

第二届强子物理与重味物理理论 与实验联合研讨会

Study of the multi-quark states with coupled channel approach

Chu-Wen Xiao (肖楮文)

Central South University (中南大学)

Collaborators: Juan Nieves, Eulogio Oset, Bing-Song Zou

Li-Sheng Geng, Jia-Jun Wu, Jun-Xu Lu 2021. ≚州

Outline

Background
 Formalism
 Results
 Summary

02 30 , Vields/ 200 100 4.2 4.4 4.6 4.8 $m_{J/\psi p}$ [GeV] 10 R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 072001 (2015) 4.5 $m_{J\!/\psi p}\,[{\rm GeV}]$ R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 117, 082003 (2016)

Updated results for the Pc states

New findings for the Pcs state

The data cannot confirm or refute the two-peak hypothesis.

§2. Formalism

• Coupled Channel Unitary Approach (CCUA): solving Bethe-Salpeter (BS) equations, which take on-shell approximation to loops.

 $T = V + V G T, T = [1 - V G]^{-1} V$ $= V + V G T, T = [1 - V G]^{-1} V$ $= V + P_{p_1} + P_{p_2} + P_{p_4} + P_{p$

where V matrix (potentials) can be evaluated from the interaction Lagrangians.

J. A. Oller and E. Oset, Nucl. Phys. A 620 (1997) 438 E. Oset and A. Ramos, Nucl. Phys. A 635 (1998) 99 J. A. Oller and U. G. Meißner, Phys. Lett. B 500 (2001) 263

G is a diagonal matrix with the loop functions of each channels:

$$G_{ll}(s) = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{(P-q)^2 - m_{l1}^2 + i\varepsilon} \frac{1}{q^2 - m_{l2}^2 + i\varepsilon}$$

The coupled channel scattering amplitudes **T matrix** satisfy the unitary :

Im
$$T_{ij} = T_{in} \sigma_{nn} T^*_{nj}$$

$$\sigma_{nn} \equiv \text{Im } G_{nn} = -\frac{q_{cm}}{8\pi\sqrt{s}}\theta(s - (m_1 + m_2)^2))$$

To search the poles of the resonances, we should extrapolate the scattering amplitudes to the second Riemann sheets:

$$G_{ll}^{II}(s) = G_{ll}^{I}(s) + i \, \frac{q_{cm}}{4\pi\sqrt{s}}$$

$$\int_{J_{1}}^{C} \int_{J_{1}}^{u} \int_{J_{1}}^{u} \int_{J_{2}}^{J_{2}} \int_{J_{2}}^{u} \int_{J_{2}}^$$

$$\mathcal{L}_{VVV} = ig \langle [V_{\nu}, \partial_{\mu} V_{\nu}] V^{\mu} \rangle, \\ \mathcal{L}_{PPV} = -ig \langle [P, \partial_{\mu} P] V^{\mu} \rangle, \\ \mathcal{L}_{BBV} = g \left(\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B} \gamma_{\mu} B \rangle \langle V^{\mu} \rangle \right)$$

$$(-) = \frac{\eta_{c}}{1 + 1} + \frac{\eta_{c}}{1 +$$

CWX, J. Nieves and E. Oset, Phys. Rev. D 88, 056012 (2013)

		— P _c (431	2) ⁺ = $a(p)$	$u = 1 \mathrm{Ge}$	V) = -2	.09		SOUTH UN	VE
430	6.38 + i7.62			\frown					SITY
	$\eta_c N$	$J/\psi N$	$ar{D}\Lambda_c$	$\bar{D}\Sigma_c$	$ar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}^*\Sigma_c^*$	大面大意	
g_i	0.67 + i0.01	0.46 - i0.03	3 0.01 - i0.02	1 2.07 - i 0.28	$8\ 0.03 + i0.25$	$5\ 0.06 - i0.31$	0.04 - i0.15	$\frac{1}{126187 + i178}$	7
$ g_i $	0.67	0.46	0.01	2.09	0.25	0.31	0.16	<i>q</i> .	-
4452	2.96 + i11.72	$P_c(444)$	l0) [*]			\frown		$ g_i $	
	$\eta_c N$	$J/\psi N$	$ar{D}\Lambda_c$	$\bar{D}\Sigma_c$	$ar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}^*\Sigma_c^*$	$\overline{4410.13 + i29.44}$	4
g_i	0.24 + i0.03	0.88 - 0.11	0.09 - i0.00	5 0.12 - i0.02	$2 \ 0.11 - i0.09$	9 1.97 - i 0.52	0.02 + i0.19	gi	-
$ g_i $	0.25	0.89	0.11	0.13	0.14	2.03	0.19	$ g_i $	
4520	0.45 + i11.12							4481.35 + i28.9	1
	$\eta_c N$	$J/\psi N$	$ar{D}\Lambda_c$	$\bar{D}\Sigma_c$	$ar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}^*\Sigma_c^*$	<i>g</i> _i	
g_i	0.72 - i0.10	0.45 - i0.04	4 0.11 - i0.00	$5 \ 0.06 - i0.02$	$2\ 0.06 - i0.05$	$5\ 0.07 - i0.02$	1.84 - i0.56		=
$ g_i $	0.73	0.45	0.13	0.06	0.08	0.08	1.92	$(\mu) = -2.3$	3
437	$4.33 \pm i6.87$	I/a/N	<u>ـ</u> آ×۸	$\bar{D}^*\Sigma$	$\bar{D}\Sigma^*$	$\bar{D}^*\Sigma^*$	u	(,~) 2.0	
-101		$\frac{5}{0.73 - i0.06}$	$\frac{D_{11}}{0.11 - i0.13}$	$\frac{D}{0.02 - i0.19}$	1.91 - i0.31 ($\frac{D}{0.03 - i0.30}$	4334.45	+ <i>i</i> 19.41	
P	(4457)	0.73	0.18	0.19	1.94	0.30	g_i		
445	2.48 + i1.49	$J/\psi N$	$\bar{D}^*\Lambda_a$	$\bar{D}^*\Sigma_0$	$\overline{D}\Sigma^*$	$\overline{\bar{D}^*\Sigma^*}$	$ g_i $		
	q_i	0.30 - i0.01	0.05 - i0.04	$\frac{1}{182 - i0.08}$	$\frac{c}{0.08-i0.02}$ ($\frac{c}{0.01-i0.19}$	4417.04	+ <i>i</i> 4.11	
	$ q_i $	0.30	0.07	1.82	0.08	0.19	g_i		
451	9.01 + i6.86	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$\bar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$	101 01	1 17 20	
	q_i	0.66 - i0.01	0.11 - i0.07	0.10 - i0.3	0.13 - i0.02 1	1.79 - i0.36	4481.04	+ 11/.38	
	$ g_i $	0.66	0.13	0.10	0.13	1.82	$ g_i $	1(
	17727 - 1870								

The former exercises have shown that the changes produced by using different couplings obtained in other approaches to QCD, with a certain amount of SU(4) or HQSS breaking, induce changes of the order of 20-30 MeV in bindings estimated in our approach to be of the order of 50 MeV These uncertainties are in line with other systematic uncertainties that we must also admit from our partial ignorance in the regularization scale of the loops. Yet, with all these uncertainties, the binding of the states remains a solid conclusion, as does the order of magnitude of the binding energies; the maximum one can hope without further experimental information to constrain the input in our theory.

CWX, J. Nieves and E. Oset, Phys. Rev. D 88, 056012 (2013)

states [MeV] W	idths [MeV]	Main channel	J^P	Experimental state					
4306.4	15.2	$\bar{D}\Sigma_c$	$1/2^{-}$	$P_{c}(4312)$					
4452.9	23.4	$\bar{D}^*\Sigma_c$	$1/2^{-}$	$P_{c}(4440)$					
4452.5	3.0	$\bar{D}^*\Sigma_c$	$3/2^{-}$	$P_c(4457)$					
M. Z. Liu, Y. W. Pan, F. Z. Peng, M. S. Sanchez, L. S. Geng, A. Hosaka, and M. P. Valderrama, Phys. Rev. Lett. 122 (2019) 242001									
$M_{P_{c1}} = 4311.9 \pm 0.7^{+6.8}_{-0.6}, \Gamma_{P_{c1}} = 9.8 \pm 2.7^{+3.7}_{-4.5},$									
$M_{P_{c2}} = 4440.3 \pm 1.3^{+4.1}_{-4.7}, \Gamma_{P_{c2}} = 20.6 \pm 4.9^{+8.7}_{-10.1},$									
$M_{P_{c3}} = 4457.3 \pm 0.6^{+4.1}_{-1.7}, \Gamma_{P_{c3}} = 6.4 \pm 2.0^{+5.7}_{-1.9}.$									

CWX, J. Nieves and E. Oset, Phys. Rev. D100 (2019) 014021

Next, we try to make a further investigation.....

Consider $J/\psi p$ produced directly and final state interactions

Consider $J/\psi p$ produced indirectly

$I = 1/2, J^P =$	= 1/2-						
(4306.0 + i7.0) MeV	$\eta_c N$	$J/\psi N$	$\bar{D}\Lambda_c$	$\bar{D}\Sigma_c$	$ar{D}^*\Lambda_c$	$ar{D}^*\Sigma_c$	$ar{D}^*\Sigma_c^*$
$ g_i $	0.59	0.41	0.01	1.99	0.10	0.02	0.03
Γ_i	9.7	3.9	0.0		0.1		
Br	69.0%	27.6%	0.0%		0.9%		
(4433.0 + i11.0) MeV	$\eta_c N$	$J/\psi N$	$\bar{D}\Lambda_c$	$\bar{D}\Sigma_c$	$ar{D}^*\Lambda_c$	$ar{D}^*\Sigma_c$	$ar{D}^*\Sigma^*_c$
$ g_i $	0.16	0.49	0.03	0.07	0.03	2.42	0.06
Γ_i	0.7	6.4	0.1	0.2	0.0		
Br	3.4%	29.0%	0.3%	1.1%	0.2%		
(4500.0 + i5.5) MeV	$\eta_c N$	$J/\psi N$	$\bar{D}\Lambda_c$	$\bar{D}\Sigma_c$	$ar{D}^*\Lambda_c$	$ar{D}^*\Sigma_c$	$ar{D}^*\Sigma^*_c$
$ g_i $	0.37	0.26	0.05	0.03	0.02	0.02	2.29
Γ_i	4.5	1.9	0.2	0.1	0.0	0.0	
Br	41.2%	17.7%	1.5%	0.5%	0.3%	0.0%	

J^P	=	$3/2^{-}$
		-/-

T D

(4374.3 + i6.9) MeV	$J/\psi N$	$ar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$ar{D}\Sigma_c^*$	$ar{D}^*\Sigma_c^*$
$ g_i $	0.73	0.18	0.19	1.94	0.30
Γ_i	13.5	1.1			
Br	98.4%	7.7%			
(4452.5+ <i>i</i> 1.5) MeV	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$ar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
$ g_i $	0.30	0.07	1.82	0.08	0.19
Γ_i	2.6	0.2		0.2	
Br	85.9	6.9		8.3	
(4519.0 + i6.9) MeV	$J/\psi N$	$\bar{D}^*\Lambda_c$	$\bar{D}^*\Sigma_c$	$ar{D}\Sigma_c^*$	$\bar{D}^*\Sigma_c^*$
$ g_i $	0.66	0.13	0.10	0.13	1.82
Γ_i	12.7	0.9	0.3	0.8	
Br	92.4%	6.7%	2.5%	5.8%	

SOUTH

Evidence that the LHCb P_c states are hadronic molecules and the existence of a narrow $P_c(4380)$

Meng-Lin Du,^{1,*} Vadim Baru,^{1,2,3,†} Feng-Kun Guo,^{4,5,‡} Christoph Hanhart,^{6,§} Ulf-G. Meißner,^{1,6,7,¶} José A. Oller,^{8,**} and Qian Wang^{9,10,††}

We also show that there is clear evidence for a narrow $\Sigma_c^* \overline{D}$ bound state in the data which we call $P_c(4380)$, different from the broad one reported by LHCb in 2015. With this state established, all

We make further study on the hidden charm strange sectors:

 $J/\psi\Lambda, \ \bar{D}^*\Xi_c, \ \bar{D}_s\Lambda_c, \ \bar{D}^*\Xi_c', \ \bar{D}\Xi_c^*, \ \bar{D}^*\Xi_c^*.$

√s [MeV]

√s [MeV]

 $a(\mu = 1 \,\text{GeV}) = -2.09$

•	J = 1/2, I = 0	$a(\mu = 1 \text{GeV}) = -2.09$
	/ /	

Thre	es. 4099.	.58 4212.	.58 4366.6	61 4254.8	0 4445.34	4477.92	4398.66	4586.66	4654.48
	$\eta_c\Lambda$	$J/\psi\Lambda$	$\bar{D}\Xi_c$	$ar{D}_s \Lambda_c$	$\bar{D}\Xi_c'$	$\bar{D}^* \Xi_c$	$ar{D}_s^*\Lambda_c$	$(\bar{D}^* \Xi_c')$	$\bar{D}^* \Xi_c^*$
4276	.59 + i7.67	>							
$g_i = 0$	0.17 - i0.03	0.29 - i0.07	2.93 + i0.08	0.76+i0.31	0.00 + i0.01	0.01 + i0.02	0.01 + i0.04	0.01 - i0.02	0.01 - i0.03
$ g_i $	0.17	0.30	2.93	0.82	0.01	0.02	0.05	0.02	0.03
4429	.84 + i7.92	>							
g_i 0	0.29 - i0.11	0.17 - i0.07	0.00 - i0.00	0.00 - i0.00	0.15 - i0.26	$2.78 + \mathbf{i0.01}$	0.66 + i0.32	0.01 + i0.05	0.01 + i0.03
1gi	0.31	0.18	0.00	0.00	0.30	2.78	0.73	0.05	0.04
4436	.70 + i1.17								
g_i 0	0.24 + i0.03	0.14 + 0.01	0.00 - i0.00	0.00 - i0.00	$1.72-\mathrm{i}0.04$	0.22 - i0.31	0.06 - i0.01	0.01 - i0.04	0.01 - i0.03
$ g_i $	0.24	0.14	0.00	0.00	1.72	0.38	0.07	0.04	0.03
4580	.96 + i2.44								
g_i 0	12 - i0.00	0.37 - i0.04	0.02 - i0.01	0.02 - i0.01	0.03 - i0.00	0.02 - i0.02	0.03 - i0.02	1.57 - i0.17	0.00 + i0.02
$ g_i $	0.12	0.37	0.02	0.02	0.03	0.03	0.03	1.58	0.02
4650	.86 + i2.59								
$g_i = 0$.32 - i0.05	0.19 - i0.03	0.02 - i0.01	0.03 - i0.02	0.02 - i0.00	0.01 - i0.01	0.02 - i0.01	0.01 - i0.00	1.41 - i0.23
$ g_i $	0.32	0.19	0.03	0.04	0.02	0.02	0.02	0.02	1.43

•
$$J = 3/2, I = 0$$

Th	res.	4212	.58 4477.	92 4398.0	66 4586.66	4513.17	4654.48
	J/2	$\psi\Lambda$	$\bar{D}^* \Xi_c$	$ar{D}_s^*\Lambda_c$	$\bar{D}^* \Xi_c'$	$\bar{D}\Xi_c^*$	$\bar{D}^* \Xi_c^*$
442	29.52+	- i7.67					
g_i	0.31 -	- <i>i</i> 0.10	2.77 - i0.02	0.67+i0.32	0.00 + i0.0.02	0.00 - i0.06	0.00 + i0.0.04
$ g_i $	0.	32	2.77	0.74	0.02	0.06	0.04
450	06.99+	-i1.03					
g_i	0.27 -	- <i>i</i> 0.02	0.02 - i0.03	0.02 - i0.02	0.00 - i0.03	$1.56-\mathrm{i}0.07$	0.00 - i0.05
$ g_i $	0.	27	0.03	0.03	0.03	1.56	0.05
458	80.96 +	i0.34					
g_i	0.14 -	i0.01	0.01 - i0.01	0.01 - i0.01	1.54-i0.02	0.02 - i0.00	0.00 - i0.04
$ g_i $	0.	14	0.01	0.02	1.54	0.02	0.04
465	50.58 +	- <i>i</i> 1.48					
g_i	0.29 -	- <i>i</i> 0.02	0.02 - i0.01	0.03 - i0.02	0.03 - i0.01	0.03 - i0.00	1.40 - i0.13
$ g_i $	0.	29	0.03	0.03	0.03	0.03	1.41

CWX, J. Nieves and E. Oset, Phys. Lett. B 799 (2019) 135051.

		0	$a_{\mu}($	$\mu = 1$	GeV) =	= -1.94	1		CENTR
Chan.	$\eta_c \Lambda$	$J/\psi\Lambda$	$\bar{D}\Xi_c$	$\bar{D}_s \Lambda_c$	$\bar{D}\Xi_c'$	$\bar{D}^* \Xi_c$	$\bar{D}_s^* \Lambda_c$	$\bar{D}^* \Xi_c'$	$\bar{D}^* \Xi_c^*$
Thres.	4099.58	4212.58	4366.61	4254.80	4445.34	4477.92	4398.66	4586.66	4654.48
4310.5	3 + i8.23								
$ g_i $	0.15	0.27	2.33	0.69	0.00	0.04	0.09	0.01	0.02
Γ_i	0.57	1.18	s <u>—</u> s	13.86		_	_		
Br.	3.47%	7.16%	_	84.21%	_	-	—	_	-
4445.1	2 + i0.19								
$ g_i $	0.10	0.06	0.00	0.00	0.72	0.08	0.04	0.01	0.01
Γ_i	0.29	0.08	0.00	0.00	<u> </u>	_	0.04	-	-
Br.	74.74%	21.22%	0.01%	0.01%	_	-	10.62%	_	-
4459.0	7 + i6.89	$P_{cs}(4$	4459)						
$ g_i $	0.22	0.13	0.00	0.00	0.07	2.16	0.61	0.03	0.02
Γ_i	1.59	0.46	0.00	0.00	0.01	-	11.14	_	-
Br.	11.57%	3.31%	0.00%	0.00%	0.70%		80.86%	—	-
458	36.66?								
$ g_i $	1		-	12		27-24	1	2 <u>7 -</u> 98	
465	54.48?								
$ g_i $: <u> </u>	-	-	-		-	-	—	<u>1</u>

•
$$J = 3/2, I = 0$$

CWX, J. J. Wu and B. S. Zou, Phys. Rev. D 103 (2021) 054016.

23

Our results of bound states — molecular states

a $\overline{D}\Sigma_c$ state	P _c (4312) ⁺	$ar{D}\Xi_c$	$\bar{D}\Xi_c'$					
Having $J = 1/2$.								
a $\bar{D}\Sigma_c^*$ state	$P_{c}(4380)$		$\bar{D}\Xi_c^*$					
With $J = 3/2$.	?	$P_{cs}(4459)$						
a $\bar{D}^*\Sigma_c$ state	<i>P_c</i> (4440) ⁺	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi_c'$					
Degenerate in $J = 1/2, 3/2.$	<i>P_c</i> (4457) ⁺							
$2 \bar{D}^* \Sigma^*$ state			⊡*=*					
Degenerate in $J = 1/2$, $3/2$, $5/2$.								

 $P_c(4380)^+, \Gamma = 205$?

Hope that our predictions can be found in the future experiments!

谢谢大家!

Thanks for your attention!