

LHCb多夸克态实验进展

Observation of new resonances decaying to $J/\psi K^+$ and $J/\psi \phi$

张黎明(清华大学)

第二届强子与重味物理理论与实验联合研讨会 2021年3月25-29 兰州大学

Z_c^- and earlier predictions of Z_{cs}

4000

3900

3800

- Several Z_c⁻ states were observed from Y(4260) or B decays, at least have ccdu four quarks
- Would be nice to look for Z_{cs}, the
 SU(3) partners of X(3872)/Z_c(3900)
- Useful to distinguish different models
 - Less exchange particles expected in the Z_{cs} molecule picture
- Several papers have predicted the existence of Z_{cs} state in early time

[Phys. Soc. 55(2009)424, PRL 110(2013)232001, PRD 88(2013)096014, PLB 798(2019)135022, JHEP 04(2020)119]

1+ -

from B

from Y(4260).

 $2^{??}$

from B

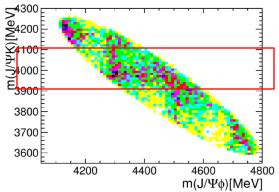
are narrow

 $\Gamma = 13 \text{ MeV}$

T = 28.3 Me

 Z_c (3900)

1+ -

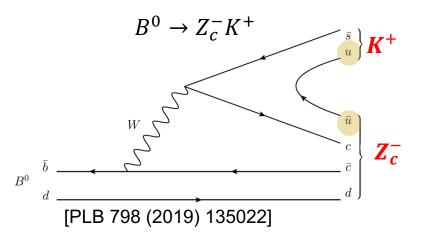

from Y(4260)

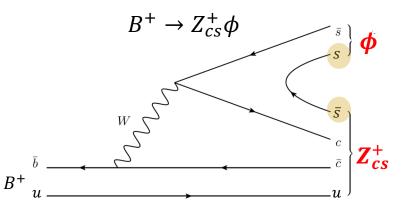
 $D \overline{D}$.*

 $D \overline{D}^*$

Which channel?

- We first looked at B⁺ → J/ψφK⁺ in winter of 2019, as a control channel to study Cabibbo-suppressed $B^+ → J/ψ\overline{K}^{*0}K^+ \text{ motived by } Z_{cs} \text{ search.}$
- > Instead, the control channel showed a possible $J/\psi K^+$ structure in Dalitz plot
- But at that time:
 - No exotic state with strangeness observed
 - The structure is not super narrow, amplitude analysis required
- We then prepared simulation sample, read the Run-1 amplitude analysis note, searched theoretical predictions about exotic states containing strange quark, tried to find other channels to confirm it ...

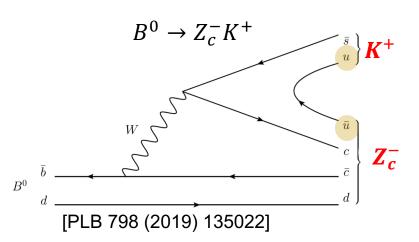


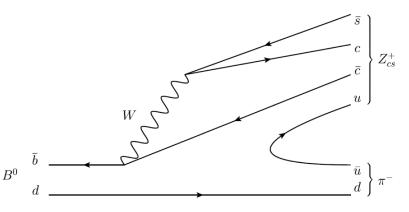

Which channel?

- Known topology to generate exotics in B-hadron decays
 - □ Spectator quark in in *b*-hardon contributes to the exotic valence quarks.

Known exotics	Observation channel
$Z_c^- ightarrow J/\psi\pi^-$	$B^0 \rightarrow J/\psi K^+ \pi^-$
$P_c^+ \to J/\psi p$	$\Lambda_b^0 \to J/\psi p K^-$
$X_{0,1}(2900)\to D^-K^+$	$B^+ \rightarrow D^+ D^- K^+$

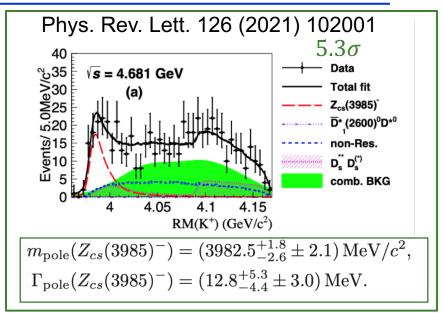
Similar Topology for Z_{cs}^+ in




Which channel?

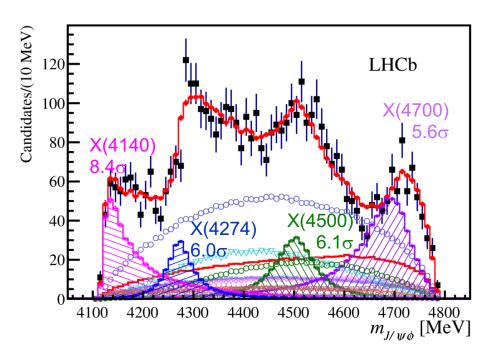
- Known topology to generate exotics in B-hadron decays
 - □ Spectator quark in in *b*-hardon contributes to the exotic valence quarks.

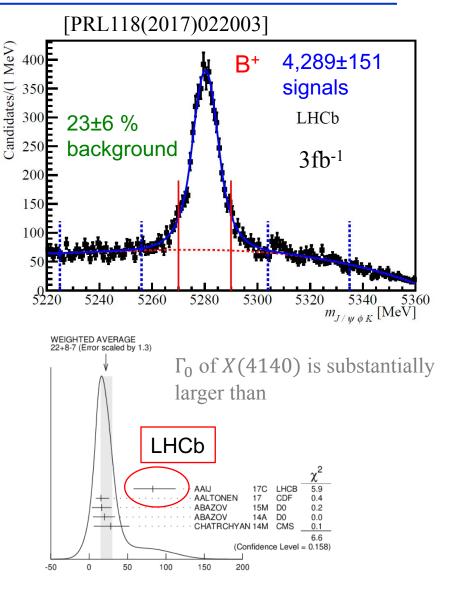
Known exotics	Observation channel
$Z_c^- ightarrow J/\psi\pi^-$	$B^0 \rightarrow J/\psi K^+ \pi^-$
$P_c^+ \to J/\psi p$	$\Lambda_b^0 \to J/\psi p K^-$
$X_{0,1}(2900)\to D^-K^+$	$B^+ \rightarrow D^+ D^- K^+$


No evidence found in this topology

BESIII observation

- BESIII recently observed a narrow $Z_{cs}(3985)^$ in $D_s^-D^* + DD_s^{*-}$ mass
- Theory interpretations
 - Molecular partner of $Z_c(3900)^$ from $D_s^- D^{*0} + D_s^{*-} D^0 +$ others exchanging $\eta / \sigma / f_0$, 2K, $c\bar{c}$
 - Diquark-antidiquark compact type
 - Kinematic reflection
- Some theorists points out 1⁺⁺ and 1⁺⁻ may both exist in both
 Molecular and compact pictures [2011.10495,2011.10959,2012.11869]




System	Current	J^P	$m_H(\text{GeV})$
$\bar{D}_s D$	J_1	0^+	3.74 ± 0.13
$ar{D}_s^*D^*$	J_2	0^+	4.11 ± 0.14
$ar{D}_s^*D$	$J_{1\mu}$	1^{+}	3.99 ± 0.12
$ar{D}_s D^*$	$J_{2\mu}$	1^{+}	3.97 ± 0.11
$ar{D}_s^*D^*$	$J_{3\mu}$	1^{+}	4.22 ± 0.14
$ar{D}_s^*D^*$	$J_{4\mu}$	1^{+}	4.22 ± 0.14
$ar{D}_s^*D^*$	$J_{\mu\nu}$	2^{+}	4.34 ± 0.13
$0_{[sc]} \oplus 0_{[ar{q}ar{c}]}$ (spin-spin)	η_1	0^{+}	3.84 ± 0.15
$1_{[sc]} \oplus 1_{[\bar{q}\bar{c}]}$	η_2	0^+	4.13 ± 0.17
$1_{[sc]} \oplus 0_{[\bar{q}\bar{c}]}$	$\eta_{1\mu}$	1^{+}	3.98 ± 0.16
$0_{[sc]} \oplus 1_{[\bar{q}\bar{c}]}$	$\eta_{2\mu}$	1^{+}	3.97 ± 0.15
$1_{[sc]} \oplus 1_{[\bar{q}\bar{c}]}$	$\eta_{3\mu}$	1^{+}	4.28 ± 0.14
$1_{[sc]} \oplus 1_{[\bar{q}\bar{c}]}$	$\eta_{4\mu}$	1^{+}	4.28 ± 0.14
$1_{[sc]} \oplus 1_{[\bar{q}\bar{c}]}$	$\eta_{\mu u}$	2^{+}	4.33 ± 0.13

Observation of four *X*

- With Run-1 B⁺ → J/ψφK⁺data, LHCb performed 1st amplitude fit with 4300 signals
- Observed X(4140), X(4274),
 X(4500) and X(4700)

The LHC as a Beauty and Charm factory

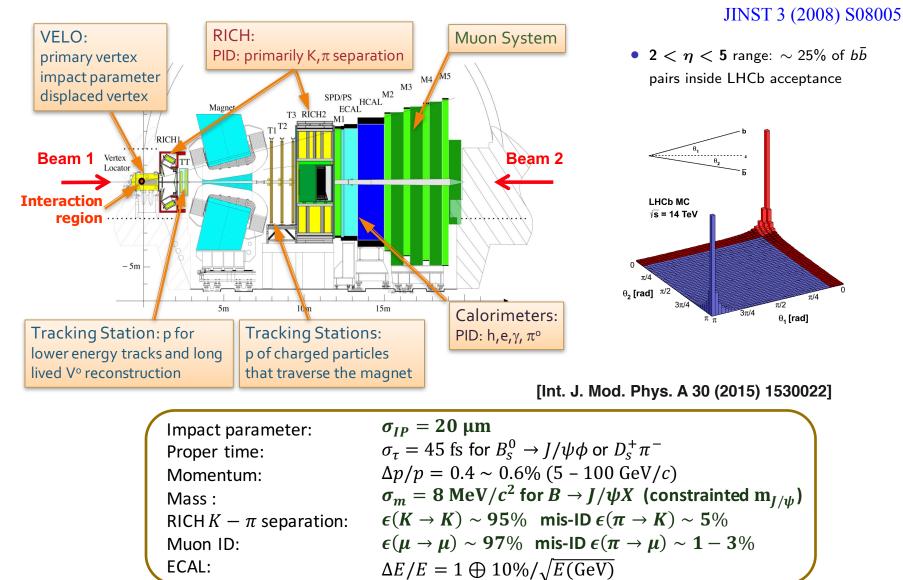
Proton-Proton Collisions at $\sqrt{s} = 13$ TeV ~ 20 000 $b\bar{b}$ pairs per second, x 20 of $c\bar{c}$ pairs

HCh-

CERN Prévessin

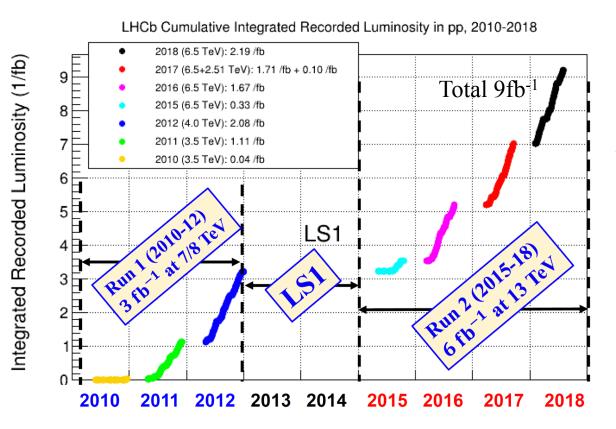
ATIA

High B-baryon production fraction


SUISSE

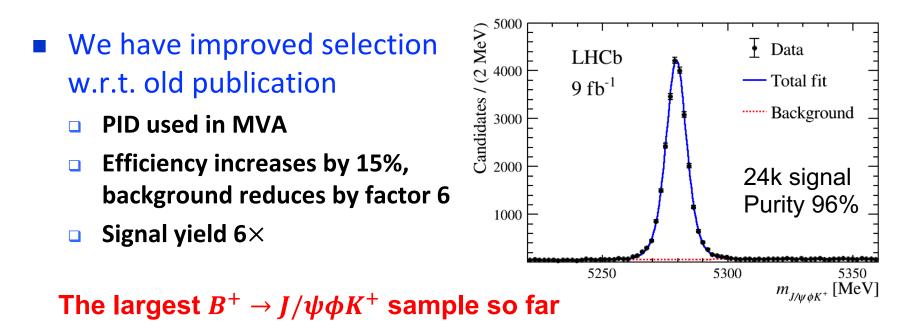
CMS

 $B^{+}: B^{0}: B^{0}_{s}: \Lambda^{0}_{b}$ $(u\overline{b}) (d\overline{b}) (s\overline{b}) (udb)$ 4: 4: 1: 2



LHCb detector and performance

LHCb collected luminosity

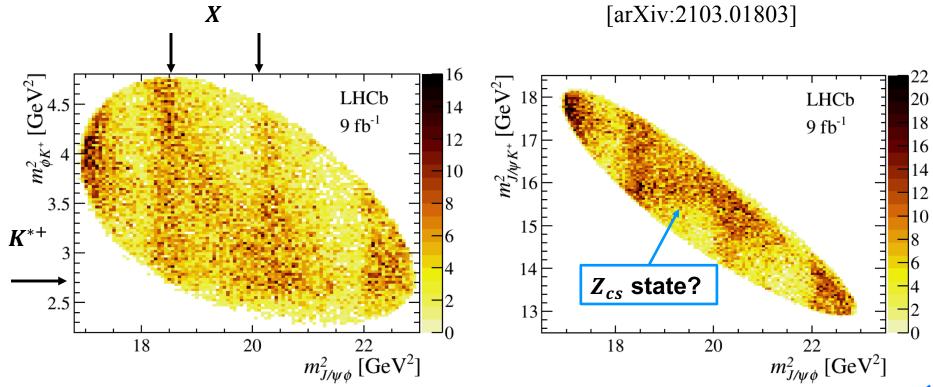


Signal: Run2 = $4 \times$ Run1

We add Run2 data and improved selection for this analysis

B mass fit and background

[arXiv:2103.01803]



- In the B^{\pm} signal, about 2% are non- $\phi B^{\pm} \rightarrow J/\psi K^+ K^- K^{\pm}$
 - They are neglected in the amplitude model but considered in the evaluation of the systematic uncertainties.

Dalitz plots of $B^+ \rightarrow J/\psi \phi K^+$

- In ±15 MeV signal mass window
- Clearly visible: 4 structures in $J/\psi\phi$ mass and an obvious $J/\psi K^+$ band
- No clear $K^{*+} \rightarrow K^+ \phi$ peaks because K^{*+} resonances are broad?

6D amplitude fit

[PRD95(2017)012002]

- Candidates in the signal region are used in the fit
- Helicity formalism for full amplitude construction
- Three decay chains, K^{*+} , X and Z_{cs}^{+}
- Each decay chain is described by 6 observables
 - Resonant mass, and 5 angles to better determine J^P
- Resonant lineshape: Breit-Wigner; simplified K-matrix or Flatté function for systematic studies
- PDF includes signal and background components

$$-\ln L(\overrightarrow{\omega}) = -\sum_{i} \ln \left[(1-\beta) \frac{\mathcal{P}_{\text{sig}}(m_{\phi K \ i}, \Omega_{i} | \overrightarrow{\omega}) + \beta \mathcal{P}_{\text{bkg}}(m_{\phi K \ i}, \Omega_{i})}{I(\overrightarrow{\omega})} \right]$$
$$= -\sum_{i} \ln \left[(1-\beta) \frac{\left| \mathcal{M}(m_{\phi K \ i}, \Omega_{i} | \overrightarrow{\omega}) \right|^{2} \Phi(m_{\phi K \ i}) \epsilon(m_{\phi K \ i}, \Omega_{i})}{I(\overrightarrow{\omega})} + \beta \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{\phi K \ i}, \Omega_{i})}{I_{\text{bkg}}} \right]$$
$$= -\sum_{i} \ln \left[\left| \mathcal{M}(m_{\phi K \ i}, \Omega_{i} | \overrightarrow{\omega}) \right|^{2} + \frac{\beta I(\overrightarrow{\omega})}{(1-\beta)I_{\text{bkg}}} \frac{\mathcal{P}_{\text{bkg}}^{u}(m_{\phi K \ i}, \Omega_{i})}{\Phi(m_{\phi K \ i}) \epsilon(m_{\phi K \ i}, \Omega_{i})} \right] + N \ln I(\overrightarrow{\omega}) \cdot$$

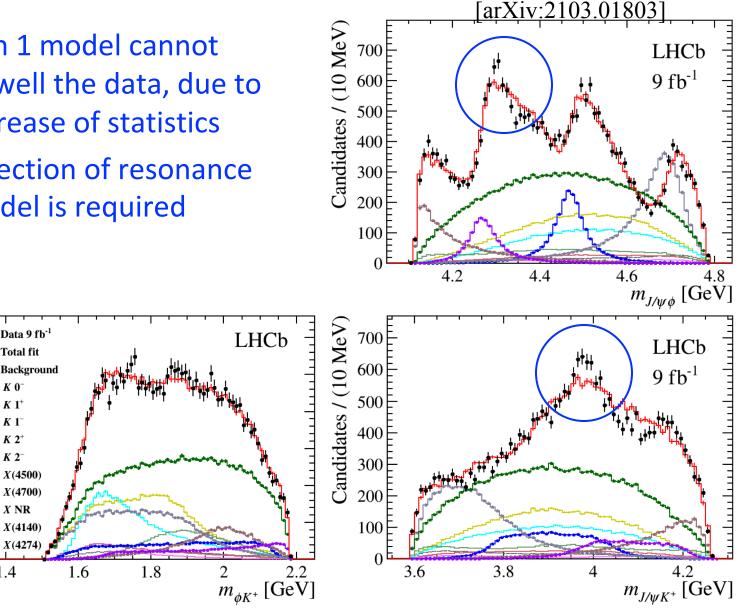
Candidates / (10 MeV)

600

500

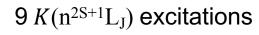
400

300

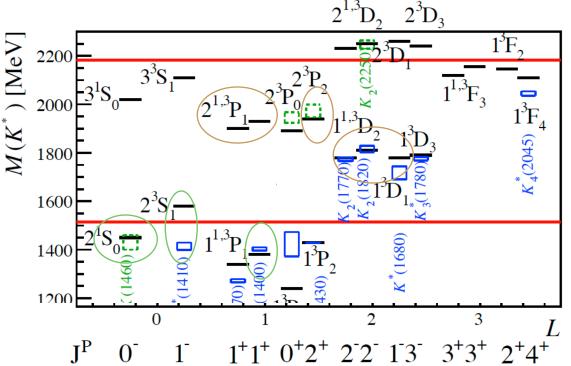

200

100

1.4

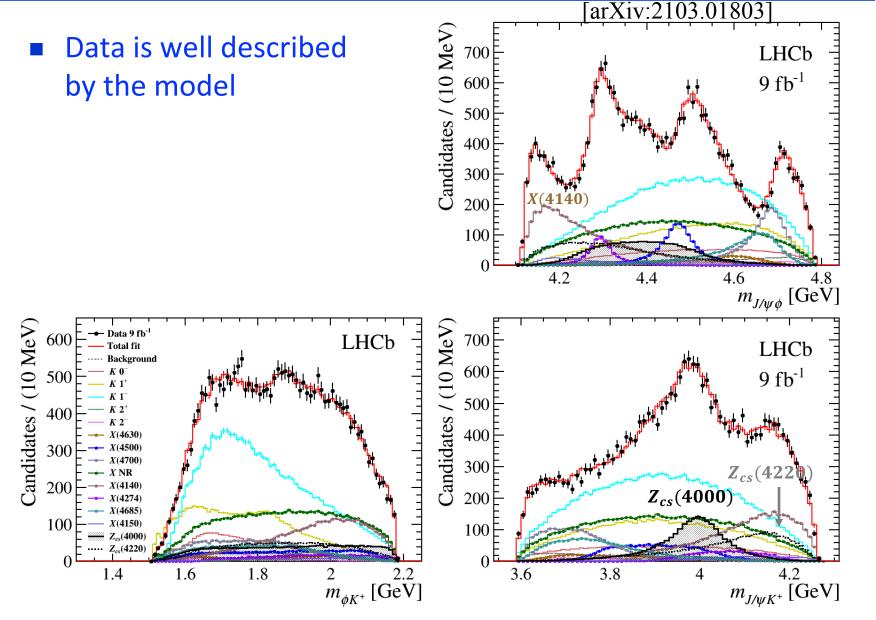

Start from run 1 model


- Run 1 model cannot fit well the data, due to increase of statistics
- Selection of resonance model is required


$K^{*+} ightarrow \phi K^+$ model

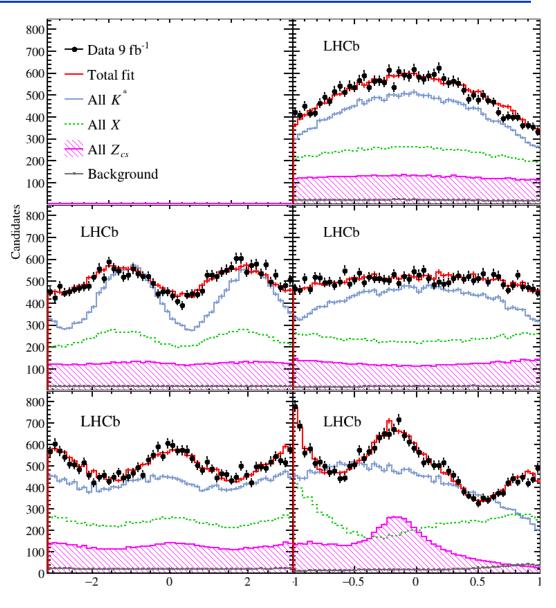
0⁺ cannot decay to ϕK^+

- Based on Godfrey-Isgur model
- Compared to run-1 model
 - Add three below threshold resonances to replace two components
 - Other high mass states are not significant, used as systematic study (Extended model)


15

- The K* model still cannot well describe the data
- Test new exotic states (X and Z_{cs}^+) of different J^P
 - 1⁺ Z_{cs} and 1⁺ X, giving the largest improvements, were first included.
 - In 2nd iteration, several states giving large fit improvements were included in the default model: a second Z_{cs} (either 1⁺or 1⁻), 1⁻ and 2⁻ X states.
- The default model includes $9 K^* + 7 X + 1 X(NR) + 2 Z_{cs}$

Default model fit

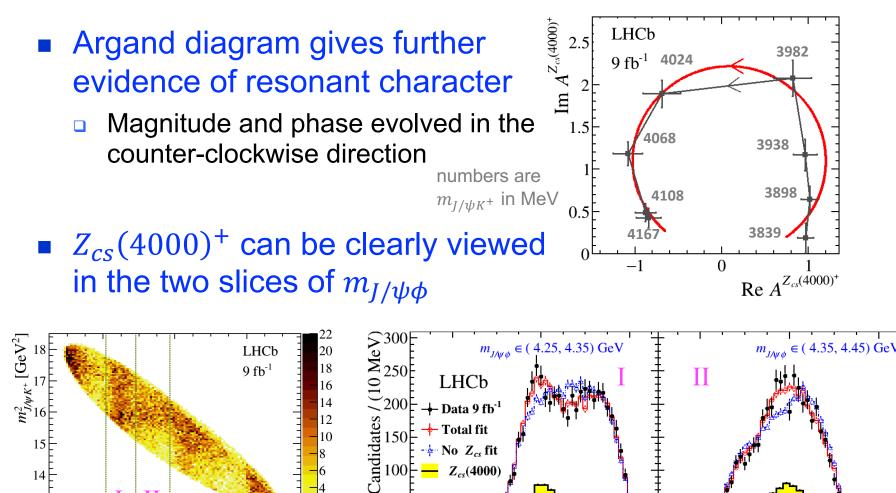

Fit results

New states: $Z_{cs}(4000)$, $X(4685) > 15\sigma$ [arXiv:2103.01803] $Z_{cs}(4220), X(4630) > 5\sigma$ $X(4150) < 5\sigma$ Fit fraction Contribution Significance $[\times \sigma]$ M_0 [MeV] $\Gamma_0 [MeV]$ FF [%] Syst. included(Stat.) $X(2^{-})$ $135 \pm 28 \,{}^{+\,59}_{-\,30}$ $2.0 \pm 0.5 \substack{+0.8 \\ -1.0}$ X(4150)4.8(8.7) $4146 \pm 18 \pm 33$ $X(1^{-})$ $4626 \pm 16^{\,+\,18}_{\,-\,110}$ $174 \pm 27 \, {}^{+134}_{-73}$ $2.6 \pm 0.5 ^{+2.9}_{-1.5}$ X(4630)5.5(5.7) $20 \pm 5^{+14}_{-7}$ All $X(0^+)$ $5.6\pm0.7^{\,+\,2.4}_{\,-\,0.6}$ $77 \pm 6^{\,+\,10}_{\,-\,8}$ X(4500)20(20) $4474 \pm 3 \pm 3$ $4694 \pm 4^{+16}_{-3}$ $87 \pm 8^{+16}_{-6}$ $8.9 \pm 1.2^{+4.9}_{-1.4}$ X(4700)17(18) $28\pm8\,{}^{+\,19}_{-\,11}$ $NR_{J/\psi\phi}$ 4.8(5.7) $26 \pm 3^{+8}_{-10}$ All $X(1^+)$ $4118 \pm 11 \, {}^{+\, 19}_{-\, 36}$ $17 \pm 3^{\,+\,19}_{\,-\,6}$ $162 \pm 21 \, {}^{+24}_{-49}$ X(4140)13(16) $4294 \pm 4^{+3}_{-6}$ $2.8 \pm 0.5 \substack{+0.8 \\ -0.4}$ $53 \pm 5 \pm 5$ X(4274)18(18) $4684 \pm 7^{+13}_{-16}$ $126 \pm 15^{+37}_{-41}$ $7.2 \pm 1.0 \,{}^{+4.0}_{-2.0}$ X(4685)15(15) $25 \pm 5^{+11}_{-12}$ All $Z_{cs}(1^+)$ $4003 \pm 6^{+4}_{-14}$ $Z_{cs}(4000)$ 15(16) $131 \pm 15 \pm 26$ $9.4 \pm 2.1 \pm 3.4$ $233 \pm 52^{+97}_{-73}$ $4216 \pm 24 \,{}^{+\,43}_{-\,30}$ $10 \pm 4^{+10}_{-7}$ $Z_{cs}(4220)$ 5.9(8.4)

Angular projections

Angles in $K^* \rightarrow \phi K$ decay chain are described well by the fit

13F


18

20

 $m^{22}_{J/\psi\phi}$ [GeV²]

 $Z_{cs}(4000)^+$

[arXiv:2103.01803]

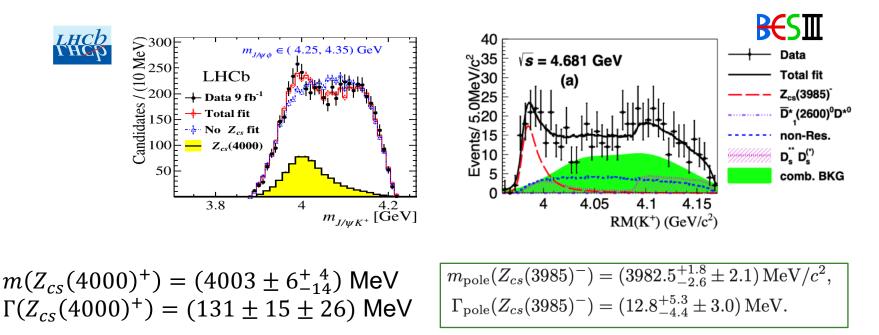
50

3.8

4.2

 $m_{J/\psi K^+}$ [GeV]

3.8


 $m_{J/\psi K^+}$ [GeV]

Comparison with BESIII

Phys. Rev. Lett. 126 (2021) 102001

- BESIII experiment recently reported 5.3σ observation of a very narrow Z_{cs}^- in $D_s^-D^* + DD_s^{*-}$ mass distributions
- Their masses are close, but $Z_{cs}(4000)^+$ is $\sim 10 \times$ broader
- No evidence $Z_{cs}(4000)^+$ is the same as $Z_{cs}(3985)^-$ seen by BESIII
 - Fix $Z_{cs}(4000)^+$ to BESIII's result; $2\ln L$ is worse by 160
 - Adding on top of the default model almost doesn't improve the fit likelihood

J^P analysis

- Rejection significance: $\sigma \sim \sqrt{\Delta(-2\ln L)}$, using $2\ln L$ difference between preferred and alternative hypothesis.
 - Previous observed four X J^P are confirmed
 - $Z_{cs}(4000)$ and X(4685) are 1⁺ >15 σ
 - X(4630) prefers 1⁻⁺ [exotic quantum number] over 2⁻⁺ by 3 σ
 - $Z_{cs}(4220)$ can be 1⁺ or 1⁻

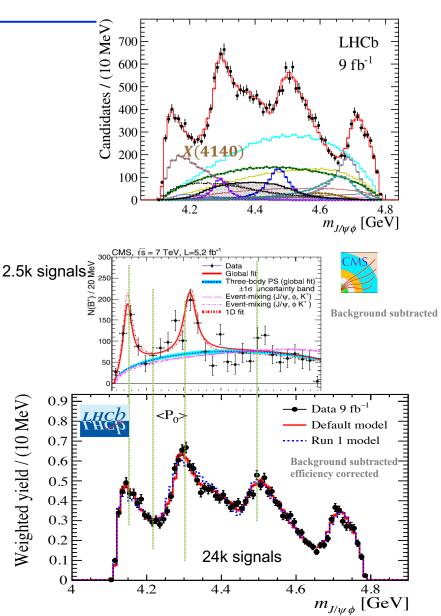
Systematic uncertainty included

J ^P	0+	0-	1+	1-	2+	2-
X(4630)	6.7σ	5.3σ	5.8σ	prefer	5.9σ	3.0σ
X(4500)	prefer	18σ	18σ	18σ	18σ	18σ
X(4700)	prefer	18σ	18σ	18σ	14σ	17σ
X(4140)	14σ	15σ	prefer	14σ	13σ	14σ
X(4274)	18σ	18σ	prefer	18σ	18σ	18σ
X(4685)	16σ	16σ	prefer	15σ	16σ	15σ
$Z_{cs}(4000)$	-	17σ	prefer	17σ	15σ	16σ
$Z_{cs}(4220)$	-	8.6σ	prefer	2.4σ	4.9σ	5.7σ

J^{PC} of X states

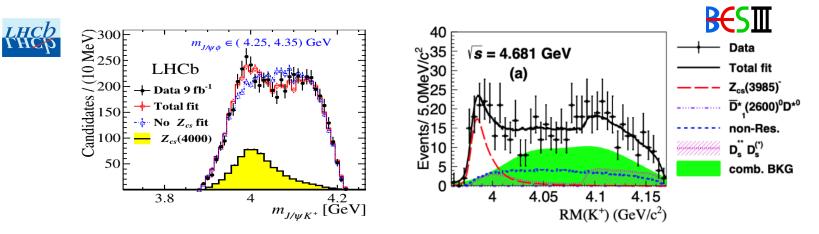
- For $X \rightarrow J/\psi\phi$, S-wave decays: $J^{PC} = (0,1,2)^{++}$, P-wave decays $J^{PC} = (0,1,2,3)^{-+}$
- We expect S-wave dominates and this is the case.
- We are confident that our J^{PC} determination is right
 - We have randomly assigned J^P for X states, and found the default results give the best fit
 - We can easily distinguish e.g. 0⁺⁺ vs 1⁺⁺ using the correlation between two decay angles of $J/\psi \rightarrow \mu^+\mu^-$ and $\phi \rightarrow K^+K^-$

0++ only has the following two terms, 1++ contains more terms $|H_0|^2$ $\sin^2 \theta_\ell \cos^2 \theta_h$ $|H_+|^2 + |H_-|^2$ $\frac{1}{4}(1 + \cos^2 \theta_\ell) \sin^2 \theta_h$


Systematic sources

- Many sources (see backup) are considered
- Here only discuss several important ones for modelling
 - Extended model including 5 more K*
 - $1^+ vs 1^- Z_{cs}(4220)$
 - Additional X states with different J^P in the extended model, no further
 X contribution >5σ
 - NR shape, and additional 1^+ or 2^+ NR X contributions
 - Flatté function to parameterize X(4140) or Z_{cs}(4000) to replace BW function
 - Neglected no- ϕ contribution: 1) Change the ϕ mass window from ± 15 MeV to ± 7 MeV, 2) sFit to subtract no- ϕ contribution is performed as alternative to cFit
 - Several K-Matrix models for K*

X(4140)


- X(4140) $M = 4118 \pm 11^{+19}_{-36}$ MeV, $\Gamma = 162 \pm 21^{+24}_{-49}$ MeV No evidence of a narrow threshold resonance at $J/\psi\phi$ in our data
- CMS [PLB 734 (2014) 261]
 M=4148.0±2.4±6.3 MeV
 Γ = 28⁺¹⁵₋₁₁ ± 19 MeV
- LHCb's X(4140) peak height is lower than CMS (efficiency enhanced at threshold?)
- Let's wait for CMS update their results with a (much) larger data sample, and more sophisticated analysis technique, than previously.

Summary

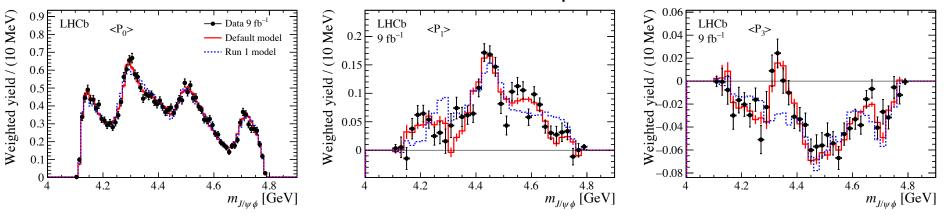
- 4 new $J/\psi K^+$ and $J/\psi \phi$ structures observed in $B^+ \rightarrow J/\psi \phi K^+$ decays with 6 times data and much clean environment
 - Two $Z_{cs}^+ \rightarrow J/\psi K^+$ with new quark contents $c\overline{c}u\overline{s}$ are observed $1^+ Z_{cs}(4000)^+$, significance > 15σ and a broad $Z_{cs}(4220)^+ > 5\sigma$
 - A new 1⁺ X(4685) is > 15 σ , and new X(4630) > 5 σ
 - 4 X states previously observed are confirmed, and J^{PC} determined with higher significances
- Understanding of Z_{cs}(4000)⁺ and Z_{cs}(3985)⁻ may shed lights on molecular and compact tetraquarks

LHCb Upgrade I

CERN-LHCC-2011-001

Upgrade I: installation ongoing

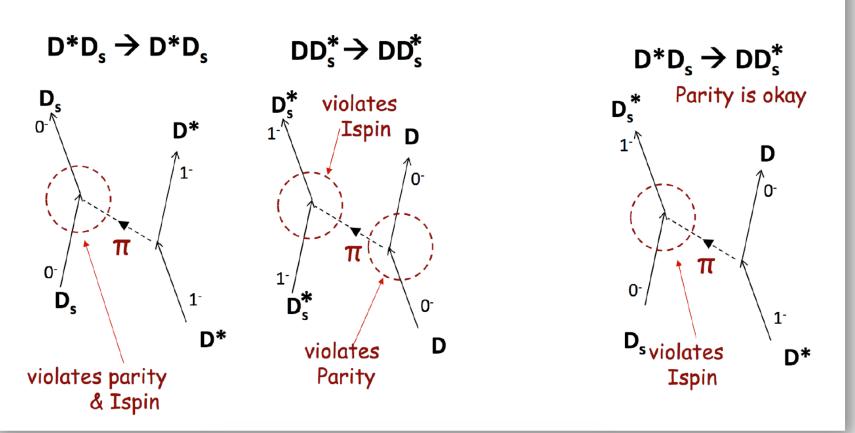
- Almost a new detector for factor 5 luminosity increase
- □ Remove the hardware trigger \rightarrow all detector read out at 40 MHz
- Expect to have data of 23 fb⁻¹ by 2024 and of 50 fb⁻¹ by 2029


3x 7x Run1+2 Efficiency of pure hadronic final states will be**doubled** $, good for studies of <math>(\eta_c, \chi_{c0})(K, \phi)$ and $D_{(s)}^{(*)}\overline{D}_{(s)}^{(*)}$ to search for various J^P exotics

New X states are necessary

- Can improve angular distributions
- Comparing the Legendre angular moments of Run 1 model and updated model, new X(4630) and X(4685) are required $< P_{\ell}^{U} > = \sum_{i=1}^{N_{events}} \frac{1}{\epsilon_{i}} P_{\ell}(\cos \theta).$

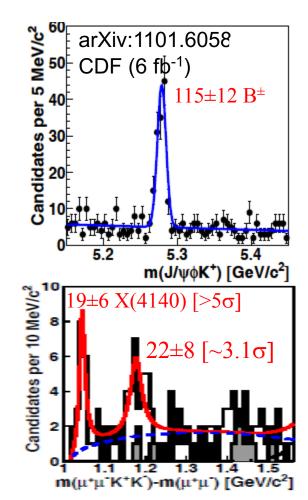
Background subtracted and efficiency corrected distribution


https://cds.cern.ch/record/2751229

from Steve Olsen

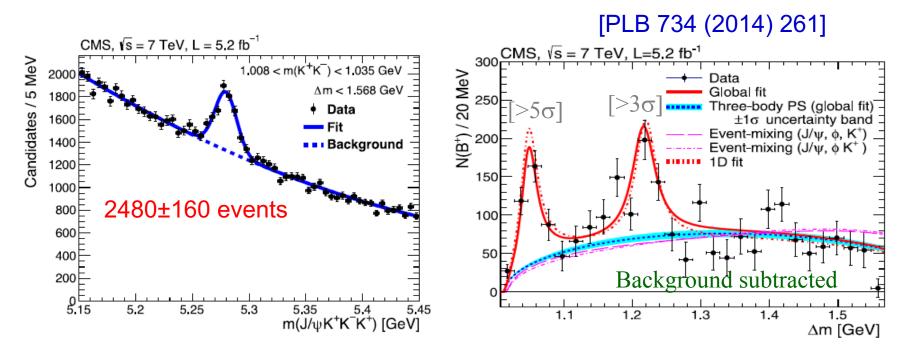
If it's a molecule, what holds it together

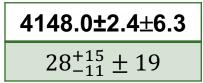
Yukawa force dominated by π -exchange \leftarrow not allowed for $D_s D^*/D_s^* D$



X(4140) and *X*(4274)

- $B^+ \rightarrow J/\psi \phi K^+$ decays provide rich exotic spectra, initially used for study of $J/\psi \phi$ structures
- CDF observed a narrow $J/\psi\phi$ structure in [Initial publication on 2.7 fb⁻¹ PRL102 (2009) 242002]
 - M=4143.4±3.0±0.6 MeV
 - $\Gamma = 15.3^{+10.4}_{-6.1} \pm 2.5 \text{ MeV}$
 - Necessarily exotic since it is narrow and above the DsDs threshold
 - $[csc\bar{s}]$ tetraquark ?
 - Hint of a second structure: X(4274)



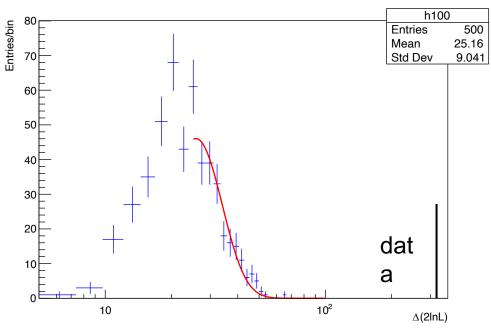


- Confirmed by CMS with large statistics
- But the background is also large

Expected yields in future

- We are now boosting our data to a new level
 - Expect to **7x** more data (**14x** more hadronic events) by 2029 than current data
 - Could have another factor of **6** increase from Upgrade II

		LHCb	
Decay mode	$23\mathrm{fb}^{-1}$	$50\mathrm{fb}^{-1}$	$300\mathrm{fb}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14k	30k	180k
$B^+ \rightarrow X(3872) (\rightarrow \psi(2S)\gamma) K^+$	500	1k	$7\mathrm{k}$
$B^0 \rightarrow \psi(2S) K^- \pi^+$	340k	700k	$4\mathrm{M}$
$B_c^+ \to D_s^+ D^0 \overline{D}{}^0$	10	20	100
$\Lambda_b^0 \rightarrow J/\psi p K^-$ [*]	680k	1.4M	8M
$\Xi_b^- \to J/\psi \Lambda K^-$	4k	10k	55k
$\tilde{\Xi_{cc}^{++}} \to \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15k	90k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600


[*] updated according to the latest result

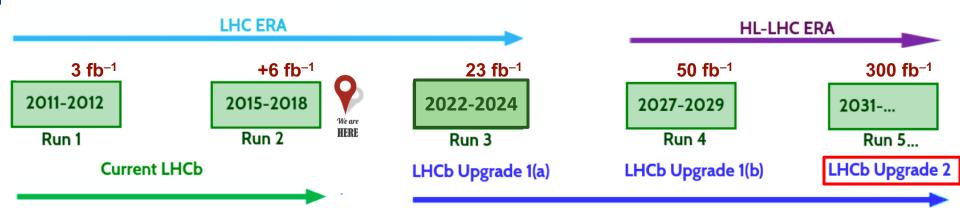
CERN-LHCC-2018-027 arXiv:1808.08865

Significance

- Use ndf = 2 x N of parameters for new resonance
- Verified by pseudoexperiments

500 toy samples without $Z_{cs}(4000)$ are generated.

The significance obtained from the tail extrapolation to the data is 15.2 σ , which is consistent with 15.7 σ obtained from the empirical method using the χ^2 PDF with ndf equal to twice the number of additional free parameters


$$n_{\sigma} = \sqrt{2} \texttt{TMath::}\texttt{ErfcInverse}\left(f \, \cdot \, \frac{\texttt{TMath::}\texttt{Prob}(\Delta^{\text{data}}_{2\ln\mathcal{L}}, \texttt{NDF})}{\texttt{TMath::}\texttt{Prob}(\Delta^{0}_{2\ln\mathcal{L}}, \texttt{NDF})}\right)$$

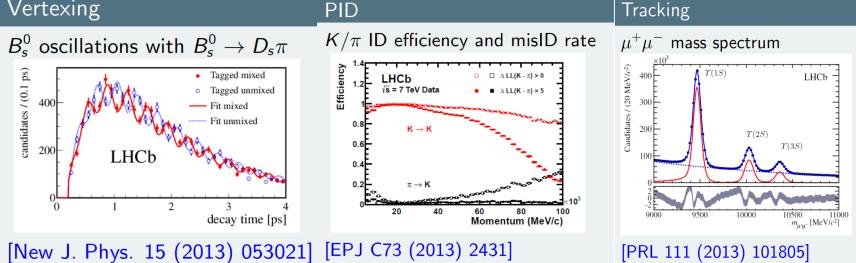
Run-1 results

ъл

Contribution		Significance		Fit results	
		_	$M_0 [{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\mathrm{FF}\%$
	All $K(1^+)$	8.0σ			$42 \pm 8^{+5}_{-9}$
	$\mathrm{NR}_{\phi K}$				$16 \pm 13^{+35}_{-6}$
$2^1 P_1$	$K(1^+)$	7.6σ	$1793 \pm 59^{+153}_{-101}$	$365 \pm 157^{+138}_{-215}$	$12 \pm 10^{+17}_{-6}$
$2^{3}P_{1}$	$K'(1^+)$	1.9σ	$1968 \pm 65^{+70}_{-172}$	$396 \pm 170^{+\bar{1}\bar{7}\bar{4}}_{-178}$	$23 \pm 20^{+31}_{-29}$
	All $K(2^{-})$	5.6σ			$11 \pm 3^{+2}_{-5}$
$1^1 \mathrm{D}_2$	$K_2(1770)$	5.0σ	$1777 \pm 35^{+122}_{-77}$	$217 \pm 116^{+221}_{-154}$	
$1^{3}D_{2}$	$K_2(1820)$	3.0σ	$1853 \pm 27^{+18}_{-35}$	$167 \pm 58^{+83}_{-72}$	
	$K(1^{-})$				
$1^{3}D_{1}$	$K^{*}(1680)$	8.5σ	$1722 \pm 20^{+33}_{-109}$	$354 \pm 75^{+140}_{-181}$	$6.7 \pm 1.9^{+3.2}_{-3.9}$
_	$K(2^+)$. 1170	
$2^{3}P_{2}$	$K_2^*(1980)$	5.4σ	$2073 \pm 94^{+245}_{-240}$	$678 \pm 311^{+1153}_{-559}$	$2.9 \pm 0.8^{+1.7}_{-0.7}$
_	$K(0^{-})$. 50	. 200	
3^1S_0	K(1830)	3.5σ	$1874 \pm 43^{+59}_{-115}$	$168\pm90^{+280}_{-104}$	$2.6 \pm 1.1^{+2.3}_{-1.8}$
	All $X(1^+)$				$16 \pm 3^{+6}_{-2}$
	X(4140)	8.4σ	$4146.5 \pm 4.5^{+4.6}_{-2.8}$	$83 \pm 21^{+21}_{-14}$	$13.0 \pm 3.2^{+4.8}_{-2.0}$
	X(4274)	6.0σ	$4273.3 \pm 8.3^{+17.2}_{-3.6}$	$56 \pm 11^{+8}_{-11}$	$7.1 \pm 2.5^{+3.5}_{-2.4}$
	All $X(0^+)$				$28 \pm 5 \pm 7$
	$\mathrm{NR}_{J/\psi\phi}$	6.4σ			$46 \pm 11^{11}_{-21}$
	X(4500)	6.1σ	$4506 \pm 11^{+12}_{-15}$	$92 \pm 21^{+21}_{-20}$	$6.6 \pm 2.4^{+3.5}_{-2.3}$
	X(4700)	5.6σ	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$	$12 \pm 5^{+9}_{-5}$

LHCb Upgrade II

Upgrade II: started to investigate


- □ Aim to collect > **300 fb**⁻¹
- Instantaneous $\mathcal{L} = 2 \times 10^{34}$, x10 with respect to Upgrade I
- Expression of Interest issued in 2017 [CERN-LHCC-2017-003]
- Physics case document released [CERN-LHCC-2018-027]
- Green light from LHCC to proceed to TDRs (expected ~late 2020)

Detector performance

Vertexing

Impact parameter: Proper time: Momentum: Mass: RICH $K - \pi$ separation: Muon ID: ECAL:

 $\sigma_{IP} = 20 \ \mu m$ $\sigma_{\tau} = 45$ fs for $B_s^0 \rightarrow J/\psi \phi$ or $D_s^+ \pi^ \Delta p/p = 0.4 \sim 0.6\% (5 - 100 \text{ GeV}/c)$ $\sigma_m = 8 \text{ MeV}/c^2 \text{ for } B \rightarrow J/\psi X \text{ (constrained } m_{I/\psi}\text{)}$ $\epsilon(K \to K) \sim 95\%$ mis-ID $\epsilon(\pi \to K) \sim 5\%$ $\epsilon(\mu \rightarrow \mu) \sim 97\%$ mis-ID $\epsilon(\pi \rightarrow \mu) \sim 1 - 3\%$ $\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})}$

Systematic uncertainty

- To evaluate uncertainties due to the fixed masses and widths of known K* resonances: free the masses and widths but impose Gaussian constraints to the PDG values.
- $\succ \chi^2_{IP}$ of B^+ is not well modeled, smeared to match the data.
- > To explore uncertainty in the background model, vary the B^+ sideband window.
- > The uncertainty in the background fraction β : change background shape to exponential function.
- > Vary the Blatt-Weisskopf barrier factor d (hadron-size parameter).
- Vary the smallest allowed orbital momentum in the resonance description function, associate the L dependent term with each LS coupling.

$$R_{K_{n}^{*}}(m_{K\phi}) = \begin{bmatrix} B'_{L_{B}^{K_{n}^{*}}}(p, p_{0}, d) \left(\frac{p}{M_{B}}\right)^{L_{B}^{K_{n}^{*}}} \end{bmatrix} BW(m_{K\phi}|M_{0}^{K_{n}^{*}}, \Gamma_{0}^{K_{n}^{*}}) BW(m_{K\phi}|M_{0}^{K_{n}^{*}}, \Gamma_{0}^{K_{n}^{*}}) B'_{L_{K_{n}^{*}}}(q, q_{0}, d) \left(\frac{q}{M_{0}^{K_{n}^{*}}}\right)^{L_{K_{n}^{*}}} B'_{L_{K_{n}^{*}}}(q, q_{0}, d) \left(\frac{q}{M_{0}^{K_{n}^{*}}}\right)^{L_{K_{n}^{*}}}(q, q) \left(\frac{q}{M_{0}^{K_{n}^{*}}}\right)^{L_{K_{n}^{*}}}(q, q) \left(\frac{$$

Systematic uncertainty

- Uncertainty due to the choice of NR component, change the constant parameterization to exponential function.
- > 1^+ or 2^+ NR X contributions are optionally introduced.
- > The difference between nominal model and extended model.
- > Flatté function to parameterize X(4140) or $Z_{cs}(4000)$ to replace BW function.

$$\text{Flatte}_X(m|M_0, g_{J/\psi\phi}, g_{D_s^*D_s}) = \frac{1}{M_0^2 - m^2 - iM_0(g_{J/\psi\phi}\rho_{J/\psi\phi} + g_{D_s^*D_s}\rho_{D_s^*D_s})}$$

- > Additional X states with different J^P in the extended model.
- Neglected no- ϕ contribution: 1)Change the ϕ mass window from ±15MeV to ± 7MeV, 2) sFit to subtract no- ϕ contribution is performed as alternative to cFit
- Modification of K^* width: as the partial width to ϕK is unknown, try a fit with mass dependence of the width driven by the lowest allowed decay channel, which is $K\pi$ for the natural spin-parity and $K\omega$ for others.

Systematic uncertainty

- As an alternative to the 2D factorization of 6D background PDF, decompose the background density into multidimensional moments in the K* decay chain variables (this uncertainty is small)
- ≻ K-Matrix model :

1. Some K^* with the same J^P are overlapping, we use a simple K-Matrix formula to describe them as alternative

$$RKM_n(m|M_{0n},\Gamma_{0n}) = \frac{\frac{1}{M_{0n}^2 - m^2}}{1 - i(\sum_j \frac{M_{0j}\Gamma_{0j}(m)}{M_{0j}^2 - m^2} + f_{sc} \cdot \rho(m))},$$

denominator sums over the same $J^P K^*$ resonances, f_{sc} accounts for possible non-resonance contribution. This fit didn't change the conclusion.

2. Alternative K-Matrix model with two coupling channels are tested, used to describe the $2^1 P_1$ and $2^3 P_1 K^*$ resonances

$$\mathcal{K}_{ba}(s) = \sum_{R} rac{g_{b}^{R}g_{a}^{R}}{M_{R}^{2}-s} + \sum_{i=0}^{N_{ ext{b.g.}}} b_{ba}^{(i)}s^{i}$$

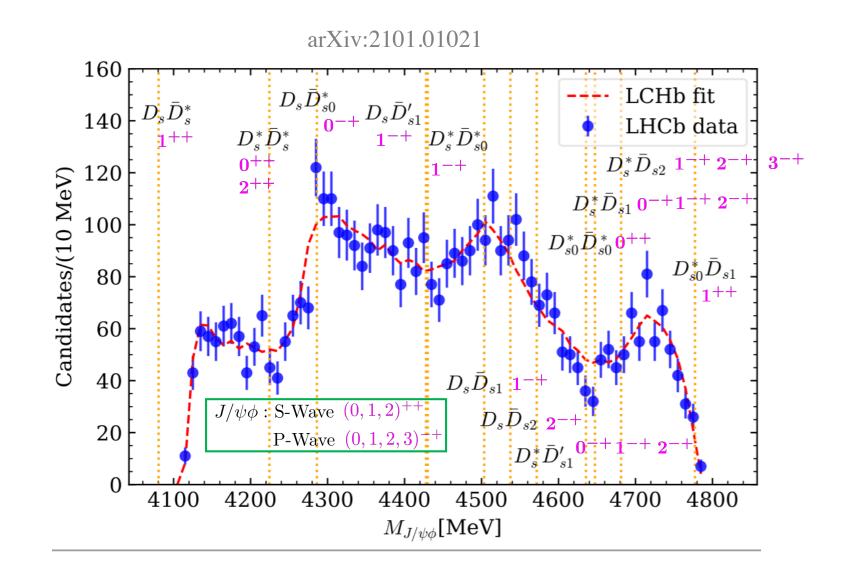

more floating parameters are included, the nominal model is stable.

Table 2: Summary of the systematic errors on the parameters of the $Z_{cs}(4000)^+$ and X(4685) states. All numbers for masses and widths are in MeV and fit fractions in %.

		Z(4000)		X(4685)			
Source	M_0	Γ_0	\mathbf{FF}	M_0	Γ_0	\mathbf{FF}	
Fixed $M_0\&\Gamma_0$	-0.22	-3.60	-0.83	-0.14	2.72	0.25	
$\chi^2_{\rm IP}$ smearing	0.21	1.01	0.09	-0.53	1.11	0.12	
Right sideband	0.01	0.58	0.11	-0.13	1.07	-0.13	
Left sideband	-0.30	-1.16	-0.24	-0.09	-2.21	0.09	
$\beta = 0.043$	-0.06	-0.00	0.01	0.01	-0.70	-0.09	
$\beta = 0.037$	-0.02	0.26	0.02	-0.33	0.21	0.03	
L0 Trigger	0.45	0.58	0.19	-0.58	1.12	0.11	
PID efficiency	-1.06	-1.82	-0.69	-0.82	-4.42	-0.26	
MC size	2.39	9.93	1.54	3.02	7.00	0.65	
ϕ window	-4.71	-23.91	-2.75	8.60	-26.60	-1.17	
Non ϕ subtraction	-2.87	-18.39	-1.79	12.40	-39.80	-1.80	
Poly NR	-4.24	-16.36	-2.56	4.26	-22.07	-1.28	
$X \operatorname{NR}(1^+)$	1.49	-21.25	-2.53	-15.72	35.54	3.84	
$X \operatorname{NR}(2^+)$	2.16	3.09	1.26	1.88	-6.87	-0.03	
BW $d=1.5$	-0.29	-5.27	-0.58	0.29	1.55	2.14	
BW $d=4.5$	0.08	1.81	0.04	0.06	-3.53	-1.06	
L	2.75	-3.19	-1.18	2.45	-24.33	-1.48	
X(4140) Flatté	0.52	-2.80	-0.45	-3.77	15.14	1.37	
Extended model	-2.35	-6.66	-1.16	-3.61	-6.53	-0.94	
Additional X	-0.68	2.07	0.30	0.74	-3.11	-0.18	
$1^{-} Z$	-14.00	-21.09	-3.46	-9.41	-5.60	-1.52	
K^* BW	0.08	-0.66	-0.32	-0.06	-8.09	-0.82	
K-Matrix	-3.75	-20.80	-2.85	4.10	-11.95	-0.06	
$Z_{cs}(4000)$ Flatté	0.18		2.83	-0.85	2.79	0.18	
Background model	0.10	-0.32	-0.12	-1.04	-1.72	-0.15	
Total	(-14.26,	(-26.26,	(-3.43,	(-16.05,	(-40.85,	(-1.96,	
TOTAL	+3.85)	+26.26)	+3.41)	+12.82)	+36.72)	+3.92)	

Thresholds vs LHCb run1 data

