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Bound state and quantum field theory

Field theory Successful:
• Nonrelativistic quantum 

mechanics to handle 
bound state;

• Perturbation theory to 
handle relativistic effects

Field theory not Successful yet:
• Growth of the running coupling constant 

in the infrared region;
• Confinement;
• Dynamical Chiral Symmetry Breaking;
• Possible nontrivial vacuum structure in 

hadron

Trace anomaly
Ø All renormalisable four-

dimensional theories 
possess a trace anomaly;

Ø The size of the trace 
anomaly in QED must be 
great deal smaller than 
that in QCD.
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Continuum Schwinger function Method

Dyson, F. J. (1949), “The S Matrix In Quantum Electrodynamics,” Phys. Rev. 75, 1736.
Schwinger, J. S. (1951), “On The Green’s Functions Of Quantized Fields: 1 and 2,”  Proc. Nat. Acad. Sci. 37 (1951) 452; ibid 455.
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Continuum Schwinger function Method

Dyson, F. J. (1949), “The S Matrix In Quantum Electrodynamics,” Phys. Rev. 75, 1736.
Schwinger, J. S. (1951), “On The Green’s Functions Of Quantized Fields: 1 and 2,”  Proc. Nat. Acad. Sci. 37 (1951) 452; ibid 455.

Ø They provide a systematic, symmetry-preserving approach to solving 
the bound-state problem in QCD;

Ø Predictions from CSM analyses are practically identical to those 
obtained via the lattice-regularized theory.

Dyson-Schwinger Equations
Bethe-Salpeter Equations(Nambu)
Faddeev Equation
Ward-Takahashi identity
Scattering Problem
……

DSEs group
• Cui, et al, EPJA 57 (2021) 5, EPJC80 (2020) 1064
• Ding, et al, CPC44 (2020) 031002, PRD101(2020)054014
• Binosi, et al, PLB790(2019)257
• Chen, et al, PRD98(2018) 091505
• Gao, et al, PRD96 (2017) 034024
• Chang, et al, PLB737(2014), PRL110(2013)132001,PRL111(2013)1418002  
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QCDs Dyson-Schwinger Equations

ETC!
Image courtesy of Gernot Eichmann
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Dyson-Schwinger Equation scope
Study bound state problem within an continuum field theory

Exact representation

Modeling…HadronPhysics

MC ??

QCD

DSEslQCD

QCD

TruncationSCL
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Quark Mass
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Quark Mass

lQCD

DSEs

• Quarks progressivley 
become more 
sorphisticated as 
experience grew with 
formulating and solving 
the quark gap equation 
and as computational 
methods and power 
improved for lattcie-
regularised QCD.

• Not Proper Mass/Rest 
Mass/Newtonian mass

• DCSB representation

• Roughly M0…Constituent 
quarks(Model)
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Maris, Roberts and Tandy, Phys. Lett. B420(1998) 267-273

Ø Pion’s Bethe-Salpeter amplitude
Solution of the Bethe-Salpeter equation

Ø Dressed-quark propagator

Ø Axial-vector Ward-Takahashi identity entails(chiral limit)
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Calculation of chiral-symmetry breaking and pion properties as a Goldstone boson

Yuan-ben Dai, Chao-shang Huang, and Dong-sheng Liu
Institute of Theoretical Physics, Academia Sinica, P. O. Box 2735, Beijing, China

(Received 19 June 1990; revised manuscript received 5 November 1990)

A procedure for picking out the solution of the covariant Bethe-Salpeter equation corresponding
to that Goldstone boson in a spontaneous-chiral-symmetry-breaking theory is described under very
general assumptions. Physical quantities for chiral-symmetry breaking and the pion are calculated
with this procedure taking into account gluon ladder exchange and a covariant chiral-symmetric
generalization of the confinement potential. Satisfactory results are obtained with reasonable values
of the parameters.

I. INTRODUCTION

As is well known, phenomenological nonrelativistic
models based on extrapolation of an asymptotically free
one-gluon potential at short distances and a linear
confinement potential at large distances fit excellently the
heavy-quarkonioum spectra (see, e.g. , Refs. 1 and 2). The
potential in the range 0. 1—1.0 fm, where theoretical pre-
dictions are not available, is essentially fixed by experi-
mental data. With some relativistic corrections included
in the calculation, the same potential models can even
give satisfactory results for spectra of mesons composed
of light quarks except for the lightest 0 octet mesons
(see, e.g. , Ref. 2). These kinds of calculation, when ap-
plied to a pion considered as a bound state of quarks with
a constant constituent mass, usually give too large a value
for I . It has been realized that the failure of this ap-
proach to the lightest 0 octet mesons is due to the pecu-
liar feature of these mesons being simultaneously relativ-
istic bound states and Goldstone bosons. The approaches
which fail to incorporate this point cannot give a satisfac-
tory description of these mesons.
There have been a large number of works investigating

chiral-symmetry breaking in QCD-like theories with the
Schwinger-Dyson equation (see, e.g., Refs. 4—6). In Refs.
5 and 6, a scheme was first developed in which the
Bethe-Salpeter wave function of the pion was obtained
from a solution of the Schwinger-Dyson equation for a
dynamical quark mass. This scheme properly incorpo-
rates the Goldstone-boson nature of the pion. However,
the authors of these works made some approximations
which are good only for the nonrelativistic system. In
particular the authors of Ref. 5 used an instantaneous
Coulomb interaction and neglected the contributions of
transverse gluons. In Ref. 7, the effect of the transverse
gluon was considered with the retardation effect replaced
by an effective transverse-gluon mass. Since the pion is a
relativistic bound state, it is worthwhile to reanalyze the
problem with a relativistic formulation. In this article we
shall use the Schwinger-Dyson equation for a dynamical
quark mass and the Bethe-Salpeter equation for the pion
in their Lorentz-invariant form. The kernels of these two
equations are taken to be the same. In a previous note,
we have shown under very general conditions how to

pick out the solution of the Bethe-Salpeter equation cor-
responding to the Goldstone boson in a spontaneous
chiral-symmetry-breaking theory. Our scheme is essen-
tially a generalization of the procedure used in Refs. 5
and 6 to the full relativistic theory. We shall use this
scheme to the case of gluon ladder exchange with a run-
ning coupling constant, as well as to the case where a co-
variant generalization of the confinement potential is con-
tained in the kernel. A confinement potential of vector
type was considered in Refs. 6 and 7. The kernel corre-
sponding to the confinement interaction used by us is a
chiral-symmetric combination which contains a superpo-
sition of the vector and scalar confinement potential in
the v /c expansion. Physical quantities for chiral-
symmetry breaking and the pion, including quark dynam-
ical mass, quark condensate (Pg), pion decay constantf, and pion charge radius r, are calculated with these
solutions. We would like to investigate the possibility of
fitting the experimental data for chiral-symmetry break-
ing and the pion properties from realistic assumptions.
Therefore, we use Lorentz-covariant equations and try to
restrict the values of parameters within the region al-
lowed by other experimental data or theoretical con-
siderations.
In Sec. II we shall explain our method and write down

basic equations. Formulas used for calculating physical
quantities and numerical results will be presented in Sec.
III. These results will be discussed in Sec. IV.

II. BASIC ASSUMPTIONS AND METHODS

The same interaction kernel appearing in the Wick-
rotated Schwinger-Dyson equation for quark self-energy
and Bethe-Salpeter equation for quark-antiquark pair is
assumed to be of the form

I,.g I,. U, , t'=S, P, V, A, T,L,
where U; are Lorentz-invariant functions of momenta in-
volved, q is the momentum transfer of the quark, I", are
16 Hermitian Dirac matrices for i WL, and

I I =y q/+q
The Schwinger-Dyson equation takes the form

43 1717 1991 The American Physical Society

Measure Quark Mass
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FIG. 1: Triangle diagram for the form factor.

FIG. 2

I. MOMENTUM ASSIGNMENT

The definition of the form factor is shown in Fig. 1, where

k1 = k − P

2
, (1)

k2 = k +
P

2
− Q

2
, (2)

k3 = k +
P

2
+

Q

2
. (3)

Because of the momentum conservation, the triangle diagram has two independent momenta P and Q with

Pi = P − Q

2
, (4)

Pf = P +
Q

2
. (5)

The components of P and Q are defined as

P = (0, 0, P3, iP4), (6)

Q = (0, 0, Q3, iQ4), (7)

Sullivan processes, in which a 
nucleon's pion cloud is used to 
provide access to the pion’s 

(a) elastic form factor and 
(b) parton distribution functions.  

Measure Quark Mass
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Imaging Hadron Structure?
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u     𝑑̅

𝑢 𝑥 = 6 𝑥 1 − 𝑥
.𝑢 𝑥 = 0
𝑑̅ 𝑥 = 6 𝑥 1 − 𝑥
𝑑 𝑥 = 0

𝑔 𝑥 = 0

𝑢$ 𝑥
= 𝑢 𝑥 − .𝑢(𝑥)
= 6 𝑥 1 − 𝑥

𝑆𝑖𝑛𝑔𝑙𝑒𝑡 𝑥
= 2 ∗ 6 𝑥 1 − 𝑥

𝑔 𝑥 = 0

Imaging Hadron Structure?

No “glue” and No “sea”



Lei Chang (NKU)

6

IV. PREDICTION FOR THE PION
VALENCE-QUARK DISTRIBUTION FUNCTION

A. Ward identity approximation for q⇡(x)

As illustrated in Ref. [71], it is challenging to solve
for the complete RL u and t channel scattering ampli-
tudes depicted in Figs. 2(A), (B) and needed to describe
�⇤⇡ ! �⇤⇡. Herein, we therefore use a simpler approach,
employing the approximations introduced in Ref. [36]:

i�n(k; x; ⇣H) = �x

n
(k⌘)n · @k⌘

S�1(k⌘) , (18a)

�n

⇡
(k⌘,�P ; ⇣H) = n · @k⌘

�⇡(k⌘,�P ; ⇣H) , (18b)

in which case

q⇡(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘)

⇥ n · @k⌘
[�⇡(k⌘,�P )S(k⌘)] �⇡(k⌘̄, P ) S(k⌘̄) , (19)

where the derivative acts only on the bracketed terms. It
is straightforward to prove algebraically that the result
obtained using Eq. (19) is: independent of ⌘; ensures

q⇡(x; ⇣H) = q⇡(1 � x; ⇣H) ; (20)

satisfies Eqs. (9); and possesses defined subcomponents
that comply with Eqs. (14), (16).

B. Computing the inputs for q⇡(x)

In order to calculate q⇡(x; ⇣H) from Eq. (19) one must
know the dressed light-quark propagator and pion Bethe-
Salpeter amplitude. Algebraic Ansätze were employed in
Ref. [36]. In contrast, herein we follow Ref. [40] and use
realistic numerical solutions. Consequently, the result for
q⇡(x; ⇣H) is completely determined once an interaction
kernel is specified for the RL Bethe-Salpeter equation.

We use the interaction explained in Ref. [87, 88]:

K ↵1↵
0
1,↵2↵

0
2

= Gµ⌫(k)[i�µ]↵1↵
0
1
[i�⌫ ]↵2↵

0
2
, (21a)

Gµ⌫(k) = G̃(k2)Tµ⌫(k) , (21b)

with k2Tµ⌫(k) = k2�µ⌫ � kµk⌫ and (s = k2)

1
Z

2
2

G̃(s) =
8⇡2D

!4
e�s/!

2

+
8⇡2�mF(s)

ln
⇥
⌧ + (1 + s/⇤2

QCD)2
⇤ ,

(22)

where �m = 4/�0, �0 = 11 � (2/3)nf , nf = 4,
⇤QCD = 0.234 GeV, ⌧ = e2 � 1, and F(s) = {1 �

exp(�s/[4m2
t
])}/s, mt = 0.5 GeV. The development of

Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)

Hadronic Scale
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Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)

• Modeling interaction and truncation approximation
• Renormalize our DSEs at the hadronic scale ζ=mα
• Pure valences
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Pion Compton Scattering(RL symmetry)
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where �m = 4/�0, �0 = 11 � (2/3)nf , nf = 4,
⇤QCD = 0.234 GeV, ⌧ = e2 � 1, and F(s) = {1 �

exp(�s/[4m2
t
])}/s, mt = 0.5 GeV. The development of

Eqs. (21), (22) is summarised in Ref. [87] and their con-
nection with QCD is described in Ref. [57].

Z2 in Eq. (22) is the dressed-quark wave function renor-
malisation constant. We employ a mass-independent
momentum-subtraction renormalisation scheme for the

gap and inhomogeneous vertex equations, implemented
by using the scalar WGT identity and fixing all renor-
malisation constants in the chiral limit [89]. In the first
applications of this DSE approach to hadron observables
[90, 91] (and many that have followed), the renormal-
isation scale was chosen deep in the spacelike region:
⇣ = ⇣19 := 19 GeV, primarily to ensure simplicity in the
nonperturbative renormalisation procedure. This choice
entails that the dressed quasiparticles obtained as solu-
tions to the DSEs remain intact and thus serve as the
dominant degrees-of-freedom for all observables. This is
adequate for infrared quantities, such as hadron masses:
flexibility of model parameters and the bridge with QCD
enable valid predictions to be made. However, it gen-
erates errors in form factors and parton distributions.
With form factors, the correct power-law behaviour is
obtained, but the scaling violations deriving from anoma-
lous operator dimensions are wrong (see, e.g. Ref.[92]);
and for parton distributions, the natural connection be-
tween the renormalisation scale and the reference scale
for evolution equations is lost, again because parton loops
are suppressed when renormalising a RL truncation study
at deep spacelike momenta so the computed anomalous
dimensions are wrong.

As explained elsewhere [39, 41, 43], the solution to
these problems is to renormalise the DSE solutions at
a typical hadronic scale, where the dressed quasiparti-
cles are the correct degrees-of-freedom. This recognises
that a given meson’s Poincaré covariant wave function
and correlated vertices, too, must evolve with ⇣ [93–95].
Such evolution enables the dressed-quark and -antiquark
degrees-of-freedom, in terms of which the wave function is
expressed at a given scale ⇣2 = Q2, to split into less well-
dressed partons via the addition of gluons and sea quarks
in the manner prescribed by QCD dynamics. These ef-
fects are automatically incorporated in bound-state prob-
lems when the complete quark-antiquark scattering ker-
nel is used; but aspects are lost when that kernel is trun-
cated, and so it is with RL truncation. We therefore
renormalise our DSEs at the hadronic scale ⇣ = ⇣H .

A natural value for the hadronic scale, ⇣H , must now
be determined. To that end, recall that QCD pos-
sesses a process-independent e↵ective charge [96, 97]:
↵PI(k2). This running-coupling saturates in the in-
frared: ↵PI(0)/⇡ ⇡ 1, owing to the dynamical genera-
tion of a gluon mass-scale [98, 99]. These features and a
smooth connection with pQCD (and hence Eq. (22)) are
expressed in the following algebraic expression:

↵PI(k
2) =

⇡�m

ln[(m2
↵

+ k2)/⇤2
QCD]

, (23)

m↵ = 0.30 GeV& ⇤QCD. Evidently, m↵ is an essen-
tially nonperturbative scale whose existence ensures that
modes with k2 . m2

↵
are screened from interactions. It

therefore serves to define the natural boundary between
soft and hard physics; hence, we identify

⇣H = m↵ . (24)
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FIG. 2. Collection of diagrams required to complete a symmetry-preserving RL calculation of pion Compton scattering.
Amplitude-One (S1 ) = (A)+(B)-(C ). The “dots” in (A) and (B) indicate summation of infinitely many ladder-like rungs,
beginning with zero rungs. The other two amplitudes are obtained as follows: (S2 ) – switch vertices to which q and q0 are
attached; and (S3 ) – switch vertex insertions associated with q0 and P 0. In all panels: triangles (blue) – pion Bethe-Salpeter
amplitudes; circles (red) – amputated dressed-photon-quark vertices; and interior lines – dressed-quark propagators. � = q0�q.
Poincaré-covariance and electromagnetic current conservation, inter alia, are guaranteed so long as each of these elements is
computed in RL truncation. For later use, using (C ), we define line (a) to be that carrying momentum k; line (b), k + q; line
(c), k ��; and line (d), k � P .

contributions. On the other hand, if any one of the con-
tributions described and illustrated here is neglected in a
given calculation, then that calculation explicitly breaks
an array of relevant symmetries.

Consider now the �⇤⇡ forward pion Compton ampli-
tude in the Bjorken limit, Eq. (4). The (S3 ) permutation
of the diagrams in Fig. 2 corresponds to a collection of
so-called cat’s ears contributions. They are greatly sup-
pressed compared to the other two permutations in the
Bjorken limit; hence may be neglected. The (S2 ) permu-
tation corresponds simply to symmetrising the incoming
and outgoing photons and so need not explicitly be con-
sidered further. Consequently, in computing q⇡(x; ⇣H),
one may focus solely on those diagrams drawn explicitly
in Fig. 2; namely, in RL truncation [36]:

�⇤(q) + ⇡(P ) ! �⇤(q) + ⇡(P )
Fig. 2

= (A) + (B) � (C) .
(8)

In the forward and Bjorken limits, Fig. 2(C ) is the text-
book handbag contribution to �⇤⇡ Compton scattering.
It has often been used alone to estimate q⇡(x; ⇣H). (See,
e.g. Refs. [12, 73–76] and citations therein and thereof.)
If the pion’s Bethe-Salpeter amplitude is assumed to be
momentum-independent1 and a Poincaré-invariant regu-
larisation of the loop-integral is employed, then Fig. 2(C )
yields a result for q⇡(x; ⇣H) that preserves both the

1
This is the result obtained using an internally-consistent,

symmetry-preserving treatment of a vector⌦vector contact in-

teraction (CI) [77, 78].

baryon-number and momentum sum-rules; namely,
Z 1

0
dx q⇡(x; ⇣H) = 1 , (9a)

Z 1

0
dx xq⇡(x; ⇣H) =

1

2
. (9b)

(The right-hand-side of Eq. (9a) remains unity under
QCD evolution [79–82].) In fact, one finds [76]

q⇡

CI(x; ⇣H) ⇡ ✓(x)✓(1 � x) , (10)

where ✓(x) is the Heaviside step function. Eq. (10) de-
scribes a structureless pion, in which a given valence-
quark carries all light-front-fractions of the pion’s total
momentum with equal probability.

If the regularisation scheme for the loop in Fig. 2(C ) in-
troduces a mass-scale and/or the quark-antiquark inter-
action is momentum-dependent, then the result obtained
violates one or both of the sum rules in Eq. (9) [12, 73].
Consequently, Fig. 2(C ) alone is a poor approximation
when realistic interactions are used.

Consider now Fig. 2(A), which can be written thus:

q⇡

A
(x; ⇣H) = Nctr

Z

dk

�x

n
(k⌘) n · � H⇡(P, k) , (11)

where �x

n
(k⌘) := �(n · k⌘ � xn · P ); n is a light-like

four-vector, n2 = 0, n · P = �m⇡; and k⌘ = k + ⌘P ,
k⌘̄ = k � (1 � ⌘)P , ⌘ 2 [0, 1]. Owing to Poincaré covari-
ance, no observable can legitimately depend on ⌘, i.e. the
definition of the relative momentum.

In RL truncation, as illustrated in Fig. 2(A), H⇡(P, k)
in Eq. (11) is an infinite sum of laddered gluon-rungs,
beginning with zero rungs. Hence, one may write [83]

q⇡

A
(x; ⇣H) = Nctr

Z

dk

i�⇡(k⌘,�P )

⇥ S(k⌘) i�n(k; x; ⇣H) S(k⌘) i�⇡(k⌘̄, P ) S(k⌘̄) , (12)

5

FIG. 3. Employing the optical theorem, the diagrams in
Fig. 2 yield these two contributions to q⇡(x): upper panel,
Eq. (12); and lower panel, Eq. (15). The sum yields the com-
pletely symmetry-preserving RL truncation formula for q⇡(x).

where �n(k; x; ⇣H) is a generalisation of the quark-photon
vertex, describing a dressed-quark scattering from a zero
momentum photon and determined by a RL Bethe-
Salpeter equation with inhomogeneity n · � �x

n
(k⌘).

Eq. (12) is depicted in Fig. 3(A0); and now a compari-
son with Fig. 1 makes manifest that the RL treatment of
Fig. 2(A) is equivalent to the symmetry preserving anal-
ysis of the pion’s electromagnetic form factor (at Q2 = 0)
[47, 84]. Furthermore, Eq. (12) ensures Eq. (9a) because

Z 1

0
dx �n(k; x; ⇣H) = nµ�µ(k, k)/n · P ; (13)

thus, using Eq. (7),

Z 1

0
dx q⇡

A
(x; ⇣H) = F⇡(Q2 = 0) = 1 . (14)

On the other hand, as illustrated by existing calcula-
tions, e.g. Refs. [12, 83], Eq. (12) violates Eq. (9b). Hence,
as explained above, any result for q⇡(x; ⇣H) obtained
from Fig. 2(A) alone – equivalently, Fig. 3(A0) – is flawed
because it violates basic symmetry constraints. Typical
consequences include the following: an overestimate of
the sea and gluon content of a given bound-state; erro-
neous estimates of the relative size of the valence-quark
momentum fractions within di↵erent but related bound-
states; incorrect identification of ⇣H , if this scale is used
as a parameter to fit an empirically-determined distribu-
tion [85]; and since these errors are transmitted into the
evolved distributions, a lack of credibility in any conclu-
sions and interpretations drawn from the distributions.

Furthermore, the symmetry violations and associated er-
rors are amplified by including the H(P, k) resummation
in Fig. 2(A) [Fig. 3(A0)] alone because this unbalances
the interferences that a fully-consistent RL truncation
is guaranteed to preserve. Consequently, less damage is
done by working solely with Fig. 2(C ).

We turn now to the contribution (B)-(C ) in Eq. (8),
which has usually been overlooked in calculations of
q⇡(x; ⇣H); but whose importance was stressed and illus-
trated in Ref. [36]. Given that the combination (B)-(C )
is crucial if the WGT identities are to be satisfied in a
RL analysis of Compton scattering, let us consider their
content. A first observation is that (B0)-(C ) = 0, i.e. if
one omits all terms from the ladder-like sum in Fig. 2(B)
then it is completely cancelled by subtracting Fig. 2(C ).
Hence, (B0)-(C ) is a sum of infinitely many ladder-like
rungs, beginning with one rung. This is illustrated in
Fig. 3(B0). Studying this figure, the nature of (B)-(C )
becomes plain, viz. it expresses the impact of the deep-
inelastic event as felt by a dressed-quark line embedded
within the pion bound state. Thinking perturbatively,
one might imagine these processes to represent e↵ects
associated with initial/final-state interaction corrections
to the handbag diagram and thus to be suppressed. How-
ever, so long as the gluon exchanges are soft, which is the
limit exposed by the optical theorem analysis, that is not
the case because the resummation of ladder-like rungs is
resonant. Hence the contribution depicted in Fig. 3(B0)
is of precisely the same order as that from Fig. 3(A0).
In fact, akin to the final state interactions that produce
single spin asymmetries [86], the (B)-(C) contribution is
leading-twist and its appearance and importance signal
failure of the impulse approximation.

These considerations lead to the following form for the
(B)-(C ) contribution to q⇡(x; ⇣H) [36]:

q⇡

BC
(x; ⇣H) = Nctr

Z

dk

�n

⇡
(k⌘,�P ; ⇣H)

⇥ S(k⌘)�⇡(k⌘̄, P ) S(k⌘̄) , (15)

where �n

⇡
(k⌘,�P ; ⇣H) is a “pierced” pion Bethe-Salpeter

amplitude, computed by summing infinitely many inser-
tions of [�x

n
(k⌘)n ·@k⌘

S(k⌘)], between sequentially-chosen
adjacent gluon-rungs in the diagrammatic expansion of
the pion amplitude. Notably, independent of ⇣H , as a
consequence of symmetry preservation:

Z 1

0
dx q⇡

BC
(x; ⇣H) = 0 . (16)

We can now write the complete expression for the pion
valence-quark distribution function in RL truncation:

q⇡(x; ⇣H) = q⇡

A(x; ⇣H) + q⇡

BC(x; ⇣H) , (17)

i.e. one sums the terms in Eqs. (12) and (15).

Employing the optical 
theorem
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Interaction and spectrum
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Interaction and spectrum

arXiv: 2102.12568
Masses of positive- and negative-
parity hadron ground-states, 
including htose with heavy quarks
Pei-Lin Yin, Zhu-Fang Cui, C. D. 
Roberts, Jorge Segovia
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Interaction and spectrum

arXiv: 2008.07629
Impressions of the Continuum 
Bound State Problem in QCD
Si-xue Qin, C. D. Roberts
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Interaction

Hadron masses are global, volume-
integrated properties, insensitive to the 
detail behavior of quark mass

However, this feature becomes vital for 
dynamical, structural properties: elastic 
form factor and parton distribution 
amplitude and functions.
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Interaction and structure
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Model and Model

• Nambu – Jona-Lasinio model, translationally
invariant regularisaion

qπ(x) ∼ (1-x)0, 
which becomes “1” after evolving from a low 
resolution scale 

• NJL models with a hard cutoff & also some 
duality arguments:

qπ(x) ∼ (1-x)1

• Relativistic constituent quark models: 
qπ(x) ∼ (1-x)0…2

depending on the form of model wave 
function

• Instanton-based models
qπ(x) ∼ (1-x)1…2

Interactionßàlarge x

• 1989…Conway et al. Phys. Rev.D 39 
(1989) 92

Leading-order analysis of Drell-Yan data

• 2010...Aicher et al. Phys. Rev. 
Lett.105 (2010) 252003

Consistent next-to-leading order anaylsis
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Interaction(example)

Quark Mass         =   constant
Pion Amplitude   =   constant

Elastic form factor of pion

PDA(x)=1
PDF(x)=1

Structure of pion

Chiral Limit



Lei Chang (NKU)

Interaction(example)

Elastic form factor of pionStructure of pion

QCD one-loop interaction
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Pion and Kaon 
distribution amplitudes
electromagentic form factors
structure functions

On the same footing

Higgs modulation of emergent mass as revealed in kaon and pion distributions
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Higgs modulation of emergent mass

 

Red:  Chiral Limit_BRL 
Blue: Chiral Limit_RL 
Purple: Massive_BRL 
Black:   Massive_RL 

 
1, Rainbow-Ladder(RL) approximation need a large 
infrared interaction to present DCSB; 
2, Rainbow-Ladder(RL) approximation splitting flavor 
asymmetry too large 
3, Higgs Modulating quark-gluon vertex necessary 
 

BRL (Put physics in the right place!!)
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NG’s DA(absence of Higgs) Higgs Boson

EHM-induced broadening

• Asymptotic profile
6𝑥(1 − 𝑥)

• following these 40 years 
of effort, continuum 
phenomenology and 
theory agree that the 
pion’s DA at hadronic 
scale is a BROAD, 
CONCAVE function, 
possessing greater 
support in the 
neighbourhood of its 
endpoints.

• Endpoint behavior 
lesson

Y2013->Y2020
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NG’s DA (presence of Higgs) Higgs Boson

• Question: when does the Higgs mechanism begin to influence mass generation 
(pion…eta_c)

• A critical current quark mass lies in the neighbourhood of the s-quark
• lQCD calculation(R. Zhang, et al, PRD102(2020)094519) and continuum analyses in QCD 

agree upon the existence of such critical current mass(ps boundsate mass 0.69GeV both)
• For a DA very similar to Asymptotic one, EHM and Higgs-boson couplings are playing a 

roughly equal role in forming the wave function
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Kaon’s DA

• Flavor asymmetry

• Peak shifted to x=0.4
20% to the left

• Higgs-boson modulation of 
EHM

• With increasing current mass
of the heavier quark the
distortion of this DA becomes 
more pronounced and its peak 
location moves toward x=0.

K" (u𝑠̅)
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Pion’s DF

• 1989…Conway et al. Phys. Rev.D 39 
(1989) 92

Leading-order analysis of Drell-Yan data

• 2000…Hecht et al. Phys. Rev.C 63 
(2001)025213

QCD connected model calculation

• 2010...Aicher et al. Phys. Rev. 
Lett.105 (2010) 252003

Consistent next-to-leading order anaylsis

• 2019/04...Ding, et al.
Continuum QCD prediction

• 2019/01...Sufian, et al.
1st exploratory lattice-QCD calculation
Using lattice-calculated matrix element 

obtained through spatially separated current-
current correlations in coordinate space

Update analyses: Chang, et al, CPC44(2020)114105
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Kaon’s valence DF

IQCD: H-W Lin, etal, arXiv:2003.14128

• lQCD is significantly harder than the 
continuum result

• 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 𝐷𝐹 𝑏𝑒ℎ𝑎𝑣𝑒𝑠 (1 − 𝑥)#.#&(#()

Higgs-modulation of EHM 

DSE:  * ̅, !

*-. ! = 1.18 1 vs.    lQCD:  * ̅, !

*-. ! = 1.38 7
It may reasonably to anticipated that future refinements of lQCD setups, algorithms and 
analyses will move lattice and continuum DFs closer together
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Thanks for your attention

lQCD

DSEs



Lei Chang (NKU)

Measurement of the π+ Form Factor

• At low Q2, Fπ can be measured directly via high 
energy elastic π+ scattering from the atomic 
electrons

Ø CERN SPS used 300 GeV pions to measure form 
factor up to Q2=0.25GeV2

(Amedolia et al, NPB277, 168 (1986))  

Ø These data used to constrain the pion charge 
radius: rπ=0.657±0.012 fm

Measurement of the p + Form Factor

� $W�ORZ�4���Fp��FDQ�EH�PHDVXUHG�GLUHFWO\�YLD�KLJK�
HQHUJ\�HODVWLF�p� VFDWWHULQJ�IURP�DWRPLF�HOHFWURQV

[Amendolia et al, NPB277,168 (1986)]

± &(51�636�XVHG�����*H9�SLRQV�WR�PHDVXUH�
IRUP�IDFWRU�XS�WR��4�  ����� *H9�

± 7KHVH�GDWD�XVHG�WR�FRQVWUDLQ� WKH�SLRQ�
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[EPJA 52 (2016) 158

[L. Favart, M. Guidal, T. Horn, P. Kroll, Eur. Phys. J A 52 (2016) no.6, 158]

• At larger Q2, Fπ must be measured indirectly using the “pion cloud” of the proton 
in exclusive pion electroproduction: p(e, e’ π+)n

Ø at small –t, the pion pole process dominates the 
longitudinal cross section, σL

(L. Favart, et al, Eur. Phys. J. A 52 (2016) 158)  

Ø In the Born term model, Fπ appears as

Measurement of the p + Form Factor

� $W�ORZ�4���Fp��FDQ�EH�PHDVXUHG�GLUHFWO\�YLD�KLJK�
HQHUJ\�HODVWLF�p� VFDWWHULQJ�IURP�DWRPLF�HOHFWURQV

[Amendolia et al, NPB277,168 (1986)]
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O↵-shell persistence of composite pions and kaons

Si-Xue Qin,1 Chen Chen,2 Cédric Mezrag,1 and Craig D. Roberts1

1Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
2Instituto de F́ısica Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, Brazil

(Dated: 08 February 2017)

In order for a Sullivan-like process to provide reliable access to a meson target as t becomes
spacelike, the pole associated with that meson should remain the dominant feature of the quark-
antiquark scattering matrix and the wave function describing the related correlation must evolve
slowly and smoothly. Using continuum methods for the strong-interaction bound-state problem, we
explore and delineate the circumstances under which these conditions are satisfied: for the pion, this
requires �t . 0.6GeV2, whereas �t . 0.9GeV2 will su�ce for the kaon. These results should prove
useful in planning and evaluating the potential of numerous experiments at existing and proposed
facilities.

1. Introduction. The notion that a nucleon possesses a
meson cloud is not new [1]. In e↵ect, this feature is kin-
dred to the dressing of an electron by virtual photons in
quantum electrodynamics [2] or the existence of dressed
quarks with a running mass generated by a cloud of glu-
ons in quantum chromodynamics (QCD) [3–7]. Natu-
rally, any statement that each nucleon is accompanied
by a meson cloud is only meaningful if observable conse-
quences can be derived therefrom. A first such suggestion
is canvassed in Ref. [8], which indicates, e.g. that a calcu-
lable fraction of the nucleon’s anti-quark distribution is
generated by its meson cloud. Mirroring this e↵ect, one
may argue that a nucleon’s meson cloud can be exploited
as a target and thus, for instance, the so-called Sullivan
processes can provide a means by which to gain access
to the pion’s elastic electromagnetic form factor [9–13],
Fig. 1(a), and also its valence-quark parton distribution
functions (PDFs) [14–16], Fig. 1(b).

One issue in using the Sullivan process as a tool for ac-
cessing a “pion target” is that the mesons in a nucleon’s
cloud are virtual (o↵-shell) particles. This concept is
readily understood when such particles are elementary
fields, e.g. photons, quarks, gluons. However, providing
a unique definition of an o↵-shell bound-state in quantum
field theory is problematic.

Physically, for both form factor and PDF extractions,
t < 0 in Figs. 1, so the total momentum of the ⇡

⇤ is
spacelike.1 Therefore, in order to maximise the true-
pion content in any measurement, kinematic configura-
tions are chosen in order to minimise | � t|. This is
necessary but not su�cient to ensure the data obtained
thereby are representative of the physical pion. Addi-
tional procedures are needed in order to suppress non-
resonant (non-pion) background contributions; and mod-
ern experiments and proposals make excellent use of, e.g.
longitudinal-transverse cross-section separation and low-
momentum tagging of the outgoing nucleon.

1
We use a Euclidean metric: {�µ, �⌫} = 2�µ⌫ ; �5 = �4�1�2�3,
tr[�5�µ�⌫�⇢�� ] = �4✏µ⌫⇢� ; �µ⌫ = (i/2)[�µ, �⌫ ]; a · b =P4

i=1 aibi; and Pµ spacelike ) P 2 > 0.

1

FIG. 1: Triangle diagram for the form factor.

FIG. 2

I. MOMENTUM ASSIGNMENT

The definition of the form factor is shown in Fig. 1, where

k1 = k � P

2
, (1)

k2 = k +
P

2
� Q

2
, (2)

k3 = k +
P

2
+

Q

2
. (3)

Because of the momentum conservation, the triangle diagram has two independent momenta P and Q with

Pi = P � Q

2
, (4)

Pf = P +
Q

2
. (5)

The components of P and Q are defined as

P = (0, 0, P3, iP4), (6)

Q = (0, 0, Q3, iQ4), (7)

FIG. 1. Sullivan processes, in which a nucleon’s pion cloud
is used to provide access to the pion’s (a) elastic form factor
and (b) parton distribution functions. t = �(k � k0)2 is a
Mandelstam variable and the intermediate pion, ⇡⇤(P = k �
k0), P 2 = �t, is o↵-shell.

Notwithstanding their ingenuity, such experimental
techniques cannot directly address the following ques-
tion: supposing it is sensible to speak of an o↵-shell
pion with total-momentum P , where P

2 = (v � 1)m2
⇡,

m⇡ ⇡ 0.14 GeV, so that v � 0 defines the pion’s virtu-
ality, then how do the qualities of this system depend
on v? If the sensitivity is weak, then ⇡

⇤(v) is a good
surrogate for the physical pion; but if the distributions
of, e.g. charge or partons, change significantly with v ,
then the processes in Figs. 1 can reveal little about the
physical pion. Instead, they express features of the entire
compound reaction. Since there is no unique definition
of an o↵-shell bound-state, the question we have posed
does not have a precise answer. However, as will become
clear, that does not mean there is no rational response.

2. Pions: on- and o↵-shell. All correlations with pion-
like quantum numbers, both resonant and continuum,
are accessible via the inhomogeneous pseudoscalar Bethe-
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Sullivan process, in which a nucleon’s pion cloud is used to provide 
access to the pion’s elastic form factor

Experimental studies over the last decade have given confidence in the 
electroproduction method yielding the physical pion form factor----Tanja Horn
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Elastic Electromagnetic Form Factors of Pion(EHM)

Jlab pion data: Black line is DSE parameter-free prediction, 𝝌𝟐/datum=1.0.

Scaling and scaling violations: a, DSEs tracks a monopole form factor until 𝑄0~6𝐺𝑒𝑉0
b, Thereafter, scaling violation
c, JLab12 at 𝑄0~9𝐺𝑒𝑉0, sufficient to validate this prediction

(measurement will be the first too have uncovered QCD scaling violations in a hard exclusive process)

pQCD and Large Q2
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Elastic Electromagnetic Form Factors of Kaon

• Solid line: DSEs prediction
• Dashed turquoise curve within like coloured bands-lQCD result(PoS Lattice2018,298(2018))
• Dotted olive curve within band-monople based on kaon charge radius
ü Continuum and lattice results for charged Kaon form factor are almost identical on 𝑄0<4𝐺𝑒𝑉0
ü Neutral kaon has a nonzero charge form factor

DSEs: 𝑟1"
0 = −(0.21𝑓𝑚)0 ; experiment:𝑟1"

0 = −(0.24 ± 0.08𝑓𝑚)0;lattice:𝑟1"
0 = −(0.16𝑓𝑚)0

For neutral kaon the momentum dependence is similar and IQCD result is a roughly uniform 
two-thirds of the size of the continuum prediction
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Elastic Electromagnetic Form Factors of Kaon

Falvor separation
Factored out the electric charges

• The ratio is unity at 𝑄0=0, owing to current conservation
• pQCD predicts Unity on Λ2340 /𝑄0~0

• Between these limits, a peak value of roughly 1.5 at 𝑄0~6𝐺𝑒𝑉0(5#
$

5%$
≈ 1.4), Typical for 

Higgs-boson modulation of EHM.
• The derivation from unity must remain significant on a very large part of the domain. 


