A comprehensive study on the semileptonic decay of heavy flavor mesons

Zhang Lu
College of Nuclear Science and Technology，Beijing Normal University 2021年3月27日

Xian－Wei Kang，Xin－Heng Guo

JHEP 02（2021）179，［arXiv：2012．04417］

第二届强子与重味物理理论与实验联合研讨会 兰州 兰州大学

Motivation

－Extraction of CKM matrix elements
The deviation from the unitarity relation encoded in the CKM matrix
\rightarrow an inspiring signal of New Physics
The semileptonic decay offers a clean environment
－The lepton－flavor universality violation
－More physical observables
distinguish various model predictions

Contents

－Form factors and Helicity amplitudes
－Differential decay distribution
－The physical observables
－Results
－Summary

Form factors and Helicity amplitudes

－D, D_{s}, B and B_{s}

The semileptonic decay of D meson to a pseudoscalar (P) or a vector (V) meson．

$$
\begin{align*}
\mathcal{M}\left(D \rightarrow P(V) I^{+} \nu_{l}\right) & =\frac{G_{F}}{\sqrt{2}} V_{c q}\langle P(V)| \bar{q} O^{\mu} c\left|D_{(s)}\right\rangle I^{+} O_{\mu} \nu_{l} \tag{1}\\
& =\frac{G_{F}}{\sqrt{2}} V_{c q} H^{\mu} L_{\mu},
\end{align*}
$$

Form factors and Helicity amplitudes

－The invariant matrix element：

$$
\begin{equation*}
\left\langle P\left(p_{2}\right)\right| V_{\mu}\left|D\left(p_{1}\right)\right\rangle=T_{\mu}, \quad\left\langle V\left(p_{2}\right)\right| V_{\mu}-A_{\mu}\left|D\left(p_{1}\right)\right\rangle=\epsilon_{2}^{\dagger \nu} T_{\mu \nu} \tag{2}
\end{equation*}
$$

－The form factors，Bauer－Stech－Wirbel（BSW）form

$$
\begin{aligned}
T_{\mu} & =\left(P_{\mu}-\frac{m_{1}^{2}-m_{2}^{2}}{q^{2}} q_{\mu}\right) F_{1}\left(q^{2}\right)+\frac{m_{1}^{2}-m_{2}^{2}}{q^{2}} q_{\mu} F_{0}\left(q^{2}\right), \\
T_{\mu \nu} & =-\left(m_{1}+m_{2}\right)\left[g_{\mu \nu}-\frac{P_{\nu}}{q^{2}} q_{\mu}\right] A_{1}\left(q^{2}\right)+\frac{P_{\nu}}{m_{1}+m_{2}}\left[P_{\mu}-\frac{m_{1}^{2}-m_{2}^{2}}{q^{2}} q_{\mu}\right] A_{2}\left(q^{2}\right) \\
& -2 m_{2} \frac{P_{\nu}}{q^{2}} q_{\mu} A_{0}\left(q^{2}\right)+\frac{i}{m_{1}+m_{2}} \varepsilon_{\mu \nu \alpha \beta} P^{\alpha} q^{\beta} V\left(q^{2}\right) .
\end{aligned}
$$

where $P_{\mu}=\left(p_{1}+p_{2}\right)_{\mu}, q_{\mu}=\left(p_{1}-p_{2}\right)_{\mu}$ ．

Form factors and Helicity amplitudes

Four－vectors $\epsilon^{\mu}\left(\lambda_{W}\right)$ ：
orthonormality property $\epsilon_{\mu}^{\dagger}\left(\lambda_{W}\right) \epsilon^{\mu}\left(\lambda_{W}^{\prime}\right)=g_{\lambda_{W} \lambda_{W}^{\prime}}$ ；
completeness relations：$\epsilon_{\mu}\left(\lambda_{W}\right) \epsilon_{\nu}^{\dagger}\left(\lambda_{W}^{\prime}\right) g_{\lambda_{W} \lambda_{W}^{\prime}}=g_{\mu \nu}$ ．
－The contraction of leptonic and hadronic tensors：

$$
\begin{align*}
L^{\mu \nu} H_{\mu \nu} & =L_{\mu^{\prime} \nu^{\prime}} g^{\mu^{\prime} \mu} g^{\nu^{\prime} \nu} H_{\mu \nu} \\
& =L\left(\lambda_{W}, \lambda_{W}^{\prime}\right) g_{\lambda_{W} \lambda_{W}^{\prime \prime}} g_{\lambda_{W}^{\prime} \lambda_{W}^{\prime \prime \prime}} H\left(\lambda_{W}^{\prime \prime} \lambda_{W}^{\prime \prime \prime}\right) \tag{4}
\end{align*}
$$

－In the helicity－component space：

$$
\begin{equation*}
L\left(\lambda_{W}, \lambda_{W}^{\prime}\right)=\epsilon^{\mu}\left(\lambda_{W}\right) \epsilon^{\dagger \nu}\left(\lambda_{W}^{\prime}\right) L_{\mu \nu}, \quad H\left(\lambda_{W}, \lambda_{W}^{\prime}\right)=\epsilon^{\dagger \mu}\left(\lambda_{W}\right) \epsilon^{\nu}\left(\lambda_{W}^{\prime}\right) H_{\mu \nu} \tag{5}
\end{equation*}
$$

Form factors and Helicity amplitudes

－For the transition $D \rightarrow P I^{+} \nu_{l}$ ，the helicity amplitudes：

$$
\begin{equation*}
H_{\lambda_{W}} \equiv \epsilon^{\mu \dagger}\left(\lambda_{W}\right) T_{\mu} \tag{6}
\end{equation*}
$$

The relations between form factors and helicity amplitudes：

$$
\begin{aligned}
& H_{t}=\frac{1}{\sqrt{q^{2}}}\left(m_{1}^{2}-m_{2}^{2}\right) F_{0}\left(q^{2}\right) \\
& H_{ \pm}=0 \\
& H_{0}=\frac{2 m_{1}\left|\vec{p}_{2}\right|}{\sqrt{q^{2}}} F_{1}\left(q^{2}\right)
\end{aligned}
$$

Form factors and Helicity amplitudes

－For the transition $D \rightarrow V I^{+} \nu_{l}$ ，the helicity amplitudes：

$$
\begin{equation*}
H_{\lambda_{W} \lambda_{V}} \equiv \epsilon^{\dagger \mu}\left(\lambda_{W}\right) \epsilon_{2}^{\dagger \alpha}\left(\lambda_{V}\right) T_{\mu \alpha} \tag{7}
\end{equation*}
$$

The relations：

$$
\begin{aligned}
& H_{t} \equiv \epsilon^{\dagger \mu}(t) \epsilon_{2}^{\dagger \nu}(0) T_{\mu \nu}=-\frac{2 m_{1}\left|\vec{p}_{2}\right|}{\sqrt{q^{2}}} A_{0}\left(q^{2}\right), \\
& H_{ \pm} \equiv \epsilon^{\dagger \mu}(\pm) \epsilon_{2}^{\dagger \nu}(\pm) T_{\mu \nu}=-\left(m_{1}+m_{2}\right) A_{1}\left(q^{2}\right) \pm \frac{2 m_{1}\left|\vec{p}_{2}\right|}{m_{1}+m_{2}} V\left(q^{2}\right), \\
& H_{0} \equiv \epsilon^{\dagger \mu}(0) \epsilon_{2}^{\dagger \nu}(0) T_{\mu \nu}=-\frac{m_{1}+m_{2}}{2 m_{2} \sqrt{q^{2}}}\left(m_{1}^{2}-m_{2}^{2}-q^{2}\right) A_{1}\left(q^{2}\right)+\frac{1}{m_{1}+m_{2}} \frac{2 m_{1}^{2}\left|\overrightarrow{p_{2}}\right|^{2}}{m_{2} \sqrt{q^{2}}} A_{2}\left(q^{2}\right) .
\end{aligned}
$$

The differential decay distribution

In the three－body phase，$\sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{G_{F}^{2}}{2}\left|V_{c q}\right|^{2} L\left(\lambda_{W}, \lambda_{W}^{\prime}\right) g_{\lambda_{W} \lambda_{W}^{\prime \prime}} g_{\lambda_{W}^{\prime} \lambda_{W}^{\prime \prime \prime}} H\left(\lambda_{W}^{\prime \prime}, \lambda_{W}^{\prime \prime \prime}\right)$
－Hadronic part $H\left(\lambda_{W}, \lambda_{W}^{\prime}\right)= \begin{cases}H_{\lambda_{W}} H_{\lambda_{w}^{\prime}}^{\dagger}, & D \rightarrow P, \\ H_{\lambda_{W} \lambda_{V}} H_{\lambda_{w}^{\prime} \lambda_{V}}^{\dagger}, & D \rightarrow V .\end{cases}$
－Leptonic part

$$
\begin{aligned}
& L_{\mu \nu}= \begin{cases}\operatorname{tr}\left[\left(k_{1}+m_{l}\right) O_{\mu} k_{2} O_{\nu}\right], & W^{-} \rightarrow I^{-} \bar{\nu}_{l}, \\
\operatorname{tr}\left[\left(k_{1}-m_{l}\right) O_{\nu} k_{2} O_{\mu}\right], & W^{+} \rightarrow I^{+} \nu_{l},\end{cases} \\
& =8\left(k_{1 \mu} k_{2 \nu}+k_{1 \nu} k_{2 \mu}-k_{1} \cdot k_{2} g_{\mu \nu} \pm i \varepsilon_{\mu \nu \alpha \beta} k_{1}^{\alpha} k_{2}^{\beta}\right)
\end{aligned}
$$

The differential decay distribution

－Two－fold differential decay distribution：

$$
\begin{align*}
\frac{d \Gamma\left(D \rightarrow P(V) I^{+} \nu_{l}\right)}{d q^{2} d \cos \theta}= & \frac{G_{F}^{2}\left|V_{c q}\right|^{2}\left|\vec{p}_{2}\right| q^{2} v^{2}}{32(2 \pi)^{3} m_{1}^{2}} \times\left[\left(1+\cos ^{2} \theta\right) \mathcal{H}_{U}+2 \sin ^{2} \theta \mathcal{H}_{L}+2 \cos \theta \mathcal{H}_{P}\right. \\
& \left.+2 \delta_{l}\left(\sin ^{2} \theta \mathcal{H}_{U}+2 \cos ^{2} \theta \mathcal{H}_{L}+2 \mathcal{H}_{S}-4 \cos \theta \mathcal{H}_{S L}\right)\right] \tag{8}
\end{align*}
$$

－The differential q^{2} distribution：

$$
\begin{equation*}
\frac{d \Gamma\left(D \rightarrow P(V) I^{+} \nu_{l}\right)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c q}\right|^{2}\left|\vec{p}_{2}\right| q^{2} v^{2}}{12(2 \pi)^{3} m_{1}^{2}} \times\left[\mathcal{H}_{U}+\mathcal{H}_{L}+\delta_{l}\left(\mathcal{H}_{U}+\mathcal{H}_{L}+3 \mathcal{H}_{S}\right)\right] \tag{9}
\end{equation*}
$$

The differential decay distribution

－Definitions of helicity structure functions

Parity－conserving	Parity－violating
$\mathcal{H}_{U}=\left\|H_{+}\right\|^{2}+\left\|H_{-}\right\|^{2}$	$\mathcal{H}_{P}=\left\|H_{+}\right\|^{2}-\left\|H_{-}\right\|^{2}$
$\mathcal{H}_{L}=\left\|H_{0}\right\|^{2}$	$\mathcal{H}_{A}=\frac{1}{2} \operatorname{Re}\left(H_{+} H_{0}^{\dagger}-H_{-} H_{0}^{\dagger}\right)$
$\mathcal{H}_{T}=\operatorname{Re}\left(H_{+} H_{-}^{\dagger}\right)$	$\mathcal{H}_{I A}=\frac{1}{2} \operatorname{Im}\left(H_{+} H_{0}^{\dagger}-H_{-} H_{0}^{\dagger}\right)$
$\mathcal{H}_{I T}=\operatorname{Im}\left(H_{+} H_{-}^{\dagger}\right)$	$\mathcal{H}_{S A}=\frac{1}{2} \operatorname{Re}\left(H_{+} H_{t}^{\dagger}-H_{-} H_{t}^{\dagger}\right)$
$\mathcal{H}_{I}=\frac{1}{2} \operatorname{Re}\left(H_{+} H_{0}^{\dagger}+H_{-} H_{0}^{\dagger}\right)$	$\mathcal{H}_{I S A}=\frac{1}{2} \operatorname{Im}\left(H_{+} H_{t}^{\dagger}-H_{-} H_{t}^{\dagger}\right)$
$\mathcal{H}_{I I}=\frac{1}{2} \operatorname{Im}\left(H_{+} H_{0}^{\dagger}+H_{-} H_{0}^{\dagger}\right)$	
$\mathcal{H}_{S}=\left\|H_{t}\right\|^{2}$	
$\mathcal{H}_{S T}=\frac{1}{2} \operatorname{Re}\left(H_{+} H_{t}^{\dagger}+H_{-} H_{t}^{\dagger}\right)$	
$\mathcal{H}_{I S T}=\frac{1}{2} \operatorname{Im}\left(H_{+} H_{t}^{\dagger}+H_{-} H_{t}^{\dagger}\right)$	
$\mathcal{H}_{S L}=\operatorname{Re}\left(H_{0} H_{t}^{\dagger}\right)$	
$\mathcal{H}_{I S L}=\operatorname{Im}\left(H_{0} H_{t}^{\dagger}\right)$	
$\mathcal{H}_{\text {tot }}=\mathcal{H}_{U}+\mathcal{H}_{L}+\delta_{l}\left(\mathcal{H}_{U}+\mathcal{H}_{L}+3 \mathcal{H}_{S}\right)$	

The differential decay distribution

The cascade decay $D \rightarrow V\left(\rightarrow P_{1} P_{2}\right) / \nu_{l}$

－amplitude $\mathcal{A}\left(V \rightarrow P_{1} P_{2}\right)=g_{V P P} \cdot \epsilon_{2}^{\rho}\left(\lambda_{V}\right) \cdot p_{3 \rho}$
The hadronic tensor：

$$
\begin{align*}
H\left(\lambda_{W}, \lambda_{W}^{\prime}\right) & =\epsilon^{\dagger \mu}\left(\lambda_{W}\right) \epsilon^{\nu}\left(\lambda_{W}^{\prime}\right) H_{\mu \nu} \\
& =g_{V P P}^{2} p_{3 \alpha^{\prime}} p_{3 \beta^{\prime}} \epsilon_{2}^{\alpha^{\prime}}\left(\lambda_{V}\right) \epsilon_{2}^{\dagger \beta^{\prime}}\left(\lambda_{V}^{\prime}\right) \times H_{\lambda_{W}, \lambda_{V}} H_{\lambda_{W}^{\prime}, \lambda_{V}^{\prime}}^{\dagger} \tag{10}
\end{align*}
$$

－The fourfold distribution for the cascade：

$$
\begin{equation*}
\frac{d \Gamma\left(D \rightarrow V\left(\rightarrow P_{1} P_{2}\right) I^{+} \nu_{l}\right)}{d q^{2} d \cos \theta d \frac{\chi}{2 \pi} d \cos \theta^{*}}=\frac{G_{F}^{2}\left|V_{c q}\right|^{2}\left|\vec{p}_{2}\right| q^{2} v^{2}}{12(2 \pi)^{3} m_{1}^{2}} B r\left(V \rightarrow P_{1} P_{2}\right) W\left(\theta, \theta^{*}, \chi\right), \tag{11}
\end{equation*}
$$

The differential decay distribution

－the angular distribution $W\left(\theta, \theta^{*}, \chi\right)$ ：

$$
\begin{aligned}
W\left(\theta, \theta^{*}, \chi\right)= & \frac{9}{32}\left(1+\cos ^{2} \theta\right) \sin ^{2} \theta^{*} \mathcal{H}_{U}+\frac{9}{8} \sin ^{2} \theta \cos ^{2} \theta^{*} \mathcal{H}_{L}+\frac{9}{16} \cos \theta \sin ^{2} \theta^{*} \mathcal{H}_{P} \\
& -\frac{9}{16} \sin ^{2} \theta \sin ^{2} \theta^{*} \cos 2 \chi \mathcal{H}_{T}+\frac{9}{8} \sin \theta \sin 2 \theta^{*} \cos \chi \mathcal{H}_{A} \\
& +\frac{9}{16} \sin 2 \theta \sin 2 \theta^{*} \cos \chi \mathcal{H}_{I}-\frac{9}{8} \sin \theta \sin 2 \theta^{*} \sin \chi \mathcal{H}_{I I} \\
& -\frac{9}{16} \sin 2 \theta \sin 2 \theta^{*} \sin \chi \mathcal{H}_{I A}+\frac{9}{16} \sin ^{2} \theta \sin ^{2} \theta^{*} \sin 2 \chi \mathcal{H}_{I T} \\
+ & \delta_{l}\left[\frac{9}{4} \cos ^{2} \theta^{*} \mathcal{H}_{S}-\frac{9}{2} \cos \theta \cos ^{2} \theta^{*} \mathcal{H}_{S L}+\frac{9}{4} \cos ^{2} \theta \cos ^{2} \theta^{*} \mathcal{H}_{L}\right. \\
& +\frac{9}{16} \sin ^{2} \theta \sin ^{2} \theta^{*} \mathcal{H}_{U}+\frac{9}{8} \sin ^{2} \theta \sin ^{2} \theta^{*} \cos 2 \chi \mathcal{H}_{T} \\
& +\frac{9}{4} \sin \theta \sin 2 \theta^{*} \cos \chi \mathcal{H}_{S T}-\frac{9}{8} \sin 2 \theta \sin 2 \theta^{*} \cos \chi \mathcal{H}_{I} \\
& -\frac{9}{4} \sin \theta \sin 2 \theta^{*} \sin \chi \mathcal{H}_{I S A}+\frac{9}{8} \sin 2 \theta \sin 2 \theta^{*} \sin \chi \mathcal{H}_{I A} \\
& \left.-\frac{9}{8} \sin 2 \theta \sin \theta^{2} \sin 2 \chi \mathcal{H}_{I T}\right] .
\end{aligned}
$$

More physical observables

To study the effect of the lepton mass and provide a more detailed physical picture in semileptonic decays beyond the branching fraction，we can also define other physical observables that can be measured experimentally．
－The forward－backward asymmetry：

$$
\begin{align*}
\mathcal{A}_{F B}^{\prime}\left(q^{2}\right) & =\frac{\int_{0}^{1} d \cos \theta \frac{d \Gamma}{d q^{2} d \cos \theta}-\int_{-1}^{0} d \cos \theta \frac{d \Gamma}{d q^{2} d \cos \theta}}{\int_{0}^{1} d \cos \theta \frac{d \Gamma}{d q^{2} d \cos \theta}+\int_{-1}^{0} d \cos \theta \frac{d \Gamma}{d q^{2} d \cos \theta}} \tag{12}\\
& =\frac{3}{4} \frac{H_{P}-4 \delta_{l} H_{S L}}{H_{t o t}}
\end{align*}
$$

More physical observables

The leptonic polarization
set the azimuthal angel $\chi=0$ ，spin four－vector $s^{\mu}=\left(\frac{\vec{k}_{1} \cdot \hat{\vec{s}}}{m_{l}}, \hat{\vec{s}}+\frac{\vec{k}_{1}\left(\vec{k}_{1} \cdot \hat{\vec{s}}\right)}{m_{l}\left(k_{1}^{0}+m_{l}\right)}\right)$
－The longitudinal polarization vector $s_{L}^{\mu}=\frac{1}{m_{l}}\left(\left|\vec{k}_{1}\right|, E_{1} \sin \theta, 0, E_{1} \cos \theta\right)$
－The corresponding leptonic tensor：

$$
\begin{equation*}
L_{\mu \nu}\left(s_{L}\right)=\mp 8 m_{I}\left(s_{L \mu} k_{2 \nu}+s_{L \nu} k_{2 \mu}-s_{L} \cdot k_{2} g_{\mu \nu} \pm i \varepsilon_{\mu \nu \alpha \beta} s_{L}^{\alpha} k_{2}^{\beta}\right) \tag{13}
\end{equation*}
$$

More physical observables

－The polarized differential decay distribution：

$$
\begin{equation*}
\frac{d \Gamma\left(s_{L}\right)}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c q}\right|^{2}\left|\vec{p}_{2}\right| q^{2} v^{2}}{12(2 \pi)^{3} m_{1}^{2}}\left[\mathcal{H}_{U}+\mathcal{H}_{L}-\delta_{l}\left(\mathcal{H}_{U}+\mathcal{H}_{L}+3 \mathcal{H}_{S}\right)\right] \tag{14}
\end{equation*}
$$

－The longitudinal polarization of lepton：

$$
\begin{equation*}
P_{L}^{\prime}\left(q^{2}\right)=\frac{d \Gamma\left(s_{L}\right)}{d q^{2}} / \frac{d \Gamma}{d q^{2}}=\frac{\mathcal{H}_{U}+\mathcal{H}_{L}-\delta_{l}\left(\mathcal{H}_{U}+\mathcal{H}_{L}+3 \mathcal{H}_{S}\right)}{\mathcal{H}_{\text {tot }}} \tag{15}
\end{equation*}
$$

－The transverse polarization corresponding to the vector

$$
s_{T}^{\mu}=\left(0, \hat{\vec{s}}_{T}\right)=(0, \cos \theta, 0,-\sin \theta)
$$

$$
\begin{equation*}
P_{T}^{\prime}\left(q^{2}\right)=-\frac{3 \pi \sqrt{\delta_{l}}}{4 \sqrt{2}} \frac{\mathcal{H}_{P}+2 \mathcal{H}_{S L}}{\mathcal{H}_{\text {tot }}} \tag{16}
\end{equation*}
$$

More physical observables

－Normalized angle distribution $\widetilde{W}\left(\theta^{*}, \theta, \chi\right)=\frac{W\left(\theta^{*}, \theta, \chi\right)}{\mathcal{H}_{\text {tot }}}$
－the normalized θ and θ^{*} angular distribution：

$$
\begin{align*}
\widetilde{W}(\theta) & =\frac{W(\theta)}{\mathcal{H}_{t o t}}=\frac{a+b \cos \theta+c \cos ^{2} \theta}{2(a+c / 3)} \tag{17}\\
\widetilde{W}\left(\theta^{*}\right) & =\frac{W\left(\theta^{*}\right)}{\mathcal{H}_{t o t}}=\frac{a^{\prime}+c^{\prime} \cos ^{2} \theta^{*}}{2 a^{\prime}+2 / 3 c^{\prime}}
\end{align*}
$$

－the leptonic convexity parameter $C_{F}^{\prime}\left(q^{2}\right)=\frac{d^{2} \widetilde{W}(\theta)}{d(\cos \theta)^{2}}$
－The hadronic convexity parameter $C_{F}^{h}\left(q^{2}\right)=\frac{d^{2} \widetilde{W}\left(\theta^{*}\right)}{d\left(\cos \theta^{*}\right)^{2}}$

More physical observables

－The longitudinal polarization fraction of the final vector meson：

$$
\begin{equation*}
F_{L}^{\prime}\left(q^{2}\right)=\frac{d \Gamma\left(\lambda_{V}=0\right) / d q^{2}}{d \Gamma / d q^{2}}=\frac{\left(1+\delta_{l}\right) \mathcal{H}_{L}+3 \delta_{l} \mathcal{H}_{S}}{\mathcal{H}_{t o t}} \tag{18}
\end{equation*}
$$

－The transverse polarization fraction is $F_{T}^{\prime}\left(q^{2}\right)=1-F_{L}^{\prime}\left(q^{2}\right)$
－the trigonometric moments：

$$
\begin{gather*}
W_{i}=\int d \cos \theta d \cos \theta^{*} d(\chi / 2 \pi) M_{i}\left(\theta, \theta^{*}, \chi\right) \widetilde{W}\left(\theta, \theta^{*}, \chi\right)=\left\langle M_{i}\left(\theta, \theta^{*}, \chi\right)\right\rangle . \tag{19}\\
W_{T}\left(q^{2}\right)=\langle\cos 2 \chi\rangle=-\frac{1}{2}\left(1-2 \delta_{l}\right) \frac{\mathcal{H}_{T}}{\mathcal{H}_{t o t}}, \\
W_{l}\left(q^{2}\right)=\left\langle\cos \theta \cos \theta^{*} \cos \chi\right\rangle=\frac{9 \pi^{2}\left(1-2 \delta_{l}\right)}{512} \frac{\mathcal{H}_{I}}{\mathcal{H}_{t o t}} \tag{20}\\
W_{A}\left(q^{2}\right)=\left\langle\sin \theta \sin \theta^{*} \cos \chi\right\rangle=\frac{3 \pi}{16} \frac{\mathcal{H}_{A}+2 \delta_{l} \mathcal{H}_{S T}}{\mathcal{H}_{t o t}}
\end{gather*}
$$

Average value

－Average value，reinstate the phase factor $C\left(q^{2}\right)=\left|\overrightarrow{p_{2}}\right|\left(q^{2}-m_{l}^{2}\right)^{2} / q^{2}$ ：

$$
\begin{equation*}
\left\langle\mathcal{A}_{F B}^{\prime}\right\rangle=\frac{3}{4} \frac{\int d q^{2} C\left(q^{2}\right)\left(\mathcal{H}_{P}-4 \delta_{l} \mathcal{H}_{S L}\right)}{\int d q^{2} C\left(q^{2}\right)\left[\mathcal{H}_{U}+\mathcal{H}_{L}+\delta_{l}\left(\mathcal{H}_{U}+\mathcal{H}_{L}+3 \mathcal{H}_{S}\right)\right]} . \tag{21}
\end{equation*}
$$

A similar operation holds for all others．

The results

For the related form factors in these physical quantities equations，we stick to the predictions in the covariant light－front quark model（CLFQM）．

H．－Y．Cheng，C．－K．Chua，and C．－W．Hwang，Phys．Rev．D 69，074025（2004）
R．Verma，J．Phys．G 39，025005（2012）
－The momentum dependence of form factors can be parameterized as：

$$
\begin{equation*}
F\left(q^{2}\right)=\frac{F(0)}{1-a\left(q^{2} / m_{D}^{2}\right)+b\left(q^{2} / m_{D}^{2}\right)^{2}} \tag{22}
\end{equation*}
$$

－For the final state of the $D_{(s)}$ transitions，the pseudoscalar mesons P contain $\eta, \eta^{\prime}, \pi^{0}, K^{0}$ ， $\overline{K^{0}}$ and the vector mesons V contain $\rho, \omega, \phi, K^{*}, \overline{K^{*}}$ ；
－For the $B_{(s)}$ transitions，the pseudoscalar mesons P contain $\eta, \eta^{\prime}, \pi^{0}, \bar{D}^{0}, D_{s}^{-}$and the vector mesons V contain $\rho, \omega, K^{*-}, \bar{D}^{* 0}, D_{s}^{*-}$ ．

The results

－Branching fraction，compared to the PDG and BESIII results．All values are in unit of 10^{-3}

		e mode			μ mode		
		CLFQM	PDG	BESIII	CLFQM	PDG	BESIII
$D^{+} \rightarrow P$	$D^{+} \rightarrow \eta l^{+} \nu_{l}$	1.20	1.11 ± 0.07		1.16		1.04 ± 0.15［47］
	$D^{+} \rightarrow \eta^{\prime} l^{+} \nu_{l}$	0.179	0.20 ± 0.04		0.169		
	$D^{+} \rightarrow \pi^{0} l^{+} \nu_{l}$	4.09	3.72 ± 0.17	3.63 ± 0.13［48］	4.04	3.50 ± 0.15	
	$D^{+} \rightarrow \bar{K}^{0} l^{+} \nu_{l}$	103.2	87.3 ± 1.0	$86.0 \pm 2.1[48]$	100.7	87.6 ± 1.9	
$D^{+} \rightarrow V$	$D^{+} \rightarrow \rho l^{+} \nu_{l}$	2.32	$2.18{ }_{-0.25}^{+0.17}$		2.22	2.4 ± 0.4	
	$D^{+} \rightarrow \omega l^{+} \nu_{l}$	2.07	1.69 ± 0.11	1.69 ± 0.11［49］	1.98		1.77 ± 0.29［49］
	$D^{+} \rightarrow \bar{K}^{* 0} l^{+} \nu_{l}$	73.2	54.0 ± 1.0		69.3	52.7 ± 1.5	
$D_{s}^{+} \rightarrow P$	$D_{s}^{+} \rightarrow \eta l^{+} \nu_{l}$	21.9	23.2 ± 0.8	$23.0 \pm 3.9[50]$	21.5	24 ± 5.0	24.2 ± 5.7［50］
	$D_{s}^{+} \rightarrow \eta^{\prime} l^{+} \nu_{l}$	8.82	8.0 ± 0.7	$9.3 \pm 3.5[50]$	8.41	11 ± 5.0	10.6 ± 6.1［50］
	$D_{s}^{+} \rightarrow K^{0} l^{+} \nu_{l}$	2.54	3.4 ± 0.4		2.49		
$D_{s}^{+} \rightarrow V$	$D_{s}^{+} \rightarrow \phi l^{+} \nu_{l}$	30.7	23.9 ± 1.6	$22.6 \pm 5.4[50]$	28.9	19.0 ± 5.0	19.4 ± 6.2［50］
	$D_{s}^{+} \rightarrow K^{* 0} l^{+} \nu_{l}$	1.90	2.15 ± 0.28		1.82		

－Cross checked：be calculated directly via form factors
H．－Y．Cheng and X．－W．Kang，Eur．Phys．J．C77，587（2017）
－The experimental data：
PDG：Phys．Rev．D 98， 030001 （2018）
BESIII：Phys．Rev．Lett．124，231801（2020），Phys．Rev．D 96，012002（2017），Phys．Rev．D 101，072005（2020）

The results

－Branching fraction for the semileptonic decays of B^{+}and B_{s} ，compared to the PDG results．

		e mode	PDG $\left(l^{+} \nu_{l}\right)$	τ mode	PDG $\left(\tau^{+} \nu_{\tau}\right)$
	$B^{+} \rightarrow \eta l^{+} \nu_{l}$	4.96×10^{-5}	$(3.9 \pm 0.5) \times 10^{-5}$	3.03×10^{-5}	
$B^{+} \rightarrow P$	$B^{+} \rightarrow \eta^{\prime} l^{+} \nu_{l}$	2.41×10^{-5}	$(2.3 \pm 0.8) \times 10^{-5}$	1.28×10^{-5}	
	$B^{+} \rightarrow \pi^{0} l^{+} \nu_{l}$	7.20×10^{-5}	$(7.8 \pm 0.27) \times 10^{-5}$	4.89×10^{-5}	
	$B^{+} \rightarrow \bar{D}^{0} l^{+} \nu_{l}$	2.59×10^{-2}	$(2.35 \pm 0.09) \times 10^{-2}$	$0.78 \times 10^{-2}(0.77 \pm 0.25) \times 10^{-2}$	
$B^{+} \rightarrow V$	$B^{+} \rightarrow \rho l^{+} \nu_{l}$	$2.00 \times 10^{-4}(1.58 \pm 0.11) \times 10^{-4}$	1.09×10^{-4}		
	$B^{+} \rightarrow \omega l^{+} \nu_{l}$	$1.89 \times 10^{-4}(1.19 \pm 0.09) \times 10^{-4}$	1.00×10^{-4}		
	$B^{+} \rightarrow \bar{D}^{* 0} l^{+} \nu_{l}$	$6.67 \times 10^{-2}(5.66 \pm 0.22) \times 10^{-2}$	$1.66 \times 10^{-2}(1.88 \pm 0.20) \times 10^{-2}$		
	$B_{s} \rightarrow K^{-l^{+} \nu_{l}}$	9.23×10^{-5}	6.18×10^{-5}		
	$B_{s} \rightarrow D_{s}^{-} l^{+} \nu_{l}$	2.41×10^{-2}	0.72×10^{-2}		
$\rightarrow V$	$B_{s} \rightarrow K^{*-} l^{+} \nu_{l}$	3.01×10^{-4}	1.56×10^{-4}		
	$B_{s} \rightarrow D_{s}^{*-} l^{+} \nu_{l}$	5.91×10^{-2}		1.46×10^{-2}	

－I indicates an electron or a muon．

The results

			$\left\langle\mathcal{A}_{F B}^{c}\right\rangle$	$\left\langle\mathcal{A}_{F B}^{\mu}\right\rangle$	（ $\left.P_{L}^{\text {e }}\right\rangle$	$\left\langle P_{L}^{\mu}\right\rangle$	$\left\langle P_{T}^{e}\right\rangle\left(10^{-2}\right)$	$\left\langle P_{T}^{\mu}\right\rangle$	$\left\langle C_{F}^{e}\right\rangle$	$\left\langle C_{F}^{\mu}\right\rangle$	$\left\langle F_{L}^{e}\right\rangle$	$\left\langle F_{L}^{\mu}\right\rangle$
$D^{+} \rightarrow P$	$D^{+} \rightarrow \eta l^{+} \nu_{l}$	CLFQM	-6.0×10^{-6}	－0．05	1.00	0.84	－0．27	－0．43	-1.50	-1.36	－	－
		CCQM	-6.4×10^{-6}	－0．06	1.00	0.83	－0．28	－0．44	-1.50	-1.32	－	－
	$D^{+} \rightarrow \eta^{\prime} l^{+} \nu_{l}$	RQM		－0．052	1.00	0.85		－0．40	-1.50	－1．34	－	－
		CLFQM	-13.2×10^{-6}	－0．10	1.00	0.71	－0．41	－0．57	-1.50	-1.27	－	－
		CCQM	-13.0×10^{-6}	－0．10	1.00	0.70	－0．42	－0．59	-1.50	－1．19	－	－
	$D^{+} \rightarrow \pi^{0} l^{+} \nu_{l}$	RQM		－0．097	1.00	0.72		－0．56	-1.50	-1.20	－	－
		CLFQM	-3.4×10^{-6}	－0．04	1.00	0.90	－0．20	－0．34	-1.50	-1.40	－	－
		CCQM	-4.1×10^{-6}	－0．04	1.00	0.88	－0．22	－0．36	-1.50	-1.37	－	－
	$D^{+} \rightarrow \bar{K}^{0} l^{+} \nu_{l}$	RQM		－0．040	1.00	0.89		－0．36	-1.50	-1.38	－	－
		CLFQM	-5.8×10^{-6}	－0．05	1.00	0.84	－0．27	－0．42	-1.50	-1.36	－	－
		CCQM	-6.4×10^{-6}	－0．06	1.00	0.83	－0．28	－0．43	-1.50	-1.32	－	－
	RQM			－0．053	1.00	0.85		－0．42	-1.50	-1.34	－	－
$D^{+} \rightarrow V$	$D^{+} \rightarrow \rho l^{+} \nu_{l}$	CLFQM	－0．24	－0．26	1.00	0.92	－0．10	－0．13	－0．48	-0.40	0.55	0.54
		CCQM	－0．21	－0．24	1.00	0.92	－0．09	－0．13	－0．44	－0．36	0.53	0.51
	$D^{+} \rightarrow \omega l^{+} \nu_{l}$	RQM	－0．26	－0．28	1.00	0.92		－0．12	-0.42	-0.34	0.52	0.52
		CLFQM	－0．24	－0．26	1.00	0.92	－0．09	－0．12	－0．45	－0．37	0.53	0.53
		CCQM	－0．21	－0．24	1.00	0.92	－0．09	－0．12	－0．43	－0．35	0.52	0.50
	$D^{+} \rightarrow \bar{K}^{+0} l^{+} \nu_{1}$	RQM	－0．25	－0．27	1.00	0.93		－0．11	－0．39	－0．32	0.51	0.50
		CLFQM	－0．19	－0．22	1.00	0.90	－0．11	－0．15	－0．48	-0.39	0.55	0.54
		CCQM	－0．18	－0．21	1.00	0.91	－0．11	－0．15	－0．47	－0．37	0.54	0.52
		RQM	－0．22	－0．25	1.00	0.90		－0．15	－0．47	－0．37	0.54	0.54
$D_{s}^{+} \rightarrow P$	$D_{s}^{+} \rightarrow \eta l^{+} \nu l$	CLFQM	-5.6×10^{-6}	－0．05	1.00	0.84	－0．27	－0．43	-1.50	-1.33	－	－
		CCQM	-6.0×10^{-6}	－0．06	1.00	0.84	－0．27	－0．42	-1.50	-1.33	－	－
	$D_{s}^{+} \rightarrow \eta^{\prime} l^{+} \nu_{l}$	RQM		－0．043		0.88		－0．35		－1．37	－	－
		CLFQM	-11.1×10^{-6}	－0．09	1.00	0.74	－0．38	－0．55	-1.50	-1.23	－	－
		CCQM	-11.2×10^{-6}	－0．09	1.00	0.75	－0．38	－0．54	-1.50	-1.23	－	－
	$D_{s}^{+} \rightarrow K^{0} l^{+} \nu_{l}$	RQM		－0．080		0.77		－0．51		-1.26	－	－
		CLFQM	-5.1×10^{-6}	－0．05	1.00	0.86	－0．25	－0．41	-1.50	－1．35	－	－
		CCQM	-5.0×10^{-6}	－0．05	1.00	0.86	－0．24	－0．39	-1.50	-1.35	－	－
		RQM		－0．038		0.89		－0．34		-1.38	－	－
$D_{s}^{+} \rightarrow V$	$D_{s}^{+} \rightarrow \phi l^{+} \nu_{l}$	CLFQM	－0．18	－0．21	1.00	0.91	－0．11	－0．14	－0．48	－0．38	0.54	0.53
	$D_{s}^{+} \rightarrow K^{* 0} l^{+} \nu$	CCQM	－0．18	－0．21	1.00	0.91	－0．11	－0．14	－0．43	－0．34	0.53	0.50
		RQM	－0．21	－0．24	1.00	0.90		－0．15	－0．49	－0．35	0.54	0.54
		CLFQM	－0．22	－0．25	1.00	0.92	-0.09	－0．12	-0.47	-0.38	0.54	0.54
		CCQM	－0．22	－0．25	1.00	0.92	－0．09	－0．11	-0.40	-0.33	0.51	0.49
		RQM	－0．26	－0．29	1.00	0.92		－0．11	－0．41	－0．33	0.52	0.51

The average values of the observables．

－Theoretical predictions：the covariant confining quark model（CCQM）

M．A．Ivanov and J．G．Korner，
Front．Phys．14，64401（2019）
and the relativistic quark model（RQM）
R．Faustov，V．Galkin，and X．－W．Kang
Phys．Rev．D 101，013004（2020）
－The lepton mass effect：
$D_{s}, B_{s} \rightarrow V$ transition：
$A_{F B}^{\mu(\tau)}$ are similar to those for $\mathcal{A}_{F B}^{e}$
$D_{s}, B_{s} \rightarrow P$ transition：
$\left\langle\mathcal{A}_{F B}^{\mu}\right\rangle /\left\langle\mathcal{A}_{F B}^{e}\right\rangle \sim 10^{4} \sim m_{\mu}^{2} / m_{e}^{2}$
$\left\langle\mathcal{A}_{\text {FB }}^{\tau}\right\rangle /\left\langle\mathcal{A}_{\text {FB }}^{e}\right\rangle \sim 10^{7} \sim m_{\tau}^{2} / m_{e}^{2}$

The results

－The average values of other observables for the $B_{(s)}$ transitions

		$\left\langle\mathcal{A}_{F B}^{e}\right\rangle$	$\left\langle\mathcal{A}_{F B}^{\tau}\right\rangle$	$\left\langle P_{L}^{e}\right\rangle$	$\left\langle P_{L}^{\tau}\right\rangle$	$\left\langle P_{T}^{e}\right\rangle$	$\left\langle P_{T}^{\tau}\right\rangle$	$\left\langle C_{F}^{e}\right\rangle$	$\left\langle C_{F}^{\tau}\right\rangle$	$\left\langle F_{L}^{e}\right\rangle$	$\left\langle F_{L}^{\tau}\right\rangle$
$B^{+} \rightarrow P$	$B^{+} \rightarrow \eta l^{+} \nu_{l}$	-0.39×10^{-6}	－0．29	1.00	0.11	-0.64×10^{-3}	－0．86	-1.50	-0.60	－	－
	$B^{+} \rightarrow \eta^{\prime} l^{+} \nu_{l}$	-0.49×10^{-6}	－0．31	1.00	0.026	-0.72×10^{-3}	－0．87	-1.50	-0.52	－	－
	$B^{+} \rightarrow \pi^{0} l^{+} \nu_{l}$	-0.35×10^{-6}	－0．28	1.00	0.087	-0.62×10^{-3}	－0．85	－1．50	-0.59	－	－
	$B^{+} \rightarrow \bar{D}^{0} l^{+} \nu_{l}$	－1．04 $\times 10^{-6}$	－0．36	1.00	-0.32	-1.07×10^{-3}	－0．84	－1．50	-0.27	－	－
$B^{+} \rightarrow V$	$B^{+} \rightarrow \rho l^{+} \nu_{l}$	-0.32	－0．39	1.00	0.60	-0.18×10^{-3}	－0．10	-0.39	-0.12	0.51	0.49
	$B^{+} \rightarrow \omega l^{+} \nu_{l}$	－0．30	-0.36	1.00	0.65	-0.15×10^{-3}	-0.06	-0.42	-0.15	0.51	0.49
	$B^{+} \rightarrow \bar{D}^{* 0} l^{+} \nu_{l}$	-0.22	－0．30	1.00	0.51	-0.29×10^{-3}	－0．10	-0.42	-0.056	0.52	0.45
$B_{s} \rightarrow P$	$B_{s} \rightarrow K^{-} l^{+} \nu_{l}$	． 43×10	－0．29	1.00	－0．10	-0.72×10^{-3}	－0．86	－1．50	-0.46	－	－
	$B_{s} \rightarrow D_{s}^{-} l^{+} \nu_{l}$	-1.05×10^{-6}	－0．36	1.00	-0.33	-1.07×10^{-3}	－0．84	－1．50	-0.26	－	－
$B_{s} \rightarrow V$	$B_{s} \rightarrow K^{*-} l^{+} \nu_{l}$	－0．21	－0．28	1.00	0.65	-0.17×10^{-3}	－0．13	-0.59	-0.26	0.59	0.56
	$B_{s} \rightarrow D_{s}^{*-} l^{+} \nu_{l}$	-0.22	－0．29	1.00	0.51	-0.29×10^{-3}	－0．10	-0.43	－0．058	0.52	0.45

－$D_{(s)},\left\langle P_{T}^{\mu}\right\rangle /\left\langle P_{T}^{e}\right\rangle \sim 10^{2} \sim m_{\mu} / m_{e}$ ；

$$
B_{(s)},\left\langle P_{T}^{\tau}\right\rangle /\left\langle P_{T}^{e}\right\rangle \sim 10^{3} \sim m_{\tau} / m_{e}
$$

－$\left\langle P_{L}^{e}\right\rangle$ equals 1 for all the cases，the term proportional to δ_{l} almost vanishes；
In the zero lepton mass limit，$\left\langle P_{T}^{e}\right\rangle=0,\left\langle P_{L}^{e}\right\rangle=1$ for all channels，and $\left\langle C_{F}^{e}\right\rangle=-1.5$ for the $D_{(s)} / B_{(s)} \rightarrow P$ case．

The results

－The ratios of the partial decay rates，$\Gamma_{L} / \Gamma_{T}=\left\langle F_{L}\right\rangle /\left(1-\left\langle F_{L}\right\rangle\right)$

	CLFQM	CCQM［32］	RQM［37］	Experimental
$D^{+} \rightarrow \bar{K}^{* 0} e^{+} \nu_{e}$	1.21	1.17	1.17	
$D^{+} \rightarrow \bar{K}^{* 0} \mu^{+} \nu_{\mu}$	1.17	1.08	1.17	$1.13 \pm 0.08[46]$
$D_{s} \rightarrow \phi e^{+} \nu_{e}$	1.17	1.12	1.17	$1.0 \pm 0.3 \pm 0.2[52]$
$D_{s} \rightarrow \phi \mu^{+} \nu_{\mu}$	1.12	1	1.17	

－Further precise measurement

The results

－Predictions for $F_{L}^{\tau}\left(D_{(s)}^{*}\right)$ and $P_{L}^{\tau}\left(D_{(s)}^{(*)}\right)$ ，compared with other models as well as experimental values．In parenthesis，we also include the value of $F_{L}^{e}\left(D^{*}\right)$ for $\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}$

Observables	Approach	$\bar{B} \rightarrow D \tau^{-} \bar{\nu}_{\tau}$	$\bar{B} \rightarrow D^{*} \tau^{-} \bar{\nu}_{\tau}\left(e^{-} \bar{\nu}_{e}\right)$	$B_{s} \rightarrow D_{s} \tau$	$\rightarrow D_{s}^{*} \tau^{-} \bar{\nu}_{\tau}$
$F_{L}^{\tau}\left(D_{(s)}^{*}\right)$	CLFQM	－	0.451 （0．521）	－	0.453
	SM1［70］	－	0.46 ± 0.04	－	－
	SM2［71］	－	0.455	－	0.433
	PQCD［72］	－	0.43	－	0.43
	Belle［73］	－	$0.60 \pm 0.08 \pm 0.04(0.56 \pm 0.02)$	－	－
$P_{L}^{\tau}\left(D_{(s)}^{(*)}\right)$	CLFQM	0.32	－0．51	0.33	－0．51
	SM1	$0.325 \pm 0.09[74]$	$-0.497 \pm 0.013[75]$	－	－
	SM2［71］	0.352	－0．501	－	－0．520
	PQCD［72］	0.30	－0．53	0.30	－0．53
	Belle［76］	－	$-0.38 \pm 0.51_{-0.16}^{+0.21}$	－	－

－Discriminate the effects of new operator structure beyond the SM．
－The results $F_{L}^{\tau}\left(D_{(s)}^{(*)}\right)$ agree well within uncertainties．
－The uncertainty for P_{L}^{τ} of the Belle measurement is very large．

The results

－The case in which the charge of the lepton is negative $\left(I^{-} \bar{\nu}_{l}\right)$ ：

$$
\begin{align*}
& \mathcal{A}_{F B}\left(q^{2}\right)=-\frac{3}{4} \frac{\mathcal{H}_{P}+4 \delta_{1} \mathcal{H}_{S L}}{\mathcal{H}_{t o t}} \\
& P_{L}^{\prime}\left(q^{2}\right)=-\frac{\mathcal{H}_{U}+\mathcal{H}_{L}-\delta_{l}\left(\mathcal{H}_{U}+\mathcal{H}_{L}+3 \mathcal{H}_{S}\right)}{\mathcal{H}_{\text {tot }}} \tag{23}\\
& P_{T}^{\prime}\left(q^{2}\right)=-\frac{3 \pi \sqrt{\delta_{l}}}{4 \sqrt{2}} \frac{\mathcal{H}_{P}-2 \mathcal{H}_{S L}}{\mathcal{H}_{\text {tot }}}
\end{align*}
$$

－Forward－backward asymmetry，lepton polarization，and convexity parameters for semileptonic decays of $\bar{B}^{0} \rightarrow D^{+} I^{-} \bar{\nu}_{l}$ and $\bar{B}^{0} \rightarrow D^{*+} I^{-} \bar{\nu}_{l}$

		$\left\langle\mathcal{A}_{F B}^{e}\right\rangle$	$\left\langle\mathcal{A}_{F B}^{\tau}\right\rangle$	$\left\langle P_{L}^{e}\right\rangle$	$\left\langle P_{L}^{\tau}\right\rangle$	$\left\langle P_{T}^{e}\right\rangle$	$\left\langle P_{T}^{\tau}\right\rangle$	$\left\langle C_{F}^{e}\right\rangle$	$\left\langle C_{F}^{\tau}\right\rangle$
$\bar{B}^{0} \rightarrow D^{+} l^{-} \bar{\nu}_{l}$	CLFQM	-1.04×10^{-6}	-0.36	-1	0.32	1.06×10^{-3}	0.84	-1.5	-0.27
	CCQM	-1.17×10^{-6}	-0.36	-1	0.33		0.84	-1.5	-0.26
$\bar{B}^{0} \rightarrow D^{*+} l^{-} \bar{\nu}_{l}$	CLFQM	0.22		0.054	-1	-0.51	0.46×10^{-3}	0.47	-0.42
	CCQM	0.19		0.027	-1	-0.50		0.46	-0.47
		-0.062							

Theoretical uncertainty

－Attached to form factors： $7 \%-10 \%$
－CKM matrix elements：the uncertainty for $\left|V_{u b}\right|$ is larger due to the difference between the extractions from the exclusive and inclusive mode， $10 \%-15 \%$
－The theoretical uncertainty for the figures about differential distribution $\frac{d \Gamma}{d q^{2}}: 10 \%$

Differential decay rate of some channels

Figure：The solid line denotes the results of the e mode，while the dashed line and dot－dashed line correspond to the μ and τ mode，respectively．

The comparison with experimental data

Figure：The experimental data from BESIII for neutral D^{0}（red dots with error bars）and charged D^{+}（green dots with error bars），BaBar（blue dots and error bars）and CLEO for neutral D^{0}（orange dots and error bars） and charged D^{+}（brown dots with error bars）．

BESIII：M．Ablikim et al．（BESIII），Phys．Rev．D 92，072012（2015）；Phys．Rev．D 96，012002（2017）
BaBar：J．Lees et al．（BaBar），Phys．Rev．D 91，052022（2015）；B．Aubert et al．（BaBar），Phys．Rev．D 76，052005（2007）
CLEO：D．Besson et al．（CLEO），Phys．Rev．D 80，032005（2009）

The results

－The forward－backward asymmetries

The results

－The longitudinal polarization of a charged lepton

The results

－The transverse polarization of a charged lepton

Summary

－helicity amplitudes，helicity component space
－The leptonic and hadronic tensor can be evaluated in two different Lorentz frames． $L\left(\lambda_{W}, \lambda_{W}^{\prime}\right)$ ：in the W rest frame， $H\left(\lambda_{W}, \lambda_{W}^{\prime}\right)$ ：in the D rest frame．
－branching fraction：compared with experimental results for the $D_{(s)}$ decay； the predictions for the $B_{(s)}$ decay
－detailed derivation for physical observables $F_{L}^{\tau}\left(D^{*}\right)$ and $P_{L}^{\tau}\left(D^{*}\right)$ for the decay $\bar{B} \rightarrow D^{*} \tau^{-} \nu_{\tau}$ from the Belle collaboration
－these polarization observables are crucial inputs for testing and investigating New Physics

THANK YOU

