

SU(3) Flavor Symmetry for Weak Hadronic Decays of B_{bc} baryons

Jin Sun TDLI & SJTU

work with Junxing Pan, Yu-Kuo Hsiao, Xiao-Gang He, Phys. Rev. D 102, 056005 (2020)

第二届强子与重味物理理论和实验联合研讨会,兰州大学, 27/3/21

2 Two Body Decay Modes

3 SU(3) Invariant Amplitudes

4 Experimental Analysis

Two Body Decay Modes

SU(3) Invariant Amplitudes

Experimental Analysis

Introduction

Weak Decays

Weak Decays of B_{bc} c-quark induced $|V_{cb}/V_{cs}|^2 \sim 1.7 \times 10^{-3}$ **b**-quark induced dominant **Cabibbo doubly Cabibbo** $b \to c\bar{c}q$ $b \to c\bar{u}q$ Cabibbo allowed suppressed suppressed $\lambda_{ds} = V_{ud}V_{cs}^* \quad \lambda_{dd} = V_{ud}V_{cd}^* \quad \lambda_{sd} = V_{us}V_{cd}^* \quad \lambda_{cg}^c = V_{cb}V_{ca}^* \quad \lambda_{ua}^c = V_{cb}V_{ua}^*$ $\lambda_{ss} = V_{us} V_{cs}^*$

Note: 1. Two decays to find some different favorable search strategies.
 2. b-decay mode has a displaced vertex for subsequent decays traveling 10³ longer distance before decaying than c-decay ones.

Effective Hamiltonian

c-quark decay

Nonzero entries

$$H_{eff}^{c} = \frac{G_{F}}{\sqrt{2}} \lambda_{q'q} [c_{1}(\bar{u}q')(\bar{q}c) + c_{2}(\bar{u}_{\beta}q'_{\alpha})(\bar{q}_{\alpha}c_{\beta})]$$

b-quark decay
$$(\bar{q}_{1}q_{2}) = \bar{q}_{1}\gamma_{\mu}(1-\gamma_{5})q_{2}$$

$$H^b_{eff} = \frac{G_F}{\sqrt{2}} \lambda^c_{aq} [c_1(\bar{q}a)(\bar{c}b) + c_2(\bar{q}_\beta a_\alpha)(\bar{c}_\alpha b_\beta)]$$

a takes c and u

$$\begin{split} H^{c}_{eff} &: H^{31}_{2} = \lambda_{ds}, H^{21}_{2} = \lambda_{dd}, H^{31}_{3} = \lambda_{ss} = -\lambda_{dd}, H^{21}_{3} = \lambda_{sd} \\ H^{b}_{eff}(a = u) &: \quad H^{2}_{1} = \lambda^{c}_{ud}, H^{3}_{1} = \lambda^{c}_{us} \\ H^{b}_{eff}(a = c) &: \quad H^{2} = \lambda^{c}_{cd}, H^{3} = \lambda^{c}_{cs} \\ & \quad \text{Eur.Phys.J.C80,59(2020),} \\ & \quad \text{arXiv:2006.15291} \end{split}$$

Effective Hamiltonian

SU(3) Invariant Amplitudes

Experimental Analysis

Two Body Decay Modes

Effective Hamiltonians can induce B_{bc} to decay

Two body decays { multi body contains unknown resonance simple calculation and identified final states

$$H_{i}^{jk} \qquad H_{j}^{i} \qquad H^{i}$$

$$B_{bc} \rightarrow \underline{B^{(\prime)}} + M_{b} \qquad B_{bc} \rightarrow B_{cc} + M \qquad B_{bc} \rightarrow B_{cc} + M_{\overline{c}}$$

octet(decuplet)

octet

 $B_{bc} \to B_c^{(\prime)} + M_c \qquad B_{bc} \to B_c^{(\prime)} + M_{c\bar{c}}$

anti-triplet(sextet)

anti-triplet

Components of baryon and meson

octet baryon $B_i^i: (n, p, \Sigma^{\pm,0}, \Xi^{-,0}, \Lambda)$

decuplet baryon

 $B'_{ijk}: (\Delta^{++,\pm,0}, \Sigma'^{\pm,0}, \Xi'^{-,0}, \Omega^{-})$

heavy cc baryon

$$B_{cc}: (\Xi_{cc}^{++}, \Xi_{cc}^{+}, \Omega_{cc}^{+})$$

octet pseudoscalar meson $M_i^i: (\pi^{\pm,0}, K^{\pm}, K^0, \bar{K}^0, \eta)$

heavy b meson

 $M_b: (B^-, \bar{B}^0, \bar{B}^0_s)$

heavy c meson $M_c: (D^0, D^+, D_s^+)$

Components of baryon and meson

heavy b baryon $B_b = \begin{pmatrix} 0 & \Lambda_b^0 & \Xi_b^0 \\ -\Lambda_b^0 & 0 & \Xi_b^- \\ -\Xi_b^0 & -\Xi_b^- & 0 \end{pmatrix}$

heavy c baryon

 $B'_{b} = \begin{pmatrix} \Sigma_{b}^{+} & \Sigma_{b}^{0}/\sqrt{2} & \Xi_{b}^{\prime 0}/\sqrt{2} \\ \Sigma_{b}^{0}/\sqrt{2} & \Sigma_{b}^{-} & \Xi_{b}^{\prime -}/\sqrt{2} \\ \Xi_{b}^{\prime 0}/\sqrt{2} & \Xi_{b}^{\prime -}/\sqrt{2} & \Omega_{b}^{-} \end{pmatrix}$

 $B'_{c} = \begin{pmatrix} \Sigma_{c}^{++} & \Sigma_{c}^{+}/\sqrt{2} & \Xi_{c}^{\prime+}/\sqrt{2} \\ \Sigma_{c}^{+}/\sqrt{2} & \Sigma_{c}^{0} & \Xi_{c}^{\prime 0}/\sqrt{2} \\ \Xi_{c}^{\prime +}/\sqrt{2} & \Xi_{c}^{\prime 0}/\sqrt{2} & \Omega_{c}^{0} \end{pmatrix}$

Effective Hamiltonian

Two Body Decay Modes

SU(3) Invariant Amplitudes

Experimental Analysis

Hⁱ_{ik} induced decays $B_{bc} \rightarrow B + M_{b}$ $\mathcal{M} = d_1 \mathbf{B}_{bc}^i H_i^{jk} \mathbf{B}_{ljk} M_b^l + d_2 \mathbf{B}_{bc}^i H_i^{jk} \mathbf{B}_{jkl} M_b^l + d' \mathbf{B}_{bc}^i H_i^{jk} \mathbf{B}_{klj} M_b^l$ $+d_3\mathbf{B}_{bc}^iH_l^{jk}\mathbf{B}_{ijk}M_b^l+d_4\mathbf{B}_{bc}^iH_l^{jk}\mathbf{B}_{jki}M_b^l+d''\mathbf{B}_{bc}^iH_l^{jk}\mathbf{B}_{kij}M_b^l$ d_1 d_2 d.

 d_{2}

$H^{i}_{\ jk}$ induced decays

Contract up-down indices in hadron and Hamiltonian U
SU(3) singlet

 $\mathcal{M}(\mathbf{B}_{b}) = e_{1}\mathbf{B}_{bc}^{i}H_{i}^{jk}\mathbf{B}_{b\ jl}M_{k}^{l} + e_{2}\mathbf{B}_{bc}^{i}H_{i}^{jk}\mathbf{B}_{b\ kl}M_{j}^{l} + e_{3}\mathbf{B}_{bc}^{i}H_{l}^{jk}\mathbf{B}_{b\ jk}M_{i}^{l} + e_{4}\mathbf{B}_{bc}^{i}H_{l}^{jk}\mathbf{B}_{b\ ik}M_{j}^{l} + \underline{e_{5}\mathbf{B}_{bc}^{i}H_{l}^{jk}\mathbf{B}_{b\ ij}M_{k}^{l}}$

 $\mathcal{M}(\mathbf{B}'_{b}) = e'_{1}\mathbf{B}^{i}_{bc}H^{jk}_{i}\mathbf{B}'_{b\ jl}M^{l}_{k} + e'_{2}\mathbf{B}^{i}_{bc}H^{jk}_{i}\mathbf{B}'_{b\ kl}M^{l}_{j} + e'_{3}\mathbf{B}^{i}_{bc}H^{jk}_{l}\mathbf{B}'_{b\ jk}M^{l}_{i}$ $+ e'_{4}\mathbf{B}^{i}_{bc}H^{jk}_{l}\mathbf{B}'_{b\ ik}M^{l}_{j} + e'_{5}\mathbf{B}^{i}_{bc}H^{jk}_{l}\mathbf{B}'_{b\ ij}M^{l}_{k}$

Hⁱ_j induced decays

 $\mathcal{M} = a_1 \mathbf{B}_{bc}^i H_i^j \mathbf{B}_{cc\,l} M_j^l + a_2 \mathbf{B}_{bc}^i H_l^j \mathbf{B}_{cc\,l} M_j^l + a_3 \mathbf{B}_{bc}^i H_l^j \mathbf{B}_{cc\,j} M_i^l$

Hⁱ_j induced decays

 $B_{bc} \to B_c^{(\prime)} + M_c$

 $\mathcal{M} = b_1^{(\prime)} \mathbf{B}_{bc}^i H_i^j \mathbf{B}_{c \, jk} M_c^k + b_2^{(\prime)} \mathbf{B}_{bc}^i H_k^j \mathbf{B}_{c \, ji} M_c^k$

Hⁱ induced decays

 $B_{bc} \to B_{cc} + M_{\bar{c}}$

 $\mathcal{M} = f_1 \mathbf{B}_{bc}^i H^j \mathbf{B}_{cc\,i} M_{\bar{c}\,j} + f_2 \mathbf{B}_{bc}^i H^j \mathbf{B}_{cc\,j} M_{\bar{c}\,i}$

Hⁱ induced decays

$$B_{bc} \to B_c^{(\prime)} + M_{c\bar{c}}$$

Identifying dominant decay modes and relations for experiment

Effective Hamiltonian

Two Body Decay Modes

SU(3) Invariant Amplitudes

Experimental Analysis

Take c induced decays as example

not well known

Optimizing the identification of B_b' to discover B_{bc}

b induced decays in backup

Cabibbo allowed decays $B_{bc} \to B^{(\prime)} + M_b$

Decay modes	Amplitudes	Decay modes	Amplitudes
$\Xi^0_{bc} \to \Xi^0 \bar{B}^0_s$	$\lambda_{ds}d_2$	$\Xi_{bc}^0 \to \Sigma'^+ B^-$	$\lambda_{ds} \frac{1}{\sqrt{2}} d'_1$
$\Omega^0_{bc} \to \Xi^0 \bar{B}^0$	$\lambda_{ds} d_4$	$\Xi_{bc}^0 \to \Xi'^0 \bar{B}_s^0$	$\lambda_{ds} \frac{1}{\sqrt{2}} d'_1$
$\Xi_{bc}^0 \to \Sigma^+ B^-$	$-\lambda_{ds}(d_1-d_2)$	$\Omega_{bc}^0 \to \Xi'^0 \bar{B}^0$	$\lambda_{ds} \frac{1}{\sqrt{2}} d_2'$
$\Xi_{bc}^+ \to \Sigma^+ B^0$	$-\lambda_{ds}(d_3 - d_4)$	$\Xi_{L}^{+} \rightarrow \Sigma'^{+} \bar{B}^{0}$	$\lambda_{ds} \frac{1}{\sqrt{2}} d_0'$
$\Xi_{bc}^{\circ} \to \Lambda B^{\circ}$	$\lambda_{ds} \frac{1}{\sqrt{6}} (d_1 + d_2 + d_3 + d_4)$	$\Xi_{1}^{0} \rightarrow \Sigma^{\prime 0} \bar{B}^{0}$	$\frac{\lambda_d}{\lambda_d} \frac{1}{1} (d'_4 + d'_2)$
$\Xi_{bc}^{0} \to \Sigma^{0} B^{0}$	$\lambda_{ds} \frac{1}{\sqrt{2}} (d_1 - d_2 + d_3 - d_4)$	-bc , 2 D	$\sqrt{6}(a_1 + a_2)$

Triangle relation

 $\mathcal{M}(\Xi_{bc}^{0} \to \Sigma'^{+}B^{-}) = \mathcal{M}(\Xi_{bc}^{0} \to \Xi'^{0}\bar{B}_{s}^{0}) \qquad \mathcal{M}(\Omega_{bc}^{0} \to \Xi'^{0}\bar{B}^{0}) = \mathcal{M}(\Xi_{bc}^{+} \to \Sigma'^{+}\bar{B}^{0})$ $\mathcal{M}(\Xi_{bc}^{0} \to \Sigma'^{+}B^{-}) + \mathcal{M}(\Xi_{bc}^{+} \to \Sigma'^{+}\bar{B}^{0}) = \sqrt{2}\mathcal{M}(\Xi_{bc}^{0} \to \Sigma'^{0}\bar{B}^{0})$

Cabibbo allowed decays

$B_{bc} \to B_b^{(\prime)} + M$				
Decay modes	Amplitudes		Decay modes	Amplitudes
$\begin{aligned} \Xi_{bc}^{0} &\to \Xi_{b}^{-} \pi^{+} \\ \Xi_{bc}^{+} &\to \Xi_{b}^{0} \pi^{+} \\ \Xi_{bc}^{0} &\to \Xi_{b}^{0} \pi^{0} \\ \Omega_{bc}^{0} &\to \Xi_{b}^{0} \bar{K}^{0} \\ \Xi_{bc}^{0} &\to \Xi_{b}^{0} \eta \\ \Xi_{bc}^{0} &\to \Lambda_{b} \bar{K}^{0} \end{aligned}$	$ \begin{array}{c} -\lambda_{ds}e_{1} \\ -\lambda_{ds}e_{3} \\ \lambda_{ds}\frac{-1}{\sqrt{2}}(e_{1}-e_{3}) \\ -\lambda_{ds}(e_{3}+e_{4}) \\ \lambda_{ds}\frac{-1}{\sqrt{6}}(e_{1}+2e_{2}-2e_{4}) \\ \lambda_{ds}(e_{2}-e_{4}) \end{array} $	$+ e_3)$	$\begin{split} \overline{\Xi}^{0}_{bc} &\to \Omega^{-}_{b} K^{+} \\ \overline{\Xi}^{0}_{bc} &\to \Sigma^{+}_{b} K^{-} \\ \overline{\Xi}^{0}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \eta \\ \overline{\Xi}^{+}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \pi^{0} \\ \overline{\Omega}^{0}_{bc} &\to \overline{\Omega}^{-}_{b} \pi^{+} \\ \overline{\Xi}^{0}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \pi^{0} \\ \overline{\Xi}^{+}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \pi^{+} \\ \overline{\Xi}^{0}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \pi^{+} \\ \overline{\Xi}^{0}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \pi^{+} \\ \overline{\Xi}^{0}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \overline{K}^{0} \\ \overline{\Omega}^{0}_{bc} &\to \overline{\Xi}^{\prime 0}_{b} \overline{K}^{0} \end{split}$	$ \begin{array}{c} \lambda_{ds} e'_{1} \\ \lambda_{ds} e'_{2} \\ \lambda_{ds} e'_{2} \\ \lambda_{ds} \frac{1}{2\sqrt{3}} (e'_{1} - 2e'_{2} + e'_{3}) \\ \lambda_{ds} e'_{4} \\ \lambda_{ds} e'_{5} \\ \lambda_{ds} \frac{1}{2} (e'_{1} - e'_{3}) \\ \lambda_{ds} \frac{1}{\sqrt{2}} (e'_{1} + e'_{3}) \\ \lambda_{ds} \frac{1}{\sqrt{2}} (e'_{3} + e'_{5}) \\ \lambda_{ds} \frac{1}{\sqrt{2}} (e'_{1} + e'_{5}) \\ \lambda_{ds} \frac{1}{\sqrt{2}} (e'_{2} + e'_{4}) \\ \lambda_{ds} \frac{1}{\sqrt{2}} (e'_{3} + e'_{4}) \end{array} $

 $\mathcal{M}(\Xi_{bc}^+ \to \Xi_b^0 \pi^+) - \mathcal{M}(\Xi_{bc}^0 \to \Xi_b^- \pi^+) = -\sqrt{2}\mathcal{M}(\Xi_{bc}^0 \to \Xi_b^0 \pi^0)$ $\mathcal{M}(\Xi_{bc}^+ \to \Sigma_b^+ \bar{K}^0) + \mathcal{M}(\Xi_{bc}^0 \to \Sigma_b^+ K^-) = \sqrt{2}\mathcal{M}(\Xi_{bc}^0 \to \Sigma_b^0 \bar{K}^0)$

Cabibbo allowed decays

The above give all Cabibbo allowed decay modes

Cabibbo allowed decay modes { dominant most likely to-be-discoverd

 $\Gamma(\Xi_{Qc} \to \Xi_Q \pi^+) = \frac{G_F^2}{32\pi} (\lambda_{ds} a_1 f_\pi)^2 m_{\Xi_{Qc}}^3 (1 - m_{\Xi_Q}^2 / m_{\Xi_{Qc}}^2)^3 (f_1^2 + g_1^2)$ $\langle \Xi_Q | (\bar{s}c) | \Xi_{Qc} \rangle \simeq \bar{u}_{\Xi_O} (f_1 \gamma_\mu - g_1 \gamma_\mu \gamma_5) u_{\Xi_{Oc}}$ $\frac{\Gamma(\Xi_{bc}^+ \to \Xi_b^0 + \pi^+)}{\Gamma(\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+)} \approx 1.4 \longrightarrow \mathcal{B}(\Xi_{bc}^+ \to \Xi_b^0 + \pi^+) \sim 10^{-2}$

Analysis for discovery in LHC

$$\Xi_{bc}^0 \to \Lambda + \underline{\bar{B}^0}$$

b-meson

$$\mathcal{B}(\Xi_{bc}^0 \to \Lambda + \bar{B}^0) \sim 10^{-2}$$

$$\mathcal{B}(\Lambda \to p\pi^-) \simeq 64\%$$

 $\mathcal{B}(\bar{B}^0 \to D^+ \pi^-) \simeq 2.5 \times 10^{-3}$ $\mathcal{B}(D^+ \to \pi^+ \pi^0) \simeq 1.2 \times 10^{-3}$

10⁸ events

$$\Xi_{bc}^{+} \rightarrow \underline{\Xi_{b}^{0}} + \pi^{+}$$

b-baryon
$$\mathcal{B}(\Xi_{bc}^{+} \rightarrow \Xi_{b}^{0} + \pi^{+}) \sim 10^{-2}$$

$$\mathcal{B}(\Xi_{b}^{0} \rightarrow \Xi^{0}J/\Psi) = 10^{-4} - 10^{-3}$$

$$\mathcal{B}(\Xi^{0} \rightarrow \Lambda \pi^{0}, \Lambda \rightarrow p\pi^{-}) \simeq 64\%$$

$$\mathcal{B}(J/\Psi \rightarrow \mu^{+}\mu^{-} + e^{+}e^{-}) \simeq 12\%$$

10⁶⁻⁷ events

PDG; Phys.Rev.D92,114013(2015)

Conclusions

- 2. We study two-body weak decays using SU(3) flavor symmetry to provide the promising modes for discovery.
- 3. We analyze b/c induced two decay modes and get several relations among BR to test SU(3) flavor symmetry.

4. We urge experimental colleagues to search for B_{bc} using two-body weak decays.

Thanks!

Backup

上海交通大學

Masses for heavy baryons and mesons

 $m_{\Xi_{hc}} = 7.0 \text{ Gev}, \ m_{\Omega_{hc}} = 7.3 \text{ Gev}$ Int.J.Mod.Phys.A23,2817(2008) bc baryon $m_{\Xi_{cc}^{++}} = m_{\Xi_{cc}^{+}} = 3.6212 \text{ Gev}$ cc baryon **b baryon** $m_{\Lambda_{h}^{0}} = 5.6196 \text{ Gev}, \ m_{\Sigma_{h}^{+}} = 5.81056 \text{ Gev}, \ m_{\Sigma_{h}^{-}} = 5.81564 \text{ Gev},$ $m_{\Xi_{\rm h}^0} = 5.7919 \; {\rm Gev}, \ m_{\Xi_{\rm h}^-} = 5.7970 \; {\rm Gev}, \ m_{\Omega_{\rm h}^-} = 6.0461 \; {\rm Gev},$ $m_{\Lambda^+} = 2.28246 \text{ Gev}, \ m_{\Sigma^{++}} = 2.45397 \text{ Gev}, \ m_{\Sigma^+} = 2.4529 \text{ Gev}, \ m_{\Sigma^0} = 2.45375 \text{ Gev},$ c baryon $m_{\Xi_c^+} = 2.46794 \text{ Gev}, \ m_{\Xi_c^0} = 2.47090 \text{ Gev}, \ m_{\Omega_c^0} = 2.6952 \text{ Gev},$ $m_{B^{\pm}} = 5.27934 \text{ Gev}, \ m_{B^0} = 5.27965 \text{ Gev}, \ m_{B^0_*} = 5.36688 \text{ Gev},$ b meson $m_{D^{\pm}} = 1.86965 \text{ Gev}, \ m_{D^0} = 1.86483 \text{ Gev}, \ m_{D_s^{\pm}} = 1.96834 \text{ Gev},$ c meson

Example
$$\Xi_{Qc} \to \Xi_Q \pi^+$$

Momentum of CM

 $P_{c} = \frac{1}{2m_{B_{bc}}} \left[m_{B_{bc}}^{4} \left(1 - \frac{(m_{B} + m_{m})^{2}}{m_{B_{bc}}^{2}} \right) \left(1 - \frac{(m_{B} - m_{m})^{2}}{m_{B_{bc}}^{2}} \right) \right]^{1/2} \sim \frac{1}{2} m_{B_{bc}} \left(1 - \frac{m_{B}}{2} / m_{B_{bc}}^{2} \right)$ **Factorize** $A^{2} \sim m_{B_{bc}}^{2} \left(1 - \frac{m_{B}}{m_{B_{bc}}} \right)^{2} f_{1}^{2}$ $B^{2} \sim m_{B_{bc}}^{2} \left(1 + \frac{m_{B}}{m_{B_{bc}}} \right)^{2} g_{1}^{2}$ $\langle \pi^{+} | (\bar{u}d) | 0 \rangle = i f_{\pi} q^{\mu}$ $\mathcal{M}(\Xi_{Qc} \to \Xi_{Q} \pi^{+}) = i \lambda_{ds} a_{1} f_{\pi} q^{\mu} \langle \Xi_{Q} | (\bar{s}c) | \Xi_{Qc} \rangle \simeq i \lambda_{ds} a_{1} f_{\pi} q^{\mu} \bar{u}_{\Xi_{Q}} (f_{1} \gamma_{\mu} - g_{1} \gamma_{\mu} \gamma_{5}) u_{\Xi_{Qc}}$

Amplitude

$$|M|^{2} = A^{2}(m_{B_{bc}} + m_{B} + m_{m})(m_{B_{bc}} + m_{B} - m_{m}) + B^{2}(m_{B_{bc}} - m_{B} - m_{m})(m_{B_{bc}} - m_{B} - m_{m})$$

$$\sim m^{2}_{B_{bc}}(1 + \frac{m_{B}}{m_{B_{bc}}})^{2}A^{2} + m^{2}_{B_{bc}}(1 - \frac{m_{B}}{m_{B_{bc}}})^{2}B^{2} \sim m^{4}_{B_{bc}}(1 - \frac{m^{2}_{B}}{m^{2}_{B_{bc}}})^{2}(f_{1}^{2} + g_{1}^{2})$$

Decay width

$$\Gamma(\Xi_{Qc} \to \Xi_Q \pi^+) = \frac{G_F^2}{2} \frac{P_c}{8\pi m_{B_{bc}}^2} |M|^2 = \frac{G_F^2}{32\pi} (\lambda_{ds} a_1 f_\pi)^2 m_{\Xi_{Qc}}^3 (1 - m_{\Xi_Q}^2 / m_{\Xi_{Qc}}^2)^3 (f_1^2 + g_1^2)$$

b induced decay $|V_{cb}/V_{cs}| \simeq 0.04$ $\underline{B_{bc}} \to B_c^{(\prime)} + M_c$ $B_{bc} \rightarrow B_{cc} + M^{-}$ Amplitudes Decay modes Amplitudes Decay modes $10^{-4} \begin{array}{c|c} \hline \text{Decay modes} & \text{Amplitudes} \\ \hline \text{E}_{bc}^{+} \rightarrow \Omega_{cc}^{+} K^{0} & \lambda_{ud}^{c} a_{1} \\ \hline \Omega_{bc}^{0} \rightarrow \Omega_{cc}^{+} \pi^{-} & \lambda_{ud}^{c} a_{2} \\ \hline \Omega_{bc}^{0} \rightarrow \Xi_{cc}^{+} K^{-} & \lambda_{us}^{c} a_{2} \\ \hline \Omega_{bc}^{0} \rightarrow \Xi_{cc}^{+} K^{-} & \lambda_{us}^{c} a_{3} \\ \hline \Omega_{bc}^{0} \rightarrow \Xi_{cc}^{+} \pi^{-} & \lambda_{us}^{c} a_{3} \\ \hline \Xi_{bc}^{0} \rightarrow \Omega_{cc}^{+} \pi^{-} & \lambda_{us}^{c} a_{3} \\ \hline \Xi_{bc}^{+} \rightarrow \Omega_{cc}^{+} \pi^{0} & \lambda_{us}^{c} \frac{1}{\sqrt{2}} a_{3} \\ \hline \Xi_{bc}^{+} \rightarrow \Xi_{cc}^{+} K^{-} & \lambda_{us}^{c} (a_{1} + a_{2}) \\ \hline \Xi_{bc}^{+} \rightarrow \Xi_{cc}^{+} \pi^{-} & \lambda_{us}^{c} (a_{2} + a_{3}) \\ \hline \Omega_{bc}^{0} \rightarrow \Omega_{cc}^{+} K^{-} & \lambda_{us}^{c} (a_{2} + a_{3}) \\ \hline \Xi_{bc}^{+} \rightarrow \Xi_{cc}^{+} \pi^{-} & \lambda_{ud}^{c} (a_{2} + a_{3}) \\ \hline \Xi_{bc}^{+} \rightarrow \Xi_{cc}^{+} \pi^{0} & \lambda_{ud}^{c} \frac{1}{\sqrt{6}} (a_{1} + a_{3}) \\ \hline \Xi_{bc}^{+} \rightarrow \Xi_{cc}^{+} \pi^{0} & \lambda_{ud}^{c} \frac{-1}{\sqrt{2}} (a_{1} - a_{3}) \\ \hline \Xi_{bc}^{+} \rightarrow \Xi_{cc}^{+} \pi^{0} & \lambda_{ud}^{c} \frac{-1}{\sqrt{2}} (a_{1} - a_{3}) \\ \hline \Xi_{bc}^{+} \rightarrow \Omega_{cc}^{+} \pi^{0} & \lambda_{ud}^{c} \frac{-1}{\sqrt{2}} (a_{1} - a_{3}) \\ \hline \Xi_{bc}^{+} \rightarrow \Omega_{cc}^{+} \pi^{0} & \lambda_{c}^{c} \frac{-1}{2} (2a_{1} - a_{3}) \end{array}$ $\begin{array}{c|c} \Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} D_{s}^{+} & \lambda_{ud}^{c} b_{1} \\ \Xi_{bc}^{+} \rightarrow \Xi_{c}^{0} D^{+} & -\lambda_{us}^{c} b_{1} \\ \Omega_{bc}^{0} \rightarrow \Xi_{c}^{0} D^{0} & \lambda_{ud}^{c} b_{2} \\ \Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} D^{0} & -\lambda_{us}^{c} b_{2} \\ \Xi_{bc}^{+} \rightarrow \Lambda_{c}^{+} D^{0} & -\lambda_{ud}^{c} (b_{1} + b_{2}) \\ \Xi_{bc}^{+} \rightarrow \Xi_{c}^{+} D^{0} & -\lambda_{us}^{c} (b_{1} + b_{2}) \end{array}$ $\begin{array}{c|c} \Xi^+_{bc} \to \Sigma^0_c D^+ & \lambda^c_{ud} b'_1 \\ \Xi^+_{bc} \to \Omega^0_c D^+_s & \lambda^c_{us} b'_1 \\ \Xi^+_{bc} \to \Xi^{\prime 0}_c D^+_s & \lambda^c_{ud} \frac{1}{\sqrt{2}} b'_1 \end{array}$ $\Xi_{bc}^+ \to \Xi_c^{\prime 0} D^+ \left| \lambda_{us}^c \frac{1}{\sqrt{2}} b_1' \right|$ $\begin{array}{l} \Xi_{bc}^{0} \rightarrow \Xi_{c}^{0} D^{0} \\ \Xi_{bc}^{0} \rightarrow \Xi_{c}^{\prime 0} D^{0} \\ \Omega_{bc}^{0} \rightarrow \Xi_{c}^{\prime 0} D^{0} \\ \Xi_{bc}^{0} \rightarrow \Xi_{c}^{\prime 0} D^{0} \\ \Xi_{bc}^{0} \rightarrow \Xi_{c}^{\prime 0} D^{0} \\ \Xi_{bc}^{0} \rightarrow \Xi_{c}^{\prime 0} D^{0} \\ \Xi_{bc}^{+} \rightarrow \Xi_{c}^{+} D^{0} \\ \Xi_{bc}^{+} \rightarrow \Sigma_{c}^{+} D^{0} \\ \Xi_{bc}^{+} \rightarrow \Xi_{c}^{\prime +} D^{0} \end{array} \begin{array}{l} \lambda_{us}^{c} \sqrt{2} v_{1} \\ \lambda_{us}^{c} \frac{1}{\sqrt{2}} b_{2}^{\prime} \\ \lambda_{us}^{c} \frac{1}{\sqrt{2}} b_{2}^{\prime} \\ \lambda_{us}^{c} \frac{1}{\sqrt{2}} (b_{1}^{\prime} + b_{2}^{\prime}) \end{array} \right] \left[0^{-6} \right]$ $\Xi_{bc}^+ \to \Omega_{cc}^+ \eta \qquad \lambda_{us}^c \frac{-1}{\sqrt{6}} (2a_1 - a_3)$ $\mathcal{B}(\Xi_{bc}^+ \to \Sigma_c^+ D^0) \sim 10^{-6}$

b induced decay

 $B_{bc} \rightarrow B_{cc} + M_{\bar{c}}$

ر	2	\bigcap
Π	โรงาน	

 $B_{bc} \to B_c^{(\prime)} + M_{c\bar{c}}$

	Decay modes	Amplitudes	Decay modes	Amplitudes
	$\Xi_{bc}^+ \to \Xi_{cc}^{++} D^-$	$\lambda_{cd}^c f_1$	$\Xi_{bc}^+ \to \Lambda_c^+ M_{c\bar{c}}$	$\lambda^c_{cd} g_{car{c}}$
	$\Omega_{bc}^{0^-} \to \Omega_{cc}^+ D^-$	$\lambda_{cd}^c f_1$	$\Omega_{bc}^0 \to \Xi_c^0 M_{c\bar{c}}$	$-\lambda^c_{cd}g_{car{c}}$
10-3	$\Xi_{bc}^+ \to \Xi_{cc}^{++} D_s^-$	$\lambda_{cs}^{c}f_{1}$	$\Xi_{bc}^+ \to \Xi_{c}^+ M_{c\bar{c}}$	$\lambda^c_{cs} g_{car{c}}$ 10-5
	$\Xi_{bc}^0 \to \Xi_{cc}^+ D_s^-$	$\lambda_{cs}^{c}f_{1}$	$\Xi_{bc}^0 \to \Xi_c^0 M_{c\bar{c}}$	$\lambda^c_{cs} g_{car{c}}$
	$\Xi_{bc}^+ \to \Xi_c^+ \bar{D}^0$	$\lambda^c_{cd} f_2$	$\Xi_{bc}^+ \to \Sigma_c^+ M_{c\bar{c}}$	$\lambda^c_{cd} \frac{1}{\sqrt{2}} g'_{c\bar{c}}$
	$\Omega_{bc}^0 \to \Xi_{cc}^+ D_s^-$	$\lambda^c_{cd} f_2$	$\Xi_{bc}^0 \to \Sigma_c^0 M_{c\bar{c}}$	$\lambda_{cd}^c g'_{c\bar{c}}$
	$\Xi_{bc}^+ \to \Omega_{cc}^+ \bar{D}^0$	$\lambda_{cs}^{c}f_{2}$	$\Omega_{bc}^{0} \to \Xi_c^{\prime 0} M_{c\bar{c}}$	$\lambda_{cd}^{c} \frac{1}{\sqrt{2}} g_{c\bar{c}}^{\prime}$
	$\Xi_{bc}^{0} \to \Omega_{cc}^{+} D^{-}$	$\lambda_{cs}^{c}f_{2}$	$\Xi_{1}^{+} \rightarrow \Xi_{c}^{\prime+} M_{c\bar{c}}$	$\lambda_{aa}^c \frac{1}{\sqrt{2}} q'_{a\bar{a}}$
	$\Xi_{bc}^{0} \to \Xi_{cc}^{+} D^{-}$	$\lambda_{cd}^c(f_1 + f_2)$	$\Xi_{0}^{0c} \rightarrow \Xi'^{0} M_{-\pi}$	$\lambda^{c} \frac{1}{1} a'$
	$\Omega_{bc}^0 \to \Omega_{cc}^+ D_s^-$	$\lambda_{cs}^c(f_1+f_2)$	\Box_{bc} , \Box_{c} M_{cc}	$\sum_{c} \sqrt{2} g_{c\bar{c}}$
			$M_{bc} \to M_c M_{c\bar{c}}$	$\lambda_{cs} g_{c\bar{c}}$

Analysis for discovery in LHC

$\Xi_{bc}^{0} \rightarrow \Xi^{0} \bar{B}_{s}^{0}$	$\mathcal{B}(\Xi^0 \to \pi^0(\Lambda \to)p\pi^-) \simeq 64\%,$	107
-	$\mathcal{B}(\bar{B}^0_s \to \rho^- (D^+_s \to)\pi^+\pi^+\pi^-) \simeq 7.5 \times 10^{-5}$	
$\Xi_{bc}^{0} \rightarrow \Sigma^{+}B^{-}$	$\mathcal{B}(\Sigma^+ \to p\pi^0) \simeq 52\%,$	107
00	$\mathcal{B}(B^- \to \rho^- (D^0 \to) \pi^+ \pi^-) \simeq 2 \times 10^{-5}$	
$\Xi_{bc}^+ \rightarrow \Sigma^+ \bar{B}^0$	$\mathcal{B}(\Sigma^+ \to p\pi^0) \simeq 52\%,$	10 ⁸
00	$\mathcal{B}(\bar{B}^0 \to \pi^- (D^+ \to) \pi^+ \pi^0) \simeq 3 \times 10^{-6}$	
$\Xi_{bc}^0 \rightarrow \Lambda \bar{B}^0$	$\mathcal{B}(\Lambda \to p\pi^-) \simeq 64\%,$	10^{8}
	$\mathcal{B}(\bar{B}^0 \to \pi^- (D^+ \to) \pi^+ \pi^0) \simeq 3 \times 10^{-6}$	
$\Xi_{bc}^0 \to \Sigma^0 \bar{B}^0$	$\mathcal{B}(\Sigma^0 \to \gamma(\Lambda \to) p\pi^-) \simeq 64\%,$	10^{8}
	$\mathcal{B}(\bar{B}^0 \to \pi^- (D^+ \to) \pi^+ \pi^0) \simeq 3 \times 10^{-6}$	
$\Xi_{ha}^0 \rightarrow \Xi_{l}^- \pi^+$	$\mathcal{B}(\Xi_{L}^{-} \to \Xi^{-} J/\Psi) = 10^{-4} - 10^{-3},$	10^{7-8}
00 0	$\mathcal{B}(\Xi^{-} \to \pi^{-}(\Lambda \to)p\pi^{-}) \simeq 64\%,$	
	$\mathcal{B}(J/\Psi \to \ell^+ \ell^-) \simeq 12\%$	
$\Xi_{hc}^+ \rightarrow \Xi_b^0 \pi^+$	$\mathcal{B}(\Xi_b^0 \to \Xi^0 J/\Psi) = 10^{-4} - 10^{-3},$	10^{7-8}
00	$\mathcal{B}(\Xi^0 \to \pi^0(\Lambda \to)p\pi^-) \simeq 64\%,$	
	$\mathcal{B}(J/\Psi \to \ell^+ \ell^-) \simeq 12\%$	
$\Xi_{bc}^0 \rightarrow \Xi_b^0 \pi^0$	$\mathcal{B}(\Xi_b^0 \to \Xi^0 J/\Psi) = 10^{-4} - 10^{-3},$	10^{7-8}
	$\mathcal{B}(\Xi^0 \to \pi^0(\Lambda \to)p\pi^-) \simeq 64\%,$	
	$\mathcal{B}(J/\Psi \to \ell^+ \ell^-) \simeq 12\%$	
$\Xi_{bc}^0 \rightarrow \Xi_b^0 \eta$	$\mathcal{B}(\Xi_b^0 \to \Xi^0 J/\Psi) = 10^{-4} - 10^{-3},$	10^{7-8}
	$\mathcal{B}(\Xi^0 \to \pi^0(\Lambda \to)p\pi^-) \simeq 64\%,$	
	$\mathcal{B}(J/\Psi \to \ell^+ \ell^-) \simeq 12\%,$	
	$\mathcal{B}(\eta \to \pi^+ \pi^- \pi^0) \simeq 23\%$	
$\Xi_{bc}^0 \to \Lambda_b \bar{K}^0$	$\mathcal{B}(\Lambda_b \to \Lambda J/\Psi) = 10^{-4} - 10^{-3},$	10^{7-8}
	$\mathcal{B}(\Lambda \to p\pi^-) \simeq 64\%,$	
	$\mathcal{B}(J/\Psi \to \ell^+ \ell^-) \simeq 12\%,$	
	$\mathcal{B}(\bar{K}^0_s \to \pi\pi) \simeq 100\%$	