87+0.86}_{-0.71-0.63}$ | $8.41^{+2.43+1.49}_{-2.12-1.06}$             | $2.15^{+1.14}_{-1.18}$                                                                      | $1.25\substack{+0.60\\-0.73}$                                                                        |
| $h_b(2P$       | ) $5.7^{+1.7}_{-2.1}$                 | $35.2^{+15.6+0.1}_{-0.4-13.4}$   | $64.8^{+15.2+6.7}_{-11.4-15.5}$  | $4.67^{+1.24+1.18}_{-1.00-0.89}$ | $14.7^{+3.2+2.8}_{-2.8-2.3}$                 | $2.15^{+1.39}_{-1.41}$                                                                      | $1.26^{+0.61}_{-0.60}$                                                                               |

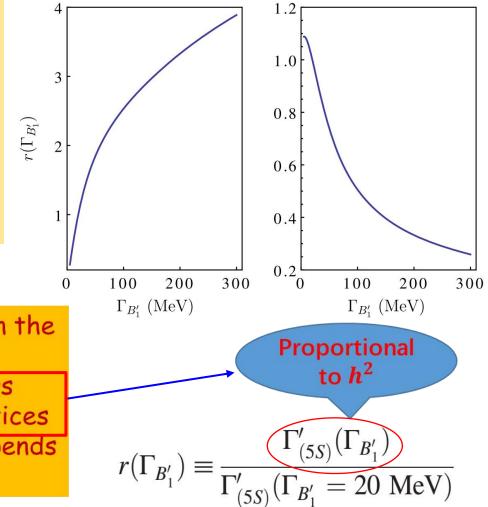
- The branching ratios from different channels are consistent with each other
- The branching ratios are of order of 10<sup>-2</sup>


$$B_r(\Upsilon(5S) \to Z_b^{(\prime)}\pi) = \frac{f_{Z_b^{(\prime)}}B_{r\Upsilon(5S)}}{B_{rZ_b^{(\prime)}}}$$

# Two types of Meson loop contribution



- meson loop contributions are evaluated in hadron level
- interactions are described by effective Lagrangians
- effective Lagrangians are constructed based on heavy quark symmetry & chiral symmetry


$$\mathcal{L} = i \frac{g_1}{2} \operatorname{Tr}[\Upsilon^{\dagger} H_a \vec{\sigma} \cdot \overleftrightarrow{\partial} \bar{H}_a] + \text{H.c.}$$
$$\mathcal{L} = g_2 \operatorname{Tr}[\Upsilon^{\dagger} S_a \bar{H}_a + \Upsilon^{\dagger} H_a \bar{S}_a] + \text{H.c}$$
$$\mathcal{L} = z' \varepsilon^{ijk} \bar{V}^{\dagger i} Z'^{j} V^{\dagger k} + z [\bar{V}^{\dagger i} Z^{i} P^{\dagger} - \bar{P}^{\dagger} Z^{i} V^{\dagger i}] + \text{H.c.}$$
$$\mathcal{L} = -\frac{g}{2} \operatorname{Tr}[H_a^{\dagger} H_b \vec{\sigma} \cdot \vec{u}_{ba}]$$
$$\mathcal{L} = i \frac{h}{2} \operatorname{Tr}[H_a^{\dagger} S_b u_{ba}^0] + \text{H.c.}$$



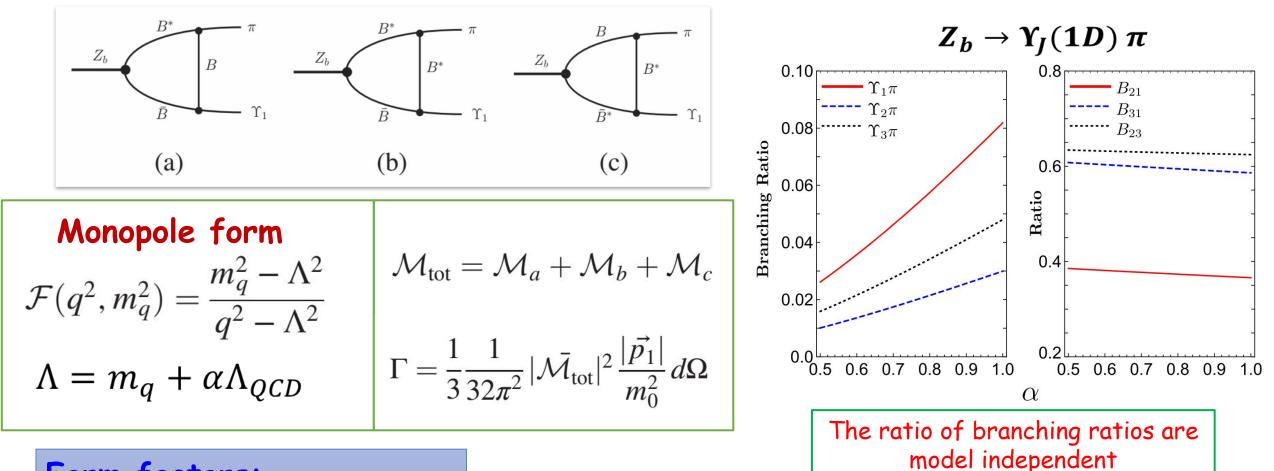
|                              | $\mathcal{B}(\Upsilon(5S) \to Z_b^+ \pi^-)$ | $\mathcal{B}(\Upsilon(5S) \to Z_b^{\prime +} \pi^-)$ | $\mathcal{B}(\Upsilon(6S) \to Z_b^+ \pi^-)$ | $\mathcal{B}(\Upsilon(6S) \to Z_b^{\prime +} \pi^-)$ | $g_2$ |
|------------------------------|---------------------------------------------|------------------------------------------------------|---------------------------------------------|------------------------------------------------------|-------|
| $B^{(*)}\bar{B}^{(*)}$ Loops | $6.1 \times 10^{-4}$                        | $2.8 \times 10^{-4}$                                 | $4.1 \times 10^{-4}$                        | $1.9 \times 10^{-4}$                                 | D     |
| $B'_1 \bar{B}^{(*)}$ Loops   | $9.5g_2^2$                                  | $3.2g_2^2$                                           | $17.3g_2^{\prime 2}$                        | 8.3g <sub>2</sub> <sup>/2</sup>                      | av    |

 $g_2$  and  $g'_2$  cannot be determined using the available data at present

- The contributions from  $B^{(*)}\overline{B}^{(*)}$  loops are two orders of magnitude smaller than the experimental data and can be neglected.
- The  $B'_1 \overline{B}^{(*)} / B^*_0 \overline{B}^*$  meson loops show the possibility to be the dominant production mechanism.



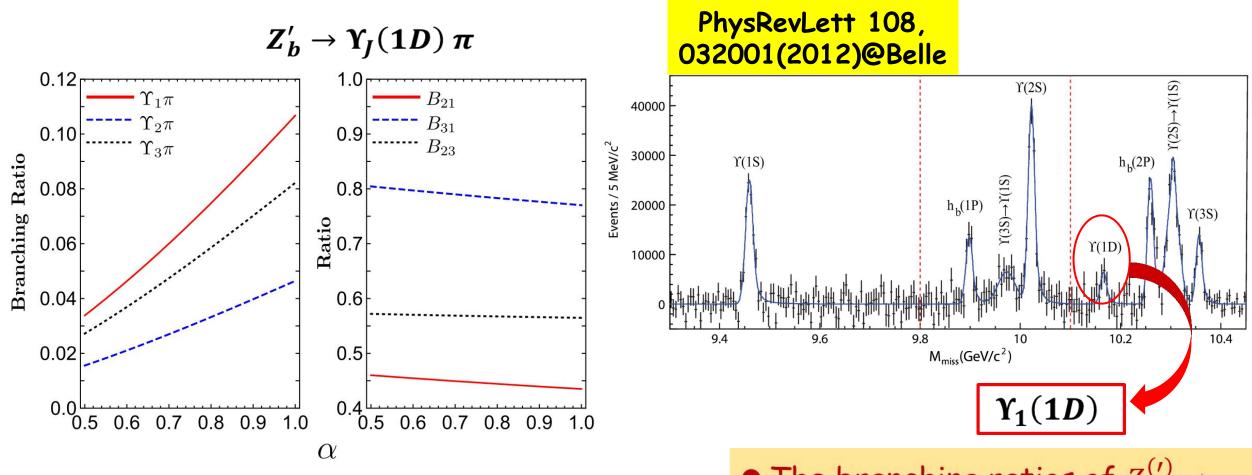
## Width effect


$$\mathcal{M}_{B_0^*} = \frac{1}{W_{B_0^*}} \int_{s_l}^{s_h} ds \rho_{B_0^*}(s) \bar{\mathcal{M}}_{B_0^*}(s)$$
$$\rho_{B_0^*}(s) = \frac{1}{\pi} \operatorname{Im} \frac{-1}{s - M_{B_0^*}^2 + i M_{B_0^*} \Gamma_{B_0^*}}$$

✓ The B'<sub>1</sub> width depends on the coupling h
 ✓ The same coupling enters the B<sub>0</sub><sup>\*</sup>Bπ and B'<sub>1</sub>B<sup>\*</sup>π vertices
 ✓ The B'<sub>1</sub> width effect depends on their competition

# Process $Z_b^{(\prime)} \rightarrow \Upsilon(1D) \pi$ Wu, Chen, Matsuki. Phys. Rev. D 102, 114037 (2020)

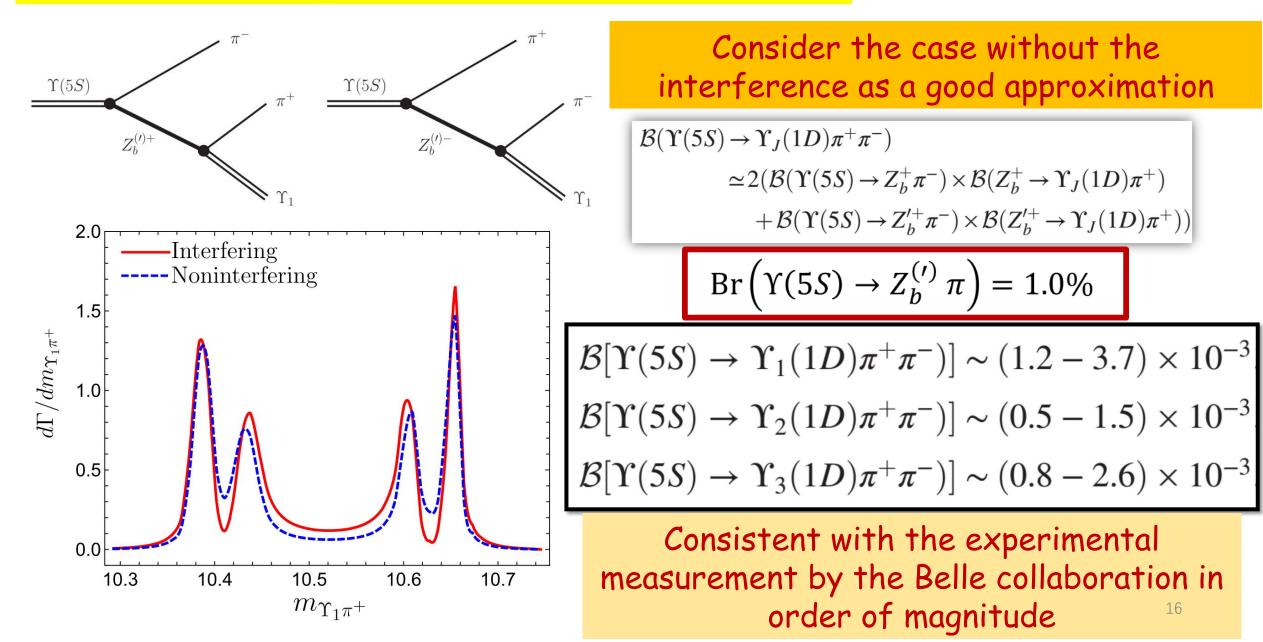
| Yield, $10^3$ Mass, MeV/ $c^2$ Signi                                                                                                                                                                                                                                                                                                                                                                                                                                | ficance PhysRevLet                                                                             | <mark>† 108,</mark>                                                                                                                                                                                                                              |                                                                                                                   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| $h_b(1P)$ $50.0 \pm 7.8^{+4.5}_{-9.1}$ $9898.2^{+1.1+1.0}_{-1.0-1.1}$ $6.335 \rightarrow 1S$ $3S \rightarrow 1S$ $55 \pm 19$ $9973.01$ $2.455$ $Y(2S)$ $143.7 \pm 8.7 \pm 6.8$ $10022.2 \pm 0.4 \pm 1.0$ $1775$ $Y(1D)$ $22.4 \pm 7.8$ $10166.1 \pm 2.6$ $2.555$ $h_b(2P)$ $83.9 \pm 6.8^{+23.}_{-10.}$ $10259.8 \pm 0.6^{+1.4}_{-1.0}$ $12253 \pm 151.3 \pm 9.7^{+9.0}_{-20.}$ $2S \rightarrow 1S$ $151.3 \pm 9.7^{+9.0}_{-20.}$ $10304.6 \pm 0.6 \pm 1.0$ $15555$ | 8.1σ     032001(2012       .1σ     .9σ       .1σ     .4σ       2.3σ     5.7σ       .5σ     .5σ | <mark>?)@Belle</mark>                                                                                                                                                                                                                            | Br(Υ(5S) → Υ(1D)π <sup>+</sup> π <sup>-</sup> )<br>~ 1 × 10 <sup>-3</sup>                                         |  |  |  |  |  |  |
| $Br (\Upsilon(5S) \to \Upsilon(1S) \pi^{+} \pi^{-}) = (5.3 \pm 0.6) \times 10^{-3}$ $Br (\Upsilon(5S) \to \Upsilon(2S) \pi^{+} \pi^{-}) = (7.8 \pm 1.3) \times 10^{-3}$ $O30001(2018)@PDG$                                                                                                                                                                                                                                                                          |                                                                                                |                                                                                                                                                                                                                                                  |                                                                                                                   |  |  |  |  |  |  |
| $\sigma/f_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y(5 <i>S</i> )                                                                                 | PhysRevD 84, 074006(2011)                                                                                                                                                                                                                        |                                                                                                                   |  |  |  |  |  |  |
| $\Upsilon(nS)$ $B^0$ $B^0$ $B^0$                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\rightarrow \Upsilon(nS) \pi^+\pi^-,$ $n = \{1, 2, 3\}$ Could be well                         | Meson loop effect can not reproduce the dipion<br>invariant mass spectrum and the helicity angle<br>distributions simultaneously<br>Both the meson loop contributions and $Z_b^{(\prime)}$ are<br>important in interpreting the anomalous widths |                                                                                                                   |  |  |  |  |  |  |
| B <sup>o</sup> <u>Y(mS)</u><br>PhysRevD 77, 074003(2008)                                                                                                                                                                                                                                                                                                                                                                                                            | reproduced<br>with meson<br>loop effect                                                        | of the an                                                                                                                                                                                                                                        | <b>n</b> : the most possible sources<br>omalous width of $\Upsilon(5S) \rightarrow \pi^-$ are $Z_b^{(\prime)}$ 13 |  |  |  |  |  |  |


-



#### Form factors:

- Internal structures of the involved particles
- Off shell effects
- Remove the divergence of the loop integrals


$$\begin{split} \mathcal{B}[Z_b \to \Upsilon_1 \pi] &= (2.62 - 8.19) \times 10^{-2}, \\ \mathcal{B}[Z_b \to \Upsilon_2 \pi] &= (1.01 - 3) \times 10^{-2}, \\ \mathcal{B}[Z_b \to \Upsilon_3 \pi] &= (1.59 - 4.8) \times 10^{-2}, \end{split} \begin{array}{l} B_{21} &= 0.37 \sim 0.39 \\ B_{31} &= 0.59 \sim 0.61 \\ B_{23} &= 0.62 \sim 0.63 \end{split}$$



$$\begin{split} \mathcal{B}[Z_b' \to \Upsilon_1 \pi] &= (3.38 - 10.67) \times 10^{-2}, \\ \mathcal{B}[Z_b' \to \Upsilon_2 \pi] &= (1.56 - 4.64) \times 10^{-2}, \\ \mathcal{B}[Z_b' \to \Upsilon_3 \pi] &= (2.72 - 8.22) \times 10^{-2}, \\ \end{split} \begin{array}{l} B_{21} &= 0.43 \sim 0.46, \\ B_{31} &= 0.77 \sim 0.80, \\ B_{23} &= 0.56 \sim 0.57, \\ \end{split}$$

- The branching ratios of  $Z_b^{(\prime)} \rightarrow \Upsilon(1D) \pi$  should be of order  $10^{-2}$
- The ratio of branching ratios could be an important test of the present estimation.

## The role of $Z_b^{(\prime)}$ in $\Upsilon(5S) \rightarrow \Upsilon(1D) \pi^+ \pi^-$



# Summary

- Hadron loop is an effective description for non-perturbative aspect of QCD;
- The dominant source of the anomalous decay widths of  $\Upsilon(5S) \rightarrow \Upsilon(1D) \pi^+ \pi^-$  should be  $Z_b^{(\prime)}$ ;
- The loops with one bottom meson being the broad  $B_0^*$  or  $B_1'$  resonance could provide the dominant contributions to the  $\Upsilon(5S) \rightarrow Z_b^{(\prime)} \pi$ ;

# Thanks for your attention!