A comprehensive study on the semileptonic decay of heavy flavor mesons

Zhang Lu

College of Nuclear Science and Technology, Beijing Normal University

2021年3月27日

Xian-Wei Kang, Xin-Heng Guo

JHEP 02(2021)179, [arXiv:2012.04417]

第二届强子与重味物理理论与实验联合研讨会 兰州 兰州大学

< □ > < □ > < □ > < □ > < □ >

• Extraction of CKM matrix elements

The deviation from the unitarity relation encoded in the CKM matrix

ightarrow an inspiring signal of New Physics

The semileptonic decay offers a clean environment

- The lepton-flavor universality violation
- More physical observables distinguish various model predictions

- Form factors and Helicity amplitudes
- Differential decay distribution
- The physical observables
- Results
- Summary

• D, D_s , B and B_s

The semileptonic decay of D meson to a pseudoscalar (P) or a vector (V) meson.

$$\mathcal{M}\left(D \to P(V)I^{+}\nu_{l}\right) = \frac{G_{F}}{\sqrt{2}} V_{cq} \left\langle P(V) \mid \bar{q}O^{\mu}c \mid D_{(s)} \right\rangle I^{+}O_{\mu}\nu_{l}$$

$$= \frac{G_{F}}{\sqrt{2}} V_{cq}H^{\mu}L_{\mu},$$
(1)

・ロト ・四ト ・ヨト ・ヨト

2021年3月27日

4 / 35

• The invariant matrix element:

$$\langle P(\mathbf{p}_2)|V_{\mu}|D(\mathbf{p}_1)\rangle = T_{\mu}, \quad \langle V(\mathbf{p}_2)|V_{\mu} - A_{\mu}|D(\mathbf{p}_1)\rangle = \epsilon_2^{\dagger\nu} T_{\mu\nu}. \tag{2}$$

• The form factors, Bauer-Stech-Wirbel (BSW) form

$$T_{\mu} = \left(P_{\mu} - \frac{m_1^2 - m_2^2}{q^2}q_{\mu}\right)F_1(q^2) + \frac{m_1^2 - m_2^2}{q^2}q_{\mu}F_0(q^2),$$

$$T_{\mu\nu} = -\left(m_1 + m_2\right)\left[g_{\mu\nu} - \frac{P_{\nu}}{q^2}q_{\mu}\right]A_1(q^2) + \frac{P_{\nu}}{m_1 + m_2}\left[P_{\mu} - \frac{m_1^2 - m_2^2}{q^2}q_{\mu}\right]A_2(q^2) \quad (3)$$

$$-2m_2\frac{P_{\nu}}{q^2}q_{\mu}A_0(q^2) + \frac{i}{m_1 + m_2}\varepsilon_{\mu\nu\alpha\beta}P^{\alpha}q^{\beta}V(q^2).$$

where $P_{\mu} = (p_1 + p_2)_{\mu}$, $q_{\mu} = (p_1 - p_2)_{\mu}$.

メロト メタト メヨト メヨト

Four-vectors $\epsilon^{\mu}(\lambda_{W})$: orthonormality property $\epsilon^{\dagger}_{\mu}(\lambda_{W})\epsilon^{\mu}(\lambda'_{W}) = g_{\lambda_{W}\lambda'_{W}};$ completeness relations: $\epsilon_{\mu}(\lambda_{W})\epsilon^{\dagger}_{\nu}(\lambda'_{W})g_{\lambda_{W}\lambda'_{W}} = g_{\mu\nu}.$

• The contraction of leptonic and hadronic tensors:

$$L^{\mu\nu}H_{\mu\nu} = L_{\mu'\nu'}g^{\mu'\mu}g^{\nu'\nu}H_{\mu\nu}$$

= $L(\lambda_W,\lambda'_W)g_{\lambda_W\lambda''_W}g_{\lambda'_W\lambda''_W}H(\lambda''_W\lambda''_W).$ (4)

In the helicity-component space:

$$L\left(\lambda_{W},\lambda_{W}^{\prime}\right) = \epsilon^{\mu}(\lambda_{W})\epsilon^{\dagger\nu}(\lambda_{W}^{\prime})L_{\mu\nu}, \quad H\left(\lambda_{W},\lambda_{W}^{\prime}\right) = \epsilon^{\dagger\mu}(\lambda_{W})\epsilon^{\nu}(\lambda_{W}^{\prime})H_{\mu\nu}.$$
 (5)

< □ > < □ > < □ > < □ > < □ >

• For the transition $D
ightarrow Pl^+
u_l$, the helicity amplitudes:

$$H_{\lambda_W} \equiv \epsilon^{\mu \dagger} (\lambda_W) T_{\mu} \tag{6}$$

メロト メロト メヨト メヨト

The relations between form factors and helicity amplitudes:

$$\begin{split} H_t &= \frac{1}{\sqrt{q^2}} (m_1^2 - m_2^2) F_0(q^2), \\ H_\pm &= 0, \\ H_0 &= \frac{2m_1 |\vec{p}_2|}{\sqrt{q^2}} F_1(q^2). \end{split}$$

• For the transition $D
ightarrow Vl^+
u_l$, the helicity amplitudes:

$$H_{\lambda_W \lambda_V} \equiv \epsilon^{\dagger \mu} (\lambda_W) \epsilon_2^{\dagger \alpha} (\lambda_V) T_{\mu \alpha} \tag{7}$$

The relations:

$$\begin{split} H_t &\equiv \epsilon^{\dagger \mu}(t) \epsilon_2^{\dagger \nu}(0) T_{\mu \nu} = -\frac{2m_1 |\vec{p}_2|}{\sqrt{q^2}} A_0(q^2), \\ H_{\pm} &\equiv \epsilon^{\dagger \mu}(\pm) \epsilon_2^{\dagger \nu}(\pm) T_{\mu \nu} = -(m_1 + m_2) A_1(q^2) \pm \frac{2m_1 |\vec{p}_2|}{m_1 + m_2} V(q^2), \\ H_0 &\equiv \epsilon^{\dagger \mu}(0) \epsilon_2^{\dagger \nu}(0) T_{\mu \nu} = -\frac{m_1 + m_2}{2m_2 \sqrt{q^2}} \left(m_1^2 - m_2^2 - q^2\right) A_1(q^2) + \frac{1}{m_1 + m_2} \frac{2m_1^2 |\vec{p}_2|^2}{m_2 \sqrt{q^2}} A_2(q^2). \end{split}$$

メロト メロト メヨト メヨト

In the three-body phase, $\sum_{\rm spins} |\mathcal{M}|^2 = \frac{G_F^2}{2} |V_{cq}|^2 L\left(\lambda_W, \lambda'_W\right) g_{\lambda_W \lambda''_W} g_{\lambda'_W \lambda''_W} H\left(\lambda''_W, \lambda'''_W\right)$

• Hadronic part
$$H(\lambda_W, \lambda'_W) = \begin{cases} H_{\lambda_W} H^{\dagger}_{\lambda'_W}, & D \to P, \\ H_{\lambda_W \lambda_V} H^{\dagger}_{\lambda'_W \lambda_V}, & D \to V. \end{cases}$$

• Leptonic part

$$L_{\mu\nu} = \begin{cases} \operatorname{tr} [(k_{1} + m_{l}) O_{\mu} k_{2} O_{\nu}], & W^{-} \to l^{-} \bar{\nu}_{l}, \\ \operatorname{tr} [(k_{1} - m_{l}) O_{\nu} k_{2} O_{\mu}], & W^{+} \to l^{+} \nu_{l}, \end{cases}$$
$$= 8 \left(k_{1\mu} k_{2\nu} + k_{1\nu} k_{2\mu} - k_{1} \cdot k_{2} g_{\mu\nu} \pm i \varepsilon_{\mu\nu\alpha\beta} k_{1}^{\alpha} k_{2}^{\beta} \right)$$

• Two-fold differential decay distribution:

$$\frac{d\Gamma\left(D \to P(V)I^{+}\nu_{I}\right)}{dq^{2}d\cos\theta} = \frac{G_{F}^{2}|V_{cq}|^{2}|\vec{P}_{2}|q^{2}\nu^{2}}{32(2\pi)^{3}m_{1}^{2}} \times \left[\left(1 + \cos^{2}\theta\right)\mathcal{H}_{U} + 2\sin^{2}\theta\mathcal{H}_{L} + 2\cos\theta\mathcal{H}_{P} + 2\delta_{I}\left(\sin^{2}\theta\mathcal{H}_{U} + 2\cos^{2}\theta\mathcal{H}_{L} + 2\mathcal{H}_{S} - 4\cos\theta\mathcal{H}_{SL}\right)\right].$$
(8)

• The differential q^2 distribution:

$$\frac{d\Gamma\left(D \to P(V)I^{+}\nu_{I}\right)}{dq^{2}} = \frac{G_{F}^{2}|V_{cq}|^{2}|\vec{p}_{2}|q^{2}\nu^{2}}{12(2\pi)^{3}m_{1}^{2}} \times \left[\mathcal{H}_{U} + \mathcal{H}_{L} + \delta_{I}\left(\mathcal{H}_{U} + \mathcal{H}_{L} + 3\mathcal{H}_{S}\right)\right]$$
(9)

メロト メロト メヨト メヨト

• Definitions of helicity structure functions

Parity-conserving	Parity-violating
$\mathcal{H}_{U} = H_{+} ^{2} + H_{-} ^{2}$	$\mathcal{H}_P = H_+ ^2 - H ^2$
$\mathcal{H}_L = H_0 ^2$	$\mathcal{H}_A = \frac{1}{2} \operatorname{Re}(H_+ H_0^{\dagger} - H H_0^{\dagger})$
$\mathcal{H}_T = \operatorname{Re}(H_+ H^\dagger)$	$\mathcal{H}_{IA} = \frac{1}{2} \mathrm{Im} (H_+ H_0^{\dagger} - H H_0^{\dagger})$
$\mathcal{H}_{IT} = \mathrm{Im}(H_+ H^\dagger)$	$\mathcal{H}_{SA} = \frac{1}{2} \operatorname{Re}(H_+ H_t^{\dagger} - H H_t^{\dagger})$
$\mathcal{H}_I = \frac{1}{2} \operatorname{Re}(H_+ H_0^{\dagger} + H H_0^{\dagger})$	$\mathcal{H}_{ISA} = \frac{1}{2} \mathrm{Im} (H_+ H_t^{\dagger} - H H_t^{\dagger})$
$\mathcal{H}_{II} = \frac{1}{2} \mathrm{Im} (H_+ H_0^\dagger + H H_0^\dagger)$	
$\mathcal{H}_S = H_t ^2$	
$\mathcal{H}_{ST} = \frac{1}{2} \mathrm{Re} (H_+ H_t^{\dagger} + H H_t^{\dagger})$	
$\mathcal{H}_{IST} = \frac{1}{2} \mathrm{Im} (H_+ H_t^{\dagger} + H H_t^{\dagger})$	
$\mathcal{H}_{SL} = \operatorname{Re}(H_0 H_t^{\dagger})$	
$\mathcal{H}_{ISL} = \mathrm{Im}(H_0 H_t^{\dagger})$	
$\mathcal{H}_{tot} = \mathcal{H}_U + \mathcal{H}_L + \delta_l \left(\mathcal{H}_U + \mathcal{H}_L + 3\mathcal{H}_S \right)$)

2021年3月27日 11/35

The cascade decay $D
ightarrow V(
ightarrow P_1P_2) I
u_I$

• amplitude
$$\mathcal{A}(V \rightarrow P_1 P_2) = g_{VPP} \cdot \epsilon_2^{\rho}(\lambda_V) \cdot p_{3\rho}$$

The hadronic tensor:

$$H(\lambda_{W},\lambda_{W}') = \epsilon^{\dagger\mu}(\lambda_{W})\epsilon^{\nu}(\lambda_{W}')H_{\mu\nu}$$

= $g_{VPP}^{2}p_{3\alpha'}p_{3\beta'}\epsilon_{2}^{\alpha'}(\lambda_{V})\epsilon_{2}^{\dagger\beta'}(\lambda_{V}') \times H_{\lambda_{W},\lambda_{V}}H_{\lambda_{W}',\lambda_{V}'}^{\dagger}.$ (10)

• The fourfold distribution for the cascade:

$$\frac{d\Gamma\left(D \to V(\to P_1 P_2) l^+ \nu_l\right)}{dq^2 d\cos\theta d \frac{\chi}{2\pi} d\cos\theta^*} = \frac{G_F^2 |V_{cq}|^2 |\vec{p}_2| q^2 \nu^2}{12(2\pi)^3 m_1^2} Br(V \to P_1 P_2) W(\theta, \theta^*, \chi), \tag{11}$$

2021年3月27日

12 / 35

• the angular distribution $W(\theta, \theta^*, \chi)$:

$$\begin{split} W\left(\theta,\theta^*,\chi\right) = & \frac{9}{32} \left(1+\cos^2\theta\right) \sin^2\theta^* \mathcal{H}_U + \frac{9}{8} \sin^2\theta \cos^2\theta^* \mathcal{H}_L + \frac{9}{16} \cos\theta \sin^2\theta^* \mathcal{H}_P \\ & - \frac{9}{16} \sin^2\theta \sin^2\theta^* \cos 2\chi \mathcal{H}_T + \frac{9}{8} \sin\theta \sin 2\theta^* \cos \chi \mathcal{H}_A \\ & + \frac{9}{16} \sin 2\theta \sin 2\theta^* \cos \chi \mathcal{H}_I - \frac{9}{8} \sin\theta \sin 2\theta^* \sin \chi \mathcal{H}_{II} \\ & - \frac{9}{16} \sin 2\theta \sin 2\theta^* \sin \chi \mathcal{H}_{IA} + \frac{9}{16} \sin^2\theta \sin^2\theta^* \sin 2\chi \mathcal{H}_{IT} \\ & + \delta_l \left[\frac{9}{4} \cos^2\theta^* \mathcal{H}_S - \frac{9}{2} \cos\theta \cos^2\theta^* \mathcal{H}_{SL} + \frac{9}{4} \cos^2\theta \cos^2\theta^* \mathcal{H}_L \\ & + \frac{9}{16} \sin^2\theta \sin^2\theta^* \mathcal{H}_U + \frac{9}{8} \sin^2\theta \sin^2\theta^* \cos 2\chi \mathcal{H}_T \\ & + \frac{9}{4} \sin\theta \sin 2\theta^* \cos \chi \mathcal{H}_{ST} - \frac{9}{8} \sin 2\theta \sin 2\theta^* \cos \chi \mathcal{H}_I \\ & - \frac{9}{4} \sin\theta \sin 2\theta^* \sin \chi \mathcal{H}_{ISA} + \frac{9}{8} \sin^2\theta \sin^2\theta^* \sin \chi \mathcal{H}_{IA} \\ & - \frac{9}{8} \sin^2\theta \sin^2\theta^* \sin 2\chi \mathcal{H}_{IT} \right]. \end{split}$$

To study the effect of the lepton mass and provide a more detailed physical picture in semileptonic decays beyond the branching fraction, we can also define other physical observables that can be measured experimentally.

• The forward-backward asymmetry:

$$\mathcal{A}_{FB}^{l}(q^{2}) = \frac{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{dq^{2}d\cos\theta} - \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{dq^{2}d\cos\theta}}{\int_{0}^{1} d\cos\theta \frac{d\Gamma}{dq^{2}d\cos\theta} + \int_{-1}^{0} d\cos\theta \frac{d\Gamma}{dq^{2}d\cos\theta}}$$
(12)
$$= \frac{3}{4} \frac{H_{P} - 4\delta_{I}H_{SL}}{H_{tot}}.$$

The leptonic polarization

set the azimuthal angel $\chi = 0$, spin four-vector $s^{\mu} = \left(\frac{\vec{k}_1 \cdot \hat{s}}{m_l}, \ \hat{s} + \frac{\vec{k}_1(\vec{k}_1 \cdot \hat{s})}{m_l(k_1^0 + m_l)}\right)$

- The longitudinal polarization vector $s_L^\mu = \frac{1}{m_l} \left(|\vec{k}_1|, \ E_1 \sin \theta, \ 0, \ E_1 \cos \theta \right)$
- The corresponding leptonic tensor:

$$L_{\mu\nu}(s_L) = \mp 8m_l \left(s_{L\mu} k_{2\nu} + s_{L\nu} k_{2\mu} - s_L \cdot k_2 g_{\mu\nu} \pm i \varepsilon_{\mu\nu\alpha\beta} s_L^{\alpha} k_2^{\beta} \right)$$
(13)

• The polarized differential decay distribution:

$$\frac{d\Gamma(s_L)}{dq^2} = \frac{G_F^2 |V_{cq}|^2 |\vec{p}_2| q^2 v^2}{12(2\pi)^3 m_1^2} \left[\mathcal{H}_U + \mathcal{H}_L - \delta_I \left(\mathcal{H}_U + \mathcal{H}_L + 3\mathcal{H}_S \right) \right].$$
(14)

The longitudinal polarization of lepton:

$$P_{L}^{I}(q^{2}) = \frac{d\Gamma(s_{L})}{dq^{2}} / \frac{d\Gamma}{dq^{2}} = \frac{\mathcal{H}_{U} + \mathcal{H}_{L} - \delta_{I}\left(\mathcal{H}_{U} + \mathcal{H}_{L} + 3\mathcal{H}_{S}\right)}{\mathcal{H}_{tot}}$$
(15)

• The transverse polarization corresponding to the vector $s_T^{\mu} = (0, \hat{s}_T) = (0, \cos \theta, 0, -\sin \theta)$:

$$P_T^{\prime}(q^2) = -\frac{3\pi\sqrt{\delta_I}}{4\sqrt{2}}\frac{\mathcal{H}_P + 2\mathcal{H}_{SL}}{\mathcal{H}_{tot}}.$$
(16)

イロン イロン イヨン イヨン

- Normalized angle distribution $\widetilde{W}(\theta^*, \theta, \chi) = \frac{W(\theta^*, \theta, \chi)}{\mathcal{H}_{tot}}$
- \bullet the normalized θ and θ^* angular distribution:

$$\widetilde{W}(\theta) = \frac{W(\theta)}{\mathcal{H}_{tot}} = \frac{a + b\cos\theta + c\cos^2\theta}{2(a + c/3)}$$

$$\widetilde{W}(\theta^*) = \frac{W(\theta^*)}{\mathcal{H}_{tot}} = \frac{a' + c'\cos^2\theta^*}{2a' + 2/3c'}$$
(17)

- the leptonic convexity parameter $C_F^l(q^2) = rac{d^2 \widetilde{W}(\theta)}{d(\cos \theta)^2}$
- The hadronic convexity parameter $C_F^h(q^2) = rac{d^2 \widetilde{W}(heta^*)}{d(\cos heta^*)^2}$

・ロト ・日 ト ・ヨト ・ヨト

• The longitudinal polarization fraction of the final vector meson:

$$F_L^I(q^2) = \frac{d\Gamma(\lambda_V = 0)/dq^2}{d\Gamma/dq^2} = \frac{(1+\delta_I)\mathcal{H}_L + 3\delta_I\mathcal{H}_S}{\mathcal{H}_{tot}}$$
(18)

ullet The transverse polarization fraction is $F_{T}^{\prime}(q^2)=1-F_{L}^{\prime}(q^2)$

• the trigonometric moments:

$$W_{i} = \int d\cos\theta d\cos\theta^{*} d(\chi/2\pi) M_{i}(\theta,\theta^{*},\chi) \widetilde{W}(\theta,\theta^{*},\chi) = \langle M_{i}(\theta,\theta^{*},\chi) \rangle.$$
(19)

$$W_{T}(q^{2}) = \langle \cos 2\chi \rangle = -\frac{1}{2} (1 - 2\delta_{I}) \frac{\mathcal{H}_{T}}{\mathcal{H}_{tot}},$$

$$W_{I}(q^{2}) = \langle \cos \theta \cos \theta^{*} \cos \chi \rangle = \frac{9\pi^{2} (1 - 2\delta_{I})}{512} \frac{\mathcal{H}_{I}}{\mathcal{H}_{tot}},$$

$$W_{A}(q^{2}) = \langle \sin \theta \sin \theta^{*} \cos \chi \rangle = \frac{3\pi}{16} \frac{\mathcal{H}_{A} + 2\delta_{I}\mathcal{H}_{ST}}{\mathcal{H}_{tot}}.$$
(20)

Average value

• Average value, reinstate the phase factor $C(q^2) = |ec{p_2}|\,(q^2-m_l^2)^2/q^2$:

$$\langle \mathcal{A}_{FB}^{\prime} \rangle = \frac{3}{4} \frac{\int dq^2 C(q^2) \left(\mathcal{H}_P - 4\delta_I \mathcal{H}_{SL}\right)}{\int dq^2 C(q^2) \left[\mathcal{H}_U + \mathcal{H}_L + \delta_I \left(\mathcal{H}_U + \mathcal{H}_L + 3\mathcal{H}_S\right)\right]}.$$
 (21)

A similar operation holds for all others.

▶ ◀ 亘 ▶ 亘 の Q (~)
 2021 年 3 月 27 日 19 / 35

メロト メロト メヨト メヨト

For the related form factors in these physical quantities equations, we stick to the predictions in the covariant light-front quark model (CLFQM).

H.-Y.Cheng, C.-K.Chua, and C.-W.Hwang, Phys.Rev.D 69,074025(2004)

- R. Verma, J.Phys.G 39,025005(2012)
- The momentum dependence of form factors can be parameterized as:

$$F(q^2) = \frac{F(0)}{1 - a \left(q^2/m_D^2\right) + b \left(q^2/m_D^2\right)^2}$$
(22)

- For the final state of the $D_{(s)}$ transitions, the pseudoscalar mesons P contain η, η', π^0, K^0 , $\bar{K^0}$ and the vector mesons V contain $\rho, \omega, \phi, K^*, \bar{K^*}$;
- For the B_(s) transitions, the pseudoscalar mesons P contain η, η', π⁰, D
 ⁰, D_s⁻ and the vector mesons V contain ρ, ω, K^{*-}, D
 ^{*0}, D_s^{*-}.

イロン イヨン イヨン イヨン 三日

• Branching fraction, compared to the PDG and BESIII results. All values are in unit of 10^{-3}

			e mod	le	μ mode			
		CLFQM	PDG	BESIII	CLFQM	PDG	BESIII	
	$D^+ \rightarrow \eta l^+ \nu_l$	1.20	1.11 ± 0.07		1.16		$1.04 \pm 0.15 \; [47]$	
	$D^+ \rightarrow \eta' l^+ \nu_l$	0.179	0.20 ± 0.04		0.169			
$D^+ \rightarrow P$	$D^+ \rightarrow \pi^0 l^+ \nu_l$	4.09	3.72 ± 0.17	$3.63 \pm 0.13 \ [48]$	4.04	3.50 ± 0.15		
	$D^+ \rightarrow \bar{K}^0 l^+ \nu_l$	103.2	87.3 ± 1.0	$86.0 \pm 2.1 \ [48]$	100.7	87.6 ± 1.9		
	$D^+ ightarrow ho l^+ u_l$	2.32	$2.18\substack{+0.17 \\ -0.25}$		2.22	2.4 ± 0.4		
$D^+ \to V$	$D^+ \rightarrow \omega l^+ \nu_l$	2.07	1.69 ± 0.11	$1.69 \pm 0.11 \ [49]$	1.98		$1.77 \pm 0.29 \ [49]$	
	$D^+ \rightarrow \bar{K}^{*0} l^+ \nu_l$	73.2	54.0 ± 1.0		69.3	52.7 ± 1.5		
	$D_s^+ ightarrow \eta l^+ \nu_l$	21.9	23.2 ± 0.8	$23.0 \pm 3.9 \ [50]$	21.5	24 ± 5.0	$24.2 \pm 5.7 \ [50]$	
$D_s^+ \to P$	$D_s^+ \rightarrow \eta' l^+ \nu_l$	8.82	8.0 ± 0.7	$9.3 \pm 3.5 \ [50]$	8.41	11 ± 5.0	$10.6 \pm 6.1 \ [50]$	
	$D_s^+ \rightarrow K^0 l^+ \nu_l$	2.54	3.4 ± 0.4		2.49			
	$D_s^+ ightarrow \phi l^+ \nu_l$	30.7	23.9 ± 1.6	$22.6 \pm 5.4 \ [50]$	28.9	19.0 ± 5.0	$19.4 \pm 6.2 \ [50]$	
$D_s \rightarrow V$	$D_s^+ \rightarrow K^{*0} l^+ \nu_l$	1.90	2.15 ± 0.28		1.82			

• Cross checked: be calculated directly via form factors

H.-Y.Cheng and X.-W.Kang, Eur.Phys.J.C77,587(2017)

• The experimental data:

PDG: Phys. Rev. D 98, 030001 (2018)

BESIII: Phys.Rev.Lett. 124,231801(2020), Phys.Rev.D 96,012002(2017), Phys.Rev.D 101,072005(2020)

• Branching fraction for the semileptonic decays of B^+ and B_s , compared to the PDG results.

		$e \mod$	PDG $(l^+\nu_l)$	τ mode	PDG $(\tau^+ \nu_\tau)$
	$B^+ \rightarrow \eta l^+ \nu_l$	4.96×10^{-5}	$(3.9\pm 0.5)\times 10^{-5}$	3.03×10^{-5}	
D+ . D	$B^+ \rightarrow \eta' l^+ \nu_l$	2.41×10^{-5}	$(2.3\pm 0.8)\times 10^{-5}$	1.28×10^{-5}	
$D^+ \rightarrow P^-$	$B^+ \rightarrow \pi^0 l^+ \nu_l$	7.20×10^{-5}	$(7.8\pm 0.27)\times 10^{-5}$	4.89×10^{-5}	
	$B^+ \rightarrow \bar{D}^0 l^+ \nu_l$	2.59×10^{-2}	$(2.35\pm 0.09)\times 10^{-2}$	0.78×10^{-2}	$(0.77\pm0.25)\times10^{-2}$
	$B^+ \to \rho l^+ \nu_l$	$2.00 imes 10^{-4}$	$(1.58\pm 0.11)\times 10^{-4}$	1.09×10^{-4}	
$B^+ \to V$	$B^+ \to \omega l^+ \nu_l$	1.89×10^{-4}	$(1.19\pm 0.09)\times 10^{-4}$	1.00×10^{-4}	
	$B^+ \rightarrow \bar{D}^{*0} l^+ \nu_l$	6.67×10^{-2}	$(5.66\pm 0.22)\times 10^{-2}$	1.66×10^{-2}	$(1.88\pm 0.20)\times 10^{-2}$
D . D	$B_s \to K^- l^+ \nu_l$	9.23×10^{-5}		6.18×10^{-5}	
$D_s \rightarrow P$	$B_s \rightarrow D_s^- l^+ \nu_l$	2.41×10^{-2}		0.72×10^{-2}	
D V	$B_s \rightarrow K^{*-} l^+ \nu_l$	$3.01 imes 10^{-4}$		1.56×10^{-4}	
$D_s \rightarrow V$	$B_s \rightarrow D_s^{*-} l^+ \nu_l$	$5.91 imes 10^{-2}$		1.46×10^{-2}	

• I indicates an electron or a muon.

<ロ> <四> <四> <四> <三</p>

Zhang Lu (BNU)

			$\langle A_{FB}^e \rangle$	$\langle {\cal A}^{\mu}_{FB} \rangle$	$\langle P^e_L\rangle$	$\langle P_L^\mu\rangle$	$\langle P^e_T\rangle(10^{-2})$	$\langle P_T^\mu\rangle$	$\langle C_F^e\rangle$	$\langle C_F^\mu \rangle$	$\langle F_L^{e}\rangle$	$\langle F_L^\mu\rangle$
	$D^+ \to \eta l^+ \nu_l$	CLFQM	-6.0×10^{-6}	-0.05	1.00	0.84	-0.27	-0.43	-1.50	-1.36	-	
		CCQM	-6.4×10^{-6}	-0.06	1.00	0.83	-0.28	-0.44	-1.50	-1.32	-	
		RQM		-0.052	1.00	0.85		-0.40	-1.50	-1.34	-	
	$D^+ \rightarrow \eta' l^+ \nu_l$	CLFQM	-13.2×10^{-6}	-0.10	1.00	0.71	-0.41	-0.57	-1.50	-1.27	-	-
		CCQM	-13.0×10^{-6}	-0.10	1.00	0.70	-0.42	-0.59	-1.50	-1.19	-	
D+ . D		RQM		-0.097	1.00	0.72		-0.56	-1.50	-1.20	-	
$D^+ \rightarrow P$	$D^+ \to \pi^0 l^+ \nu_l$	CLFQM	-3.4×10^{-6}	-0.04	1.00	0.90	-0.20	-0.34	-1.50	-1.40	-	
		CCQM	-4.1×10^{-6}	-0.04	1.00	0.88	-0.22	-0.36	-1.50	-1.37	-	
		RQM		-0.040	1.00	0.89		-0.36	-1.50	-1.38	-	-
	$D^+ ightarrow ar{K}^0 l^+ u_l$	CLFQM	-5.8×10^{-6}	-0.05	1.00	0.84	-0.27	-0.42	-1.50	-1.36	-	-
		CCQM	-6.4×10^{-6}	-0.06	1.00	0.83	-0.28	-0.43	-1.50	-1.32	-	-
		RQM		-0.053	1.00	0.85		-0.42	-1.50	-1.34	-	
	$D^+ \rightarrow \rho l^+ \nu_l$	CLFQM	-0.24	-0.26	1.00	0.92	-0.10	-0.13	-0.48	-0.40	0.55	0.54
		$\rm CCQM$	-0.21	-0.24	1.00	0.92	-0.09	-0.13	-0.44	-0.36	0.53	0.51
		RQM	-0.26	-0.28	1.00	0.92		-0.12	-0.42	-0.34	0.52	0.52
$D^+ \rightarrow V$	$D^+ \rightarrow \omega l^+ \nu_l$	CLFQM	-0.24	-0.26	1.00	0.92	-0.09	-0.12	-0.45	-0.37	0.53	0.53
		$\rm CCQM$	-0.21	-0.24	1.00	0.92	-0.09	-0.12	-0.43	-0.35	0.52	0.50
		RQM	-0.25	-0.27	1.00	0.93		-0.11	-0.39	-0.32	0.51	0.50
	$D^+ \rightarrow \bar{K}^{*0} l^+ \nu_l$	CLFQM	-0.19	-0.22	1.00	0.90	-0.11	-0.15	-0.48	-0.39	0.55	0.54
		$\rm CCQM$	-0.18	-0.21	1.00	0.91	-0.11	-0.15	-0.47	-0.37	0.54	0.52
		RQM	-0.22	-0.25	1.00	0.90		-0.15	-0.47	-0.37	0.54	0.54
	$D_s^+ \rightarrow \eta l^+ \nu_l$	CLFQM	-5.6×10^{-6}	-0.05	1.00	0.84	-0.27	-0.43	-1.50	-1.33	-	-
		CCQM	-6.0×10^{-6}	-0.06	1.00	0.84	-0.27	-0.42	-1.50	-1.33	-	-
		RQM		-0.043		0.88		-0.35		-1.37	-	-
	$D_s^+ \to \eta' l^+ \nu_l$	CLFQM	-11.1×10^{-6}	-0.09	1.00	0.74	-0.38	-0.55	-1.50	-1.23	-	-
$D_s^+ \rightarrow P$		CCQM	-11.2×10^{-6}	-0.09	1.00	0.75	-0.38	-0.54	-1.50	-1.23	-	-
		RQM		-0.080		0.77		-0.51		-1.26	-	-
	$D_s^+ \to K^0 l^+ \nu_l$	CLFQM	-5.1×10^{-6}	-0.05	1.00	0.86	-0.25	-0.41	-1.50	-1.35	-	-
		CCQM	-5.0×10^{-6}	-0.05	1.00	0.86	-0.24	-0.39	-1.50	-1.35	-	-
		RQM		-0.038		0.89		-0.34		-1.38	-	
	$D_s^+ \rightarrow \phi l^+ \nu_l$	CLFQM	-0.18	-0.21	1.00	0.91	-0.11	-0.14	-0.48	-0.38	0.54	0.53
		CCQM	-0.18	-0.21	1.00	0.91	-0.11	-0.14	-0.43	-0.34	0.53	0.50
$D^+ \rightarrow V$		RQM	-0.21	-0.24	1.00	0.90		-0.15	-0.49	-0.35	0.54	0.54
	$D_s^+ \rightarrow K^{*0}l^+\nu_l$	CLFQM	-0.22	-0.25	1.00	0.92	-0.09	-0.12	-0.47	-0.38	0.54	0.54
		CCQM	-0.22	-0.25	1.00	0.92	-0.09	-0.11	-0.40	-0.33	0.51	0.49
		RQM	-0.26	-0.29	1.00	0.92		-0.11	-0.41	-0.33	0.52	0.51

The average values of the observables.

- Theoretical predictions: the covariant confining quark model (CCQM)
 M.A.Ivanov and J.G.Korner,
 Front.Phys.14,64401(2019)
 and the relativistic quark model(RQM)
 R.Faustov, V.Galkin, and X.-W.Kang
 Phys.Rev.D 101,013004(2020)
- The lepton mass effect: $D_s, B_s \rightarrow V$ transition: $A_{FB}^{\mu(\tau)}$ are similar to those for \mathcal{A}_{FB}^e $D_s, B_s \rightarrow P$ transition: $\langle \mathcal{A}_{FB}^{\mu} \rangle / \langle \mathcal{A}_{FB}^e \rangle \sim 10^4 \sim m_{\mu}^2 / m_e^2$ $\langle \mathcal{A}_{FB}^{\tau} \rangle / \langle \mathcal{A}_{FB}^e \rangle \sim 10^7 \sim m_{\tau}^2 / m_e^2$

< □ > < □ > < □ > < □ > < □ >

The average values of other observables for the B_(s) transitions

		$\langle A_{FB}^e \rangle$	$\langle \mathcal{A}_{FB}^{\tau} \rangle$	$\langle P^e_L\rangle$	$\langle P_L^\tau\rangle$	$\langle P_T^e \rangle$	$\langle P_T^\tau\rangle$	$\langle C_F^e\rangle$	$\langle C_F^\tau \rangle$	$\langle F^e_L\rangle$	$\langle F_L^\tau\rangle$
	$B^+ \to \eta l^+ \nu_l$	-0.39×10^{-6}	-0.29	1.00	0.11	-0.64×10^{-3}	-0.86	-1.50	-0.60	-	-
	$B^+ \rightarrow \eta' l^+ \nu_l$	-0.49×10^{-6}	-0.31	1.00	0.026	-0.72×10^{-3}	-0.87	-1.50	-0.52	-	-
$B^+ \rightarrow P$	$B^+ \to \pi^0 l^+ \nu_l$	-0.35×10^{-6}	-0.28	1.00	0.087	-0.62×10^{-3}	-0.85	-1.50	-0.59	-	-
	$B^+ ightarrow ar{D}^0 l^+ u_l$	-1.04×10^{-6}	-0.36	1.00	-0.32	-1.07×10^{-3}	-0.84	-1.50	-0.27	-	-
	$B^+ \rightarrow \rho l^+ \nu_l$	-0.32	-0.39	1.00	0.60	-0.18×10^{-3}	-0.10	-0.39	-0.12	0.51	0.49
$B^+ \rightarrow V$	$B^+ ightarrow \omega l^+ u_l$	-0.30	-0.36	1.00	0.65	-0.15×10^{-3}	-0.06	-0.42	-0.15	0.51	0.49
	$B^+ \rightarrow \bar{D}^{*0} l^+ \nu_l$	-0.22	-0.30	1.00	0.51	-0.29×10^{-3}	-0.10	-0.42	-0.056	0.52	0.45
D D	$B_s \to K^- l^+ \nu_l$	-0.43×10^{-6}	-0.29	1.00	-0.10	-0.72×10^{-3}	-0.86	-1.50	-0.46	-	-
$D_s \rightarrow \Gamma$	$B_s \to D_s^- l^+ \nu_l$	-1.05×10^{-6}	-0.36	1.00	-0.33	-1.07×10^{-3}	-0.84	-1.50	-0.26	-	-
$B_s \to V$	$B_s \rightarrow K^{*-} l^+ \nu_l$	-0.21	-0.28	1.00	0.65	-0.17×10^{-3}	-0.13	-0.59	-0.26	0.59	0.56
	$B_s \rightarrow D_s^{*-} l^+ \nu_l$	-0.22	-0.29	1.00	0.51	-0.29×10^{-3}	-0.10	-0.43	-0.058	0.52	0.45

- $D_{(s)}$, $\langle P_T^{\mu} \rangle / \langle P_T^e \rangle \sim 10^2 \sim m_{\mu}/m_e$; $B_{(s)}$, $\langle P_T^{\tau} \rangle / \langle P_T^e \rangle \sim 10^3 \sim m_{\tau}/m_e$
- $\langle P_L^e \rangle$ equals 1 for all the cases, the term proportional to δ_l almost vanishes; In the zero lepton mass limit, $\langle P_T^e \rangle = 0$, $\langle P_L^e \rangle = 1$ for all channels, and $\langle C_F^e \rangle = -1.5$ for the $D_{(s)}/B_{(s)} \to P$ case.

• The ratios of the partial decay rates, $\Gamma_L/\Gamma_T = \langle F_L \rangle/(1-\langle F_L \rangle)$

	CLFQM	CCQM [32]	RQM [37]	Experimental
$D^+ \to \bar{K}^{*0} e^+ \nu_e$	1.21	1.17	1.17	
$D^+ \to \bar{K}^{*0} \mu^+ \nu_\mu$	1.17	1.08	1.17	$1.13 \pm 0.08 \ [46]$
$D_s \rightarrow \phi e^+ \nu_e$	1.17	1.12	1.17	$1.0\pm 0.3\pm 0.2~[52]$
$D_s \to \phi \mu^+ \nu_\mu$	1.12	1	1.17	

• Further precise measurement

メロト メタト メヨト メヨト

• Predictions for $F_L^{\tau}(D_{(s)}^*)$ and $P_L^{\tau}(D_{(s)}^{(*)})$, compared with other models as well as experimental values. In parenthesis, we also include the value of $F_L^e(D^*)$ for $\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$

Observables	Approach	$\bar{B} \rightarrow D \tau^- \bar{\nu}_{\tau}$	$\bar{B} \rightarrow D^* \tau^- \bar{\nu}_\tau (e^- \bar{\nu}_e)$	$B_s \rightarrow D_s \tau^- \bar{\nu}_\tau$	$B_s \to D_s^* \tau^- \bar{\nu}_\tau$
	CLFQM	-	0.451 (0.521)	-	0.453
	SM1 [70]	-	0.46 ± 0.04	-	-
$F^\tau_L(D^*_{(s)})$	SM2 [71]	-	0.455	-	0.433
	PQCD [72]	-	0.43	-	0.43
	Belle [73]	-	$0.60\pm 0.08\pm 0.04~(0.56\pm 0.02)$	-	-
	CLFQM	0.32	-0.51	0.33	-0.51
	SM1	0.325 ± 0.09 [74]	-0.497 ± 0.013 [75]	-	-
$P_L^{\tau}(D_{(s)}^{(*)})$	SM2 [71]	0.352	-0.501	-	-0.520
	PQCD [72]	0.30	-0.53	0.30	-0.53
	Belle [76]	-	$-0.38 \pm 0.51^{+0.21}_{-0.16}$	-	-

- Discriminate the effects of new operator structure beyond the SM.
- The results $F_L^{\tau}(D_{(s)}^{(*)})$ agree well within uncertainties.
- The uncertainty for P_L^{τ} of the Belle measurement is very large.

イロン イロン イヨン イヨン

• The case in which the charge of the lepton is negative $(I^- \bar{\nu}_I)$:

$$\mathcal{A}_{FB}(q^2) = -\frac{3}{4} \frac{\mathcal{H}_P + 4\delta_l \mathcal{H}_{SL}}{\mathcal{H}_{tot}},$$

$$P_L^l(q^2) = -\frac{\mathcal{H}_U + \mathcal{H}_L - \delta_l \left(\mathcal{H}_U + \mathcal{H}_L + 3\mathcal{H}_S\right)}{\mathcal{H}_{tot}},$$

$$P_T^l(q^2) = -\frac{3\pi\sqrt{\delta_l}}{4\sqrt{2}} \frac{\mathcal{H}_P - 2\mathcal{H}_{SL}}{\mathcal{H}_{tot}}.$$
(23)

• Forward-backward asymmetry, lepton polarization, and convexity parameters for semileptonic decays of $\bar{B}^0 \rightarrow D^+ l^- \bar{\nu}_l$ and $\bar{B}^0 \rightarrow D^{*+} l^- \bar{\nu}_l$

		$\langle {\cal A}^e_{FB} angle$	$\langle \mathcal{A}_{FB}^{\tau} \rangle$	$\langle P^e_L\rangle$	$\langle P_L^\tau\rangle$	$\langle P_T^e \rangle$	$\langle P_T^\tau\rangle$	$\langle C_F^e\rangle$	$\langle C_F^\tau\rangle$
$\bar{B}^0 \to D^+ l^- \bar{\nu}_l$	CLFQM	-1.04×10^{-6}	-0.36	$^{-1}$	0.32	1.06×10^{-3}	0.84	-1.5	-0.27
	CCQM	$-1.17 imes 10^{-6}$	-0.36	-1	0.33		0.84	-1.5	-0.26
$\bar{B}^0 \rightarrow D^{*+} l^- \bar{\nu}_l$	CLFQM	0.22	0.054	$^{-1}$	-0.51	0.46×10^{-3}	0.47	-0.42	-0.056
	CCQM	0.19	0.027	$^{-1}$	-0.50		0.46	-0.47	-0.062

2021年3月27日

27 / 35

Theoretical uncertainty

- \bullet Attached to form factors: 7%-10%
- CKM matrix elements: the uncertainty for $|V_{ub}|$ is larger due to the difference between the extractions from the exclusive and inclusive mode, 10% 15%
- The theoretical uncertainty for the figures about differential distribution $\frac{d\Gamma}{da^2}$: 10%

イロン イロン イヨン イヨン

Differential decay rate of some channels

Figure: The solid line denotes the results of the e mode, while the dashed line and dot-dashed line correspond to the μ and τ mode, respectively.

・ロト ・日下・ ・ ヨト・

The comparison with experimental data

Figure: The experimental data from BESIII for neutral D^0 (red dots with error bars) and charged D^+ (green dots with error bars), BaBar (blue dots and error bars) and CLEO for neutral D^0 (orange dots and error bars) and charged D^+ (brown dots with error bars).

BESIII: M.Ablikim et al.(BESIII), Phys.Rev.D 92,072012(2015); Phys.Rev.D 96,012002(2017) BaBar: J.Lees et al.(BaBar), Phys.Rev.D 91,052022(2015); B.Aubert et al.(BaBar), Phys.Rev.D 76,052005(2007) CLEO: D.Besson et al.(CLEO), Phys.Rev.D 80,032005(2009)

Zhang Lu (BNU)

• • • • • • • • • • • •

• The forward-backward asymmetries

• The longitudinal polarization of a charged lepton

• The transverse polarization of a charged lepton

Summary

- helicity amplitudes, helicity component space
- The leptonic and hadronic tensor can be evaluated in two different Lorentz frames. $L(\lambda_W, \lambda'_W)$: in the W rest frame, $H(\lambda_W, \lambda'_W)$: in the D rest frame.
- branching fraction: compared with experimental results for the $D_{(s)}$ decay; the predictions for the $B_{(s)}$ decay
- detailed derivation for physical observables $F_L^{\tau}(D^*)$ and $P_L^{\tau}(D^*)$ for the decay $\bar{B} \to D^* \tau^- \nu_{\tau}$ from the Belle collaboration
- these polarization observables are crucial inputs for testing and investigating New Physics

THANK YOU

Zhang Lu (BNU)

メロト メロト メヨト メヨト