Lattice QCD and electroweak interactions

Xu Feng (冯旭)

第二届强子与重味物理理论与实验联合会议, 2021/03/27

QCD is the fundamental theory

- $\Rightarrow~$ describing strong interaction between quarks and gluons
- High-Q (> few GeV) \leftrightarrow short distance (< 0.1 fm)

 \Rightarrow Theory of weakly interacting quarks and gluons

- \Rightarrow (Perturbative QCD: Gross, Politzer, Wilczek for asymptotic freedom)
- Low-Q ($\ll 1 \text{ GeV}$) \leftrightarrow long distance (> 1 fm)
 - \Rightarrow Spontaneous chiral symmetry breaking
 - \Rightarrow EFT of weakly interacting Nambu-Goldstone bosons
 - \Rightarrow EFT treats hadrons as dynamical degree of freedom (no quarks, gluons)

• Lattice QCD

- \Rightarrow Large-scale supercomputer simulation on Euclidean spacetime lattice
 - Provide most accurate α_s for pQCD
 - Provide LECs for EFT

Lattice QCD and electroweak interactions

Evaluate the hadronic matrix elements for electroweak processes

• Lattice QCD is powerful for "standard" hadronic matrix elements with

single local operator insertion

- only single stable hadron or vacuum in the initial/final state
- Requires only two- or three-point correlation functions

Precision era for lattice QCD

Flavor Lattice Averaging Group (FLAG) average 2019

 $f_{+}^{K\pi}(0) = 0.9706(27) \Rightarrow 0.28\%$ error $f_{K^{\pm}}/f_{\pi^{\pm}} = 1.1932(19) \Rightarrow 0.16\%$ error

Experimental information [arXiv:1411.5252, 1509.02220]

$$\begin{array}{lll} \mathcal{K}_{\ell 3} & \Rightarrow & |V_{us}|f_{+}(0) = 0.2165(4) & \Rightarrow & |V_{us}| = 0.2231(7) \\ \mathcal{K}_{\mu 2}/\pi_{\mu 2} & \Rightarrow & \left| \frac{V_{us}}{V_{ud}} \right| \frac{f_{K^{\pm}}}{f_{\pi^{\pm}}} = 0.2760(4) & \Rightarrow & \left| \frac{V_{us}}{V_{ud}} \right| = 0.2313(5) \\ \end{array}$$

Flag average 2019

$\operatorname{Error} < 1\%$

	N _f	FLAG average	Frac. Err.
f_K/f_π	2 + 1 + 1	1.1932(19)	0.16%
$f_{+}(0)$	2 + 1 + 1	0.9706(27)	0.28%
f_D	2 + 1 + 1	212.0(7) MeV	0.33%
f_{D_s}	2 + 1 + 1	249.9(5) MeV	0.20%
f_{D_s}/f_D	2 + 1 + 1	1.1783(16)	0.13%
f _B	2 + 1 + 1	190.0(1.3) MeV	0.68%
f_{B_s}	2 + 1 + 1	230.3(1.3) MeV	0.56%
f_{B_s}/f_B	2 + 1 + 1	1.209(5)	0.41%

Error < **5%**

	N _f	FLAG average	Frac. Err.
Âκ	2 + 1	0.7625(97)	1.3%
$f_{+}^{D\pi}(0)$	2 + 1	0.666(29)	4.4%
$f_{\pm}^{DK}(0)$	2 + 1	0.747(19)	2.5%
Â _{Bs}	2 + 1	1.35(6)	4.4%
B_{B_s}/B_{B_d}	2 + 1	1.032(28)	3.7%

Time to go beyond local matrix elements and three-point functions

Go beyond local hadronic matrix elements – challenges

- Computational demanding
 - Three-point function

 $\langle H_f(x_f)O(0)H_i^{\dagger}(x_i)\rangle \quad \Rightarrow \quad \int d^3\vec{x}_i\int d^3\vec{x}_f \quad \Rightarrow \quad \sum_{\vec{x}_f}\sum_{\vec{x}_f}\sim L^6$

Four-point function

 $\langle H_f(x_f) O_1(x) O_2(0) H_i^{\dagger}(x_i) \rangle \rangle \Rightarrow$

$$\int d^3 \vec{x}_i \int d^3 \vec{x}_f \int d^3 \vec{x} \quad \Rightarrow \quad \sum_{\vec{x}_i} \sum_{\vec{x}_f} \sum_{\vec{x}} \sim L^9$$

with $L = 24, 32, 48, 64, 96, \cdots$

• Complicated intermediate states

$$\langle H_f | O_1(x) O_2(0) | H_i \rangle = \sum_n \langle H_f | O_1(x) | n \rangle \langle n | O_2(0) | H_i \rangle$$

- In Euclidean space, exponentially-growing unphysical effects from |n
 angle
- Power-law FV effects if $|n\rangle$ given by low-lying multi-hadron states
- Short-distance divergence in $O_1(x)O_2(0)$ when $x \to 0$
 - Additional renormalization is required

Go beyond local hadronic matrix elements – opportunities

Opportunities in flavor physics

• Rare decays, e.g. ${\sf Br}[{\cal K}^+ o \pi^+
u ar
u] = 1.73^{+1.15}_{-1.05} imes 10^{-10}$

- Electroweak radative corrections to hadronic decays
 - \Rightarrow superallowed nuclear β decay half-life time with precision 10^{-6}

- Proton's weak charge $Q_W^p = 1 4 \sin^2 \theta_W$ $\Rightarrow 0.3\%$ measurement of $\sin^2 \theta_W$ by Q-weak at JLab
 - Parity-violating e-p scattering, $\Box_{\gamma Z}^{V}$ contribution

Go beyond local hadronic matrix elements – opportunities

Opportunities in nuclear physics

- Muonic hydrogen spectrum ightarrow proton charge radius $r_{
 ho}=0.84087(39)$ fm
 - \Rightarrow 10 times more accurate than e-p scattering

• Neutrioless double beta decays

• Hadron electromagentic polarizability

Our recent work on four-point correlation functions

- QCD+QED ⇒ Infinite-volume reconstruction method [XF, L. Jin, PRD100 (2019) 094509]
- Rare kaon decays $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [Z. Bai, XF, N. Christ, et.al. PRL118 (2017) 252001]
- Electroweak box contribution to $\pi_{\ell 3}$ and $K_{\ell 3}$ decay

[XF, M. Gorchtein, L. Jin, P. Ma, C. Seng, PRL124 (2020) 192002]
 [P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, arXiv:2102.12048]

• Neutrinoless double beta decays

[XF, L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001] [X. Tuo, XF, L. Jin, PRD100 (2019) 094511]

- Work in preparation
 - Pion mass splitting
 - Pion electromagentic polarizability

Move from the pion to nucleon sector

Our recent work on four-point correlation functions

- QCD+QED ⇒ Infinite-volume reconstruction method [XF, L. Jin, PRD100 (2019) 094509]
- Rare kaon decays $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ [Z. Bai, XF, N. Christ, et.al. PRL118 (2017) 252001]
- Electroweak box contribution to $\pi_{\ell 3}$ and $K_{\ell 3}$ decay

[XF, M. Gorchtein, L. Jin, P. Ma, C. Seng, PRL124 (2020) 192002]
 [P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, arXiv:2102.12048]

Neutrinoless double beta decays

[XF, L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001]
 [X. Tuo, XF, L. Jin, PRD100 (2019) 094511]

- Work in preparation
 - Pion mass splitting
 - Pion electromagentic polarizability

Move from the pion to nucleon sector

Electroweak box diagram

First-row CKM unitarity

$$\Delta_{\rm CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0$$

PDG 2019 \Rightarrow PDG 2020

	PDG 2019	PDG 2020
$ V_{ud} $	0.97420(21)	0.97370(14)
$ V_{us} $	0.2243(5)	0.2245(8)
$ V_{ub} $	0.00394(36)	0.00382(24)
$\Delta_{ m CKM}$	-0.00061(47)	-0.00149(45)

- Main update from $|V_{ud}| \Rightarrow 3.3 \sigma$ deviation from CKM unitarity
- $|V_{ud}|$ is from superallowed $0^+
 ightarrow 0^+$ nuclear beta decay
 - Pure vector transitions at leading order
 - Uncertainty is dominated by electroweak radiative correction

[J. Hardy, I. Towner (2015)]

Axial γW -box diagram

Based on current algebra, only axial γW -box diagram sensitive to hadronic scale

$$T_{\mu\nu}^{VA} = \frac{1}{2} \int d^4x \, e^{iqx} \langle H_f(p) | T \left[J_{\mu}^{em}(x) J_{\nu}^{W,A}(0) \right] | H_i(p) \rangle$$

Re-evaluation of the $\gamma \textit{W}\text{-}\mathsf{box}$ diagram

 $> 3\sigma$ violation of CKM unitarity

 \Rightarrow first-principle calculation

Quark contractions for the γW -box diagrams

- Coulomb gauge fixed wall source is used for the pion interpolating field
- $J_{\nu}^{W,A}(0)$ is treated as a source and $J_{\mu}^{em}(x)$ is a sink
- Calculate $\mathcal{H}_{\mu\nu}^{V\!A}(x)$ as a function of x

Lattice results for the hadronic functions

Construct the Lorentz scalar function $M_{\pi}(Q^2)$ from $\mathcal{H}^{VA}_{\mu\nu}(x)$

$$M_{\pi}(Q^2) = -rac{1}{6\sqrt{2}}rac{\sqrt{Q^2}}{m_{\pi}}\int d^4x\,\omega(Q,x)\epsilon_{\mu
ulpha0}x_{lpha}\mathcal{H}^{V\!A}_{\mu
u}(x)$$

Combine lattice results with pQCD

Radiative correction requires the momentum integral from $0 < Q^2 < \infty$

$$\Box_{\gamma W}^{VA} = \frac{3\alpha_e}{2\pi} \int \frac{dQ^2}{Q^2} \frac{m_W^2}{m_W^2 + Q^2} M_\pi(Q^2)$$

- Lattice data used for low- Q^2 region
- OPE and perturbative Wilson coefficients used for high- Q^2 region

Use the momentum scale $Q_{\rm cut}^2$ to separate the LD and SD contributions

 $\Box_{\gamma W}^{VA} = \begin{cases} 2.816(9)_{\rm stat}(24)_{\rm PT}(18)_{\rm a}(3)_{\rm FV} \times 10^{-3} & \text{using } Q_{\rm cut}^2 = 1 \ \text{GeV}^2 \\ 2.830(11)_{\rm stat}(9)_{\rm PT}(24)_{\rm a}(3)_{\rm FV} \times 10^{-3} & \text{using } Q_{\rm cut}^2 = 2 \ \text{GeV}^2 \\ 2.835(12)_{\rm stat}(5)_{\rm PT}(30)_{\rm a}(3)_{\rm FV} \times 10^{-3} & \text{using } Q_{\rm cut}^2 = 3 \ \text{GeV}^2 \end{cases}$

• When $Q_{\rm cut}^2$ increase, the lattice artifacts become larger

• When $Q_{\rm cut}^2$ decrease, systematic effects in pQCD become larger

• For 1 GeV $^2 \leq Q_{
m cut}^2 \leq$ 3 GeV 2 , all results are consistent within uncertainties

Decay width measured by PIBETA experiment

$$\Gamma_{\pi\ell3} = \frac{G_F^2 |V_{ud}|^2 m_\pi^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1+\delta) I_{\pi}$$

• ChPT [Cirigliano et.al. (2002), Czarnecki, Marciano, Sirlin (2019)]

 $\delta = 0.0334(10)_{\text{LEC}}(3)_{\text{HO}}$

• Sirlin's parametrization [A. Sirlin, Rev. Mod. Phys. 07 (1978) 573]

$$\delta = \frac{\alpha_e}{2\pi} \left[\bar{g} + 3 \ln \frac{m_Z}{m_p} + \ln \frac{M_Z}{M_W} + \tilde{a}_g \right] + \delta_{\rm HO}^{\rm QED} + 2\Box_{\gamma W}^{VA}$$
$$= 0.0332(1)_{\gamma W}(3)_{\rm HO}$$

where $\frac{\alpha_e}{2\pi}\bar{g} = 1.051 \times 10^{-2}$, $\frac{\alpha_e}{2\pi}\tilde{a}_g = -9.6 \times 10^{-5}$, $\delta_{\rm HO}^{\rm QED} = 0.0010(3)$

• Hadronic uncertainty reduced by a factor of 10, which results in

 $|V_{ud}| = 0.9739(28)_{exp}(5)_{th} \quad \Rightarrow \quad |V_{ud}| = 0.9739(28)_{exp}(1)_{th}$

[XF, Gorchtein, Jin, Ma, Seng, PRL124 (2020) 192002]

First time to calculate γW box diagram \Rightarrow method set up for nucleon decay

- Semileptonic decays
 - Traditionally from $K^0_L
 ightarrow \pi e \nu$ decays to avoid isospin breaking effects
 - Latest experiments justify comparison between different decay modes
 - Global average from [FlaviaNet Working Group, EPJC, 2010]

 $\begin{aligned} & \mathcal{K}_{L}^{0} \to \pi e \nu, \quad \mathcal{K}_{L}^{0} \to \pi \mu \nu, \quad \mathcal{K}^{\pm} \to \pi^{0} e^{\pm} \nu, \quad \mathcal{K}^{\pm} \to \pi^{0} \mu^{\pm} \nu, \quad \mathcal{K}_{S}^{0} \to \pi e \nu \\ & \text{leads to } |V_{us}|f_{+}(0) = 0.2165(4) \end{aligned}$ $\blacktriangleright \text{ Using FLAG } N_{f} = 2 + 1 + 1 \text{ lattice input of } f_{+}(0) = 0.9706(27) \Rightarrow \end{aligned}$

 $|V_{us}| = 0.2231(4)_{exp+RCs}(6)_{lat}$

- Leptonic decays
 - Exp. measurements of $K \to \mu \nu(\gamma)$ and $\pi \to \mu \nu(\gamma)$ e.g. from KLOE
 - Using FLAG $N_f = 2 + 1 + 1$ lattice input of $f_K/f_\pi = 1.1932(19) \Rightarrow$

 $|V_{us}| = 0.2252(5)_{\rm lat}$

• $|V_{us}|$ from semileptonic and leptonic decays differs by 2.4σ

Important to include QED and QCD isospin violations in the lattice calculations

Basic idea

C.-Y. Seng, XF, M. Gorchtein, L.-C. Jin, U.-G. Meißner, JHEP 10 (2020) 179 Combine the lattice calculation with ChPT

• Use ChPT to determine EM correction

$$\begin{split} \delta_{\rm em}^{K^{\pm}} &= 2e^2 \left[-\frac{8}{3} X_1 - \frac{1}{2} \tilde{X}_6^{\rm phys}(M_{\rho}) - 2K_3^r(M_{\rho}) + K_4^r(M_{\rho}) + \frac{2}{3} K_5^r(M_{\rho}) + \frac{2}{3} \\ \delta_{\rm em}^{K^0} &= 2e^2 \left[\frac{4}{3} X_1 - \frac{1}{2} \tilde{X}_6^{\rm phys}(M_{\rho}) \right] + \cdots \end{split}$$

 ${\cal K}^0$ decays are much simpler, but still require LECs X_1 and ${ ilde X}_6^{
m phys}(M_
ho)$

- Lattice QCD can provides LECs in principle
 - but needs to calculate all the diagrams, not only just γW diagram!
- Fortunately, these LECs are independent of quark mass

 $K \rightarrow \pi \ell \nu$ at physical kinematics vs in flavor SU(3) limit

Solution: Lattice calculation of EM correction to $K_{\ell 3}$ decay in flavor SU(3) limit

Axial γW -box diagram contribution to $K^0 \rightarrow \pi^+$ decays

Calculation is performed in the flavor SU(3) limit with $m_K = m_\pi$

Lattice results

[P. Ma, XF, M. Gorchtein, L. Jin, C. Seng, arXiv:2102.12048]

• After combining the lattice data and PT results, we have

 $\Box_{\gamma W}^{V\!A}\big|_{K^0} = \begin{cases} 2.460(18)_{\rm stat}(42)_{\rm PT}(22)_a(1)_{\rm FV} \times 10^{-3} & Q_{\rm cut}^2 = 1 \ {\rm GeV}^2 \\ 2.443(20)_{\rm stat}(15)_{\rm PT}(36)_a(1)_{\rm FV} \times 10^{-3} & Q_{\rm cut}^2 = 2 \ {\rm GeV}^2 \\ 2.433(22)_{\rm stat}(7)_{\rm PT}(45)_a(1)_{\rm FV} \times 10^{-3} & Q_{\rm cut}^2 = 3 \ {\rm GeV}^2 \end{cases}$

• The relation between box contribution and the LECs is given by

$$-\frac{8}{3}X_1 + \bar{X}_6^{\mathrm{phys}}(M_\rho) = -\frac{1}{2\pi\alpha} \left(\Box_{\gamma W}^{VA} \big|_{K^0} - \frac{\alpha}{8\pi} \ln \frac{M_W^2}{M_\rho^2} \right) + \frac{1}{8\pi^2} \left(\frac{5}{4} - \tilde{a}_g \right)$$

• This results in

$$-rac{8}{3}X_1+ ilde{X}_6^{
m phys}=0.0197(10)$$

ChPT quoted the minimal resonance model as input

$$egin{aligned} X_1 &= -3.7(3.7) imes 10^{-3} & ext{and} & ilde{X}_6^{ ext{phys}} &= 10.4(10.4) imes 10^{-3} \ & -rac{8}{3} X_1 + ilde{X}_6^{ ext{phys}} &= 0.0203(143) \end{aligned}$$

Consistent between lattice and ChPT, but error from lattice is much smaller, 22/2

• Combine the SU(3) K^0 decay

$$-rac{8}{3}X_1+ ilde{X}_6^{
m phys}=$$
 0.0197(10) for ${\cal K}^0 o\pi^+$

with semileptonic pion decay

$$rac{4}{3}X_1+ ilde{X}_6^{
m phys}=0.0110(6)~~{
m for}~\pi^- o\pi^0$$

We have

$$X_1 = -2.2(4) \times 10^{-3}, \quad \tilde{X}_6^{\mathrm{phys}} = 13.9(7) \times 10^{-3}$$

• This is comparable with the minimal resonance model

$10^3 X_1$	$10^3 X_2^r$	$10^3 X_3^r$	$10^3 ilde{X}_6^{eff}$	$10^{3} (X_{6}^{eff})_{\alpha_{s}}$	$10^3 X_6^{eff}$
-3.7	3.6	5.00	10.4	3.0	-231.5

• Axial γW -box contribution to $\pi_{\ell 3}$ decay

 $\Box_{\gamma W}^{V\!A} = 2.830(11)_{
m stat}(26)_{
m sys} imes 10^{-3}$

• $K_{\ell 3}$ decay: lattice QCD interplay with EFT

 $X_1 = -2.2(4) \times 10^{-3}, \quad \tilde{X}_6^{
m phys} = 13.9(7) \times 10^{-3}$

• Move towards nucleon beta decay

Four-point function: an exciting, new area for lattice QCD